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1. Introduction

An aspect of uncertainty principle in real classical analysis asserts that a function f and

its Fourier transform ̂f cannot decrease simultaneously very rapidly at infinity. As il-
lustrations of this, one has Hardy’s theorem [1], Morgan’s theorem [2], and Beurling-
Hörmander’s theorem [3–5]. These theorems have been generalized to many other situ-
ations; see, for example, [6–10].

In 1983, Cowling and Price [11] have proved an Lp-Lq-version of Hardy’s theorem. An
Lp-Lq-version of Morgan’s theorem has been also proved by Ben Farah and Mokni [7].

To state the Lp-Lq-versions of Hardy’s and Morgan’s theorems more precisely, we pro-
pose the following.

Let a,b > 0, p,q ∈ [1,+∞], α≥ 2, and β such that 1/α+ 1/β = 1.
If we consider measurable functions f on R such that

ea|x|
α
f ∈ Lp(R), eb|y|

β
̂f ∈ Lq(R), (1.1)

we obtain the following.
(i) If (aα)1/α(bβ)1/β > (sin(π/2)(β− 1))1/β, then f = 0 a.e.

(ii) If (aα)1/α(bβ)1/β ≤ (sin(π/2)(β− 1))1/β, then one has infinitely many such f .
The case α= β = 2, p = q = +∞ corresponds to Hardy’s theorem.

The case α= β = 2,1≤ p, q < +∞ corresponds to the Cowling-Price theorem.
The case α > 2, p = q = +∞ corresponds to Morgan’s theorem.
The case α > 2,1≤ p, q < +∞ corresponds to the Ben Farah-Mokni theorem.
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We remark that for each one of those cases there are further requirements for f if
(aα)1/α(bβ)1/β = (sin(π/2)(β− 1))1/β.

In this paper, we give an Lp-Lq-version of Morgan’s theorem for the n-dimensional
Euclidean motion group M(n), n≥ 2.

We can note that for the motion group, theorems of Beurling and Hardy have been
studied by Sarkar and Thangavelu [12]. For example, the condition in Theorem 1.1 below
for f = 0 a.e. for the case α= 2 follows from their work.

The motion group M(n) is the semidirect product of Rn with K = SO(n). As a set
M(n)=Rn×K , and the group law is given by

(x,k)(x′,k′)= (x+ k · x′,kk′), (1.2)

here k · x′ is the naturel action of K on Rn. The Haar measure of M(n) is dxdk, where dx
is the Lebesgue measure on Rn and dk is the normalized Haar measure on K .

Denote by ̂M(n) the unitary dual of the motion group. The abstract Plancherel theo-
rem asserts that there is a unique measure μ on ̂M(n) such that for all f ∈ L1(M(n))∩
L2(M(n)),

∫

M(n)

∣

∣ f (x,k)
∣

∣

2
dxdk =

∫

̂M(n)
tr
(

π( f )π( f )∗
)

dμ(π), (1.3)

where π( f )= ∫M(n) f (x,k)π(x,k)dxdk is the group Fourier transform of f at π ∈ ̂M(n).
It is well known that μ is supported by the set of infinite-dimensional elements of

̂M(n), which is parametrized by (r,λ)∈]0,∞[× ̂U , where U = SO(n− 1) is the subgroup
of SO(n) leaving fixed εn = (0, . . . ,0,1) in Rn. As such an element πr,λ is realized in a
Hilbert spaceHλ, we note that for f ∈ L1(M(n))∩L2(M(n)), πr,λ( f ) is a Hilbert-Schmidt
operator onHλ, moreover the restriction of the Plancherel measure on the part ]0,∞[×{λ}
is given up to a constant depending only on n, by rn−1dr.

For the analogue of Morgan’s theorem on M(n) we propose the following version,

where we use the notation ̂f (r,λ)= πr,λ( f ).

Theorem 1.1. Let p,q ∈ [1,+∞], a,b ∈]0,+∞[, and α, β positive real numbers satisfying
α > 2 and 1/α+ 1/β= 1.

Suppose that f is in L2(M(n)) such that
(i) ea‖x‖α f (x,k)∈ Lp(M(n)),

(ii) ebr
β‖ ̂f (r,λ)‖HS ∈ Lq(R+,rn−1dr) for all fixed λ in ̂U .

If (aα)1/α(bβ)1/β > (sin(π/2)(β− 1))1/β, then f is null a.e.
If (aα)1/α(bβ)1/β ≤ (sin(π/2)(β− 1))1/β, then there are infinitely many such f .

This paper is organized as follows.
In Section 2, we give a description of the unitary dual of the n-dimensional Euclidean

motion group M(n). Section 3 is devoted to the above version of Morgan’s theorem for
M(n).
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2. Description of the unitary dual of M(n)

We are going to describe the infinite-dimensional elements of ̂M(n), which are sufficient
for the Plancherel formula. We start by some notations.

For any integer m, let 〈·,·〉 denote the Hermitian (resp., Euclidian) product on Cm

(resp., on Rm) and let ‖ · ‖ be the corresponding norm. For y �= 0 in Rn let Uy be the
stabilizer of y in K under its natural action on Rn. Uy is conjugate to the subgroup U =
SO(n− 1) of SO(n) leaving fixed εn = (0, . . . ,0,1) in Rn.

We remark that ̂Rn, the set of unitary characters ofRn, is identified withRn. In fact any
such character is of the form χy , y ∈ Rn, and is defined for all x ∈ Rn by χy(x) = ei〈x,y〉.
The trivial character corresponds to y = 0.

To construct an infinite-dimensional irreducible unitary representation of the motion
group M(n), we use the following steps.

Step 1. Take a nontrivial element χy in ̂Rn. It is stabilized under the action of K by Uy .

Step 2. Take λ∈ ̂Uy and consider χy ⊗ λ as a representation of the semidirect product of
Rn by Uy denoted by Rn

�Uy .

Step 3. Induce χy ⊗ λ from Rn
�Uy to M(n) to obtain a representation Ty,λ of M(n).

We have then the following properties (see [13, 14] for details).
(a) For y �= 0 and any λ∈ ̂Uy , the representation Ty,λ is unitary and irreducible.
(b) Every infinite-dimensional irreducible unitary representation of M(n) is equiva-

lent to Ty,λ for some y and λ as above.
(c) The representations Ty1,λ1 and Ty2,λ2 are equivalent if and only if ‖y1‖ = ‖y2‖

and λ1 is equivalent to λ2 under the obvious identification of Uy1 with Uy2 .
In particular, when ‖y‖ = r > 0, Ty,λ is equivalent to Trεn,λ, so the different classes of

infinite-dimensional representations of M(n) can be parametrized by (r,λ) ∈]0,∞[× ̂U .
We use the notation πr,λ for Trεn,λ and for its equivalence class in ̂M(n). Let us make this
representation explicit.
λ is an irreducible unitary representation of U = SO(n− 1), it is of finite dimension dλ

and acts on Cdλ . Let Hλ be the vector space of all measurable function ψ : K → Cdλ such
that

∫

K ‖ψ(k)‖2dk <∞ and ψ(uk)= λ(u)(ψ(k)) for all u∈U , k ∈ K.Hλ is a Hilbert space
with respect to the inner product defined by

(

ψ1 | ψ2
)= dλ

∫

K

〈

ψ1(k),ψ2(k)
〉

dk. (2.1)

πr,λ acts on Hλ via

[

πr,λ(a,k)ψ
](

k0
)= ei〈k−1

0 ·rεn,a〉ψ
(

k0k
)

, ψ ∈Hλ, (2.2)

for a∈Rn, k,k0 ∈ K .
The Plancherel measure μ is then supported by the subset of ̂M(n) given by {πr,λ : λ∈

̂U ,r ∈R+}, and on each “piece” {πr,λ : r ∈R+} with λ fixed in ̂U , it is given by Cnrn−1dr,
where Cn is a constant depending only on n.
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The Fourier transform of a function f in L1(M(n)) is denoted as above by ̂f . It is
defined for (r,λ)∈]0,∞[× ̂U by

̂f (r,λ)= πr,λ( f )=
∫

Rn

∫

K
f (a,k)πr,λ(a,k)dkda (2.3)

(the integral being interpreted suitably, see [15]).

By the Plancherel theorem we know that for f ∈ L1(M(n))∩ L2(M(n)), ̂f (r,λ) is a

Hilbert-Schmidt operator. Let ‖ ̂f (r,λ)‖HS be its Hilbert-Schmidt norm.

3. Morgan’s theorem for the motion group

Before giving Morgan’s theorem for the motion group M(n), we state the following com-
plex analysis lemma proved by Ben Farah and Mokni [7]. This lemma plays a crucial role
in the proof of our main theorem.

Lemma 3.1. Suppose ρ ∈]1,2[, q ∈ [1,+∞], σ > 0, and B > σ sin(π/2)(ρ− 1).
If g is an entire function on C satisfying the conditions

∣

∣g(x+ iy)
∣

∣≤ consteσ|y|
ρ

for any x, y ∈R,

eB|x|
ρ
g|R ∈ Lq(R),

(3.1)

then g = 0.

We now give the Lp-Lq-version of Morgan’s theorem.

Theorem 3.2. Let p,q ∈ [1,+∞], a,b ∈]0,+∞[, and α,β positive real numbers satisfying
α > 2 and 1/α+ 1/β= 1.

Suppose that f is a measurable function on M(n) such that
(i) ea‖x‖α f (x,k)∈ Lp(M(n)),

(ii) ebr
β‖ ̂f (r,λ)‖HS ∈ Lq(R+,rn−1dr) for all fixed λ in ̂U .

If (aα)1/α(bβ)1/β > (sin(π/2)(β− 1))1/β, then f is null a.e.

Proof. To prove that f = 0, we are going to prove that ̂f (r,λ) = 0. For this, it suffices to
show that for fixed λ∈ ̂U and for any fixed K-finite vectors ϕ and ψ in Hλ, the condition

(aα)1/α(bβ)1/β > (sin(π/2)(β− 1))1/β implies that ( ̂f (r,λ)ϕ | ψ)≡ 0 as a function of r and
λ.

Let λ∈ ̂U and let ϕ, ψ be K-finite vectors in Hλ. We note that ϕ and ψ are continuous
on K and thus bounded. On the other hand, for r ∈R,

(

̂f (r,λ)ϕ | ψ)=
∫

K

∫

Rn
f (x,k)

(

πr,λ(x,k)ϕ | ψ)dxdk. (3.2)
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Let Φr(x,k)= (πr,λ(x,k)ϕ | ψ) for r ∈R and (x,k)∈M(n). Then, by definition of πr,λ, we
have

Φr(x,k)= dλ
∫

K

〈(

πr,λ(x,k)ϕ
)(

k0
)

,ψ
(

k0
)〉

dk0

= dλ
∫

K
ei〈k

−1
0 ·rεn,x〉〈ϕ

(

k0k
)

,ψ
(

k0
)〉

dk0

= dλ
∫

K
ei〈rεn,k0x〉〈ϕ

(

k0k
)

,ψ
(

k0
)〉

dk0.

(3.3)

Note that the integral on the right-hand side makes sense even if r ∈ C. Hence, with (x,k)
fixed, the function Φr(x,k) of the variable r extends to the whole complex plane. One can
easily see that for fixed (x,k), z �→Φz(x,k) is an entire function onC. Moreover, for z ∈ C,

∣

∣Φz(x,k)
∣

∣≤ dλ
∫

K

∣

∣ei〈zεn,k0a〉∣∣ ·∣∣ϕ(k0k
)∣

∣ ·∣∣ψ(k0
)∣

∣dk0. (3.4)

Then

∣

∣Φz(x,k)
∣

∣≤A
∫

K
e−
〈

(Imz)εn,k0x
〉

dk0, (3.5)

where A is a constant depending only on λ, ϕ, and ψ. (Note that ϕ and ψ are continuous
functions on K and hence are bounded.)

Using the fact that dk0 is a normalized measure on K , we obtain

∣

∣

(

Φz(x,k)
)∣

∣≤ Ae|Imz|·‖x‖. (3.6)

By definition of Φz(x,k), we have

(

̂f (z,λ)ϕ | ψ)=
∫

K

∫

Rn
f (x,k)Φz(x,k)dxdk. (3.7)

Since f satisfies hypothesis (i) of Theorem 3.2 and |(Φz(x,k))| ≤ Ae|z|·‖x‖, we conclude

that the function r �→ ( ̂f (r,λ)ϕ | ψ) can be extended to the whole of C and indeed it can
be proved that the function

z �−→ ( ̂f (z,λ)ϕ | ψ) is an entire function. (3.8)

Further, from (3.6) and (3.7), we deduce that

∣

∣

(

̂f (z,λ)ϕ | ψ)∣∣≤ A
∫

K

∫

Rn

∣

∣ f (x,k)
∣

∣e|Imz|·||x||dxdk. (3.9)

Let I =](bβ)−1/β(sin(π/2)(β− 1))1/β, (aα)1/α[, and C ∈ I . Applying the convex inequality
|ty| ≤ (1/α)|t|α + (1/β)|y|β to the positive numbers C‖x‖ and |Imz|/C, we obtain

|Imz| ·∥∥x∥∥≤ Cα

α

∥

∥x
∥

∥

α
+

1
βCβ

|Imz|β, (3.10)
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thus

∣

∣

(

̂f (z,λ)ϕ | ψ)∣∣≤ Ae(1/βCβ)|Imz|β
∫

K

∫

Rn

∣

∣ f (x,k)
∣

∣e(Cα/α)‖x‖αdxdk. (3.11)

Then

∣

∣

(

̂f (z,λ)ϕ | ψ)∣∣≤ Ae(1/βCβ)|Imz|β
∫

K

∫

Rn
ea‖x‖

α∣
∣ f (x,k)

∣

∣e(Cα/α−a)‖x‖αdxdk. (3.12)

Using this inequality, hypothesis (i), the fact that dk is a normalized measure, and the
inequality a > cα/α, we obtain

∣

∣

(

̂f (z,λ)ϕ | ψ)∣∣≤ conste(1/βCβ)|Imz|β . (3.13)

On the other hand, since π−r,λ and πr,λ are equivalent as representations of M(n),

∥

∥ ̂f (−r,λ)
∥

∥

HS =
∥

∥ ̂f (r,λ)
∥

∥

HS. (3.14)

Hypothesis (ii) of Theorem 3.2 and the inequality (3.14) imply that the function

r �−→ ebr
β∥
∥ ̂f (r,λ)

∥

∥

HS belongs to Lq(R), (3.15)

thus

r �−→ ebr
β(
̂f (r,λ)ϕ | ψ)L2(Hλ) belongs to Lq(R). (3.16)

It is clear from (3.8), (3.13), (3.16) that the function z �→ ( ̂f (z,λ)ϕ,ψ) satisfies the
hypothesis of Lemma 3.1, and so

(

̂f (z,λ)ϕ | ψ)≡ 0 (3.17)

as a function of z.
Since ϕ, ψ, and λ are arbitrary, then ̂f (r,λ)≡ 0 for all r ∈R+ and λ∈ ̂U . Hence, by the

Plancherel formula, we get that f = 0 a.e. This completes the proof of the theorem. �

In order to prove that our version respects the analogy with Morgan’s theorem, let us
now establish the sharpness of the condition

(aα)1/α(bβ)1/β >
(

sin(π/2)(β− 1)
)1/β

(3.18)

in Theorem 3.2.

Proposition 3.3. Let p,q ∈ [1,+∞], a,b ∈]0,+∞[, and α,β positive real numbers satisfy-
ing α > 2 and 1/α+ 1/β= 1.

If (aα)1/α(bβ)1/β ≤ (sin(π/2)(β− 1))1/β, then there are infinitely many measurable func-
tions on M(n) satisfying

(i) ea‖x‖α f (x,k)∈ Lp(M(n)),

(ii) ebr
β‖ ̂f (r,λ)‖HS ∈ Lq(R+,rn−1dr) for any λ fixed in ̂U .
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To prove this proposition, we use the following lemma for a, b, α, β as above.

Lemma 3.4. If (aα)1/α(bβ)1/β = (sin(π/2)(β− 1))1/β, then for all m ∈ R and m′ = (2m+
d(2−α))/(2α− 2), there exists a nonzero measurable function on M(n) satisfying

(i) (1 +‖x‖)−mea‖x‖α f ∈ L∞(M(n)),

(ii) (1 + r)−m′
ebr

β‖ ̂f (r,λ)‖HS ∈ L∞(R+,rn−1dr) for any fixed λ in ̂U .

Proof. We put for (x,k) in M(n)

f (x,k)=−i
∫

C
zνez

q−qA‖x‖2zdz, (3.19)

where q = α/(α− 2), Aα = (1/4)((α− 2)a)2, ν= (2m+ 4−α)/2(α− 2), and C is the path
which lies in the half-plane Rez > 0, and goes to infinity, in the directions argz = ±θ0,
π/2q < θ0 < π/q.

According to Morgan (see [2, page 190]), for ‖x‖→∞, we have

f (x,k) ∼ (α− 2)
(

(α− 2)a
2

)m/α
√

(

π

α

)

‖x‖me−a‖x‖α . (3.20)

On the other hand, for λ fixed in ̂U , ( ̂f (r,λ)ϕ | ψ) is equal to

−idλ
∫

K

∫

Rn

∫

C

∫

K
zνez

q−qA‖a‖2zei〈rεn,k0a〉〈ϕ
(

k0k
)

,ψ
(

k0
)〉

dk0dzdadk, (3.21)

which by a change of variables x = k−1
0 a is equal to

−idλ
∫

K

∫

Rn

∫

C

∫

K
zνez

q−qA‖x‖2zei〈rεn,x〉〈ϕ
(

k0k
)

,ψ
(

k0
)〉

dk0dzdxdk. (3.22)

Using this equality and Fubini’s theorem, we obtain the following expression for ( ̂f (r,
λ)ϕ | ψ):

−idλ
(∫∫

K

〈

ϕ
(

k0k
)

,ψ
(

k0
)〉

dk0dk
)∫

C

∫

Rn
zνez

q−qA‖x‖2zei〈rεn,x〉dxdz. (3.23)

Since

∫

Rn
e−qA‖x‖

2zei〈k
−1
0 rεn,x〉dx =

(

π

qAz

)n/2

e−r
2/4qaz, (3.24)

we deduce that

(

̂f (r,λ)ϕ | ψ)=−idλ
(

π

qA

)n/2(∫∫

K

〈

ϕ
(

k0k
)

,ψ
(

k0
)〉

dk0dk
)∫

C
zν−n/2ez

q−r2/4aqzdz.

(3.25)

Now, we fix an orthonormal basis {ej ; j ∈N} of Hλ. Taking into account that ̂f (r,λ) is a
Hilbert-Schmidt operator, we then replace ϕ by ei, ψ by ej and take the sum on i, j ∈N to
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obtain

∥

∥ ̂f (r,λ)
∥

∥

HS = const .
∣

∣

∣

∣

∫

C
zν−n/2ez

q−r2/4aqzdz
∣

∣

∣

∣
a.e. (3.26)

Adapting the method of Morgan (see [2, page 191]), we obtain

∥

∥ ̂f (r,λ)
∥

∥

HS =O(rm
′
e−br

β
) (3.27)

with m′ = (2m + n(2− α))/(2α− 2). We conclude by using the estimations (3.20) and
(3.27). �

Proof of Proposition 3.3. It suffices to prove the proposition for

(aα)1/α(bβ)1/β =
(

sin
π

2
(β− 1)

)1/β

, (3.28)

and the rest is a deduction. Let m be a real number verifying

m<min
(

− n

p
,
n(1−α)

q
+
n(α− 2)

2

)

(3.29)

with the convention 1/r = 0 when r = ∞. If m′ = (2m + n(2− α))/(2α− 2), then m′ <
−n/q.

For fixed λ in ̂U , Lemma 3.4 gives a nonzero measurable function f onM(n) satisfying
the inequalities

ea‖x‖
α∣
∣ f (x,k)

∣

∣≤ const .
(

1 +‖x‖)m,

ebr
β∥
∥ ̂f (r,λ)

∥

∥

HS ≤ const .(1 + r)m
′
.

(3.30)

The conditions m < −n/p and m′ < −n/q and the fact that dk is a normalized measure

imply that ea||x||α f belongs to Lp(M(n)) and ebr
β || ̂f (r,λ)||HS belongs to Lq(R+,Cnrn−1dr)

for fixed λ in ̂U . �
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Université de Monastir, Monastir 5019, Tunisia
Email address: kamel.mokni@fsm.rnu.tn

mailto:sihem_ayadi@yahoo.fr
mailto:kamel.mokni@fsm.rnu.tn

