Research Article
 An $L^{p}-L^{q}$-Version of Morgan's Theorem for the n-Dimensional Euclidean Motion Group

Sihem Ayadi and Kamel Mokni
Received 9 August 2006; Revised 11 January 2007; Accepted 15 January 2007
Recommended by Wolfgang zu Castell

We establish an $L^{p}-L^{q}$-version of Morgan's theorem for the group Fourier transform on the n-dimensional Euclidean motion group $M(n)$.

Copyright © 2007 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

An aspect of uncertainty principle in real classical analysis asserts that a function f and its Fourier transform \hat{f} cannot decrease simultaneously very rapidly at infinity. As illustrations of this, one has Hardy's theorem [1], Morgan's theorem [2], and BeurlingHörmander's theorem [3-5]. These theorems have been generalized to many other situations; see, for example, [6-10].

In 1983, Cowling and Price [11] have proved an $L^{p}-L^{q}$-version of Hardy's theorem. An $L^{p}-L^{q}$-version of Morgan's theorem has been also proved by Ben Farah and Mokni [7].

To state the $L^{p-L^{q}}$-versions of Hardy's and Morgan's theorems more precisely, we propose the following.

Let $a, b>0, p, q \in[1,+\infty], \alpha \geq 2$, and β such that $1 / \alpha+1 / \beta=1$.
If we consider measurable functions f on \mathbb{R} such that

$$
\begin{equation*}
e^{a|x|^{\alpha}} f \in L^{p}(\mathbb{R}), \quad e^{b|y|^{\beta}} \hat{f} \in L^{q}(\mathbb{R}) \tag{1.1}
\end{equation*}
$$

we obtain the following.
(i) If $(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta}>(\sin (\pi / 2)(\beta-1))^{1 / \beta}$, then $f=0$ a.e.
(ii) If $(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta} \leq(\sin (\pi / 2)(\beta-1))^{1 / \beta}$, then one has infinitely many such f.

The case $\alpha=\beta=2, p=q=+\infty$ corresponds to Hardy's theorem.
The case $\alpha=\beta=2,1 \leq p, q<+\infty$ corresponds to the Cowling-Price theorem.
The case $\alpha>2, p=q=+\infty$ corresponds to Morgan's theorem.
The case $\alpha>2,1 \leq p, q<+\infty$ corresponds to the Ben Farah-Mokni theorem.

We remark that for each one of those cases there are further requirements for f if $(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta}=(\sin (\pi / 2)(\beta-1))^{1 / \beta}$.

In this paper, we give an $L^{p}-L^{q}$-version of Morgan's theorem for the n-dimensional Euclidean motion group $M(n), n \geq 2$.

We can note that for the motion group, theorems of Beurling and Hardy have been studied by Sarkar and Thangavelu [12]. For example, the condition in Theorem 1.1 below for $f=0$ a.e. for the case $\alpha=2$ follows from their work.

The motion group $M(n)$ is the semidirect product of \mathbb{R}^{n} with $K=\operatorname{SO}(n)$. As a set $M(n)=\mathbb{R}^{n} \times K$, and the group law is given by

$$
\begin{equation*}
(x, k)\left(x^{\prime}, k^{\prime}\right)=\left(x+k \cdot x^{\prime}, k k^{\prime}\right) \tag{1.2}
\end{equation*}
$$

here $k \cdot x^{\prime}$ is the naturel action of K on \mathbb{R}^{n}. The Haar measure of $M(n)$ is $d x d k$, where $d x$ is the Lebesgue measure on \mathbb{R}^{n} and $d k$ is the normalized Haar measure on K.

Denote by $\widehat{M}(n)$ the unitary dual of the motion group. The abstract Plancherel theorem asserts that there is a unique measure μ on $\widehat{M}(n)$ such that for all $f \in L^{1}(M(n)) \cap$ $L^{2}(M(n))$,

$$
\begin{equation*}
\int_{M(n)}|f(x, k)|^{2} d x d k=\int_{\widehat{M}(n)} \operatorname{tr}\left(\pi(f) \pi(f)^{*}\right) d \mu(\pi) \tag{1.3}
\end{equation*}
$$

where $\pi(f)=\int_{M(n)} f(x, k) \pi(x, k) d x d k$ is the group Fourier transform of f at $\pi \in \widehat{M}(n)$.
It is well known that μ is supported by the set of infinite-dimensional elements of $\widehat{M}(n)$, which is parametrized by $(r, \lambda) \in] 0, \infty[\times \hat{U}$, where $U=S O(n-1)$ is the subgroup of $\operatorname{SO}(n)$ leaving fixed $\varepsilon_{n}=(0, \ldots, 0,1)$ in \mathbb{R}^{n}. As such an element $\pi_{r, \lambda}$ is realized in a Hilbert space H_{λ}, we note that for $f \in L^{1}(M(n)) \cap L^{2}(M(n)), \pi_{r, \lambda}(f)$ is a Hilbert-Schmidt operator on H_{λ}, moreover the restriction of the Plancherel measure on the part $] 0, \infty[\times\{\lambda\}$ is given up to a constant depending only on n, by $r^{n-1} d r$.

For the analogue of Morgan's theorem on $M(n)$ we propose the following version, where we use the notation $\hat{f}(r, \lambda)=\pi_{r, \lambda}(f)$.

Theorem 1.1. Let $p, q \in[1,+\infty], a, b \in] 0,+\infty[$, and α, β positive real numbers satisfying $\alpha>2$ and $1 / \alpha+1 / \beta=1$.

Suppose that f is in $L^{2}(M(n))$ such that
(i) $e^{a\|x\|^{\alpha}} f(x, k) \in L^{p}(M(n))$,
(ii) $e^{b r \beta}\|\hat{f}(r, \lambda)\|_{H S} \in L^{q}\left(\mathbb{R}^{+}, r^{n-1} d r\right)$ for all fixed λ in \hat{U}.

If $(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta}>(\sin (\pi / 2)(\beta-1))^{1 / \beta}$, then f is null a.e.
If $(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta} \leq(\sin (\pi / 2)(\beta-1))^{1 / \beta}$, then there are infinitely many such f.
This paper is organized as follows.
In Section 2, we give a description of the unitary dual of the n-dimensional Euclidean motion group $M(n)$. Section 3 is devoted to the above version of Morgan's theorem for $M(n)$.

2. Description of the unitary dual of $M(n)$

We are going to describe the infinite-dimensional elements of $\widehat{M}(n)$, which are sufficient for the Plancherel formula. We start by some notations.

For any integer m, let $\langle\cdot, \cdot\rangle$ denote the Hermitian (resp., Euclidian) product on \mathbb{C}^{m} (resp., on \mathbb{R}^{m}) and let $\|\cdot\|$ be the corresponding norm. For $y \neq 0$ in \mathbb{R}^{n} let U_{y} be the stabilizer of y in K under its natural action on \mathbb{R}^{n}. U_{y} is conjugate to the subgroup $U=$ $\mathrm{SO}(n-1)$ of $\mathrm{SO}(n)$ leaving fixed $\varepsilon_{n}=(0, \ldots, 0,1)$ in \mathbb{R}^{n}.

We remark that $\widehat{\mathbb{R}}^{n}$, the set of unitary characters of \mathbb{R}^{n}, is identified with \mathbb{R}^{n}. In fact any such character is of the form $\chi_{y}, y \in \mathbb{R}^{n}$, and is defined for all $x \in \mathbb{R}^{n}$ by $\chi_{y}(x)=e^{i\langle x, y\rangle}$. The trivial character corresponds to $y=0$.

To construct an infinite-dimensional irreducible unitary representation of the motion group $M(n)$, we use the following steps.
Step 1. Take a nontrivial element χ_{y} in $\widehat{\mathbb{R}}^{n}$. It is stabilized under the action of K by U_{y}.
Step 2. Take $\lambda \in \hat{U}_{y}$ and consider $\chi_{y} \otimes \lambda$ as a representation of the semidirect product of \mathbb{R}^{n} by U_{y} denoted by $\mathbb{R}^{n} \ltimes U_{y}$.

Step 3. Induce $\chi_{y} \otimes \lambda$ from $\mathbb{R}^{n} \ltimes U_{y}$ to $M(n)$ to obtain a representation $T_{y, \lambda}$ of $M(n)$.
We have then the following properties (see [13, 14] for details).
(a) For $y \neq 0$ and any $\lambda \in \hat{U}_{y}$, the representation $T_{y, \lambda}$ is unitary and irreducible.
(b) Every infinite-dimensional irreducible unitary representation of $M(n)$ is equivalent to $T_{y, \lambda}$ for some y and λ as above.
(c) The representations $T_{y_{1}, \lambda_{1}}$ and $T_{y_{2}, \lambda_{2}}$ are equivalent if and only if $\left\|y_{1}\right\|=\left\|y_{2}\right\|$ and λ_{1} is equivalent to λ_{2} under the obvious identification of $U_{y_{1}}$ with $U_{y_{2}}$.
In particular, when $\|y\|=r>0, T_{y, \lambda}$ is equivalent to $T_{r \varepsilon_{n}, \lambda}$, so the different classes of infinite-dimensional representations of $M(n)$ can be parametrized by $(r, \lambda) \in] 0, \infty[\times \hat{U}$. We use the notation $\pi_{r, \lambda}$ for $T_{r \varepsilon_{n}, \lambda}$ and for its equivalence class in $\widehat{M}(n)$. Let us make this representation explicit.
λ is an irreducible unitary representation of $U=\mathrm{SO}(n-1)$, it is of finite dimension d_{λ} and acts on $\mathbb{C}^{d_{\lambda}}$. Let H_{λ} be the vector space of all measurable function $\psi: K \rightarrow \mathbb{C}^{d_{\lambda}}$ such that $\int_{K}\|\psi(k)\|^{2} d k<\infty$ and $\psi(u k)=\lambda(u)(\psi(k))$ for all $u \in U, k \in K . H_{\lambda}$ is a Hilbert space with respect to the inner product defined by

$$
\begin{equation*}
\left(\psi_{1} \mid \psi_{2}\right)=d_{\lambda} \int_{K}\left\langle\psi_{1}(k), \psi_{2}(k)\right\rangle d k \tag{2.1}
\end{equation*}
$$

$\pi_{r, \lambda}$ acts on H_{λ} via

$$
\begin{equation*}
\left[\pi_{r, \lambda}(a, k) \psi\right]\left(k_{0}\right)=e^{i\left\langle k_{0}^{-1} \cdot r \varepsilon_{n}, a\right\rangle} \psi\left(k_{0} k\right), \quad \psi \in H_{\lambda}, \tag{2.2}
\end{equation*}
$$

for $a \in \mathbb{R}^{n}, k, k_{0} \in K$.
The Plancherel measure μ is then supported by the subset of $\widehat{M}(n)$ given by $\left\{\pi_{r, \lambda}: \lambda \in\right.$ $\left.\hat{U}, r \in \mathbb{R}^{+}\right\}$, and on each "piece" $\left\{\pi_{r, \lambda}: r \in \mathbb{R}^{+}\right\}$with λ fixed in \hat{U}, it is given by $C_{n} r^{n-1} d r$, where C_{n} is a constant depending only on n.

The Fourier transform of a function f in $L^{1}(M(n))$ is denoted as above by \hat{f}. It is defined for $(r, \lambda) \in] 0, \infty[\times \hat{U}$ by

$$
\begin{equation*}
\widehat{f}(r, \lambda)=\pi_{r, \lambda}(f)=\int_{\mathbb{R}^{n}} \int_{K} f(a, k) \pi_{r, \lambda}(a, k) d k d a \tag{2.3}
\end{equation*}
$$

(the integral being interpreted suitably, see [15]).
By the Plancherel theorem we know that for $f \in L^{1}(M(n)) \cap L^{2}(M(n)), \hat{f}(r, \lambda)$ is a Hilbert-Schmidt operator. Let $\|\widehat{f}(r, \lambda)\|_{H S}$ be its Hilbert-Schmidt norm.

3. Morgan's theorem for the motion group

Before giving Morgan's theorem for the motion group $M(n)$, we state the following complex analysis lemma proved by Ben Farah and Mokni [7]. This lemma plays a crucial role in the proof of our main theorem.

Lemma 3.1. Suppose $\rho \in] 1,2[, q \in[1,+\infty], \sigma>0$, and $B>\sigma \sin (\pi / 2)(\rho-1)$.
If g is an entire function on \mathbb{C} satisfying the conditions

$$
\begin{gather*}
|g(x+i y)| \leq \text { const } e^{\sigma|y|^{\rho}} \quad \text { for any } x, y \in \mathbb{R}, \\
e^{B|x|} g_{\mid \mathbb{R}} \in L^{q}(\mathbb{R}), \tag{3.1}
\end{gather*}
$$

then $g=0$.
We now give the $L^{p}-L^{q}$-version of Morgan's theorem.
Theorem 3.2. Let $p, q \in[1,+\infty], a, b \in] 0,+\infty[$, and α, β positive real numbers satisfying $\alpha>2$ and $1 / \alpha+1 / \beta=1$.

Suppose that f is a measurable function on $M(n)$ such that
(i) $e^{a\|x\|^{\alpha}} f(x, k) \in L^{p}(M(n))$,
(ii) $e^{b r^{\beta}}\|\hat{f}(r, \lambda)\|_{H S} \in L^{q}\left(\mathbb{R}^{+}, r^{n-1} d r\right)$ for all fixed λ in \hat{U}.

If $(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta}>(\sin (\pi / 2)(\beta-1))^{1 / \beta}$, then f is null a.e.
Proof. To prove that $f=0$, we are going to prove that $\hat{f}(r, \lambda)=0$. For this, it suffices to show that for fixed $\lambda \in \hat{U}$ and for any fixed K-finite vectors φ and ψ in H_{λ}, the condition $(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta}>(\sin (\pi / 2)(\beta-1))^{1 / \beta}$ implies that $(\hat{f}(r, \lambda) \varphi \mid \psi) \equiv 0$ as a function of r and λ.

Let $\lambda \in \hat{U}$ and let φ, ψ be K-finite vectors in H_{λ}. We note that φ and ψ are continuous on K and thus bounded. On the other hand, for $r \in \mathbb{R}$,

$$
\begin{equation*}
(\hat{f}(r, \lambda) \varphi \mid \psi)=\int_{K} \int_{\mathbb{R}^{n}} f(x, k)\left(\pi_{r, \lambda}(x, k) \varphi \mid \psi\right) d x d k \tag{3.2}
\end{equation*}
$$

Let $\Phi_{r}(x, k)=\left(\pi_{r, \lambda}(x, k) \varphi \mid \psi\right)$ for $r \in \mathbb{R}$ and $(x, k) \in M(n)$. Then, by definition of $\pi_{r, \lambda}$, we have

$$
\begin{align*}
\Phi_{r}(x, k) & =d_{\lambda} \int_{K}\left\langle\left(\pi_{r, \lambda}(x, k) \varphi\right)\left(k_{0}\right), \psi\left(k_{0}\right)\right\rangle d k_{0} \\
& =d_{\lambda} \int_{K} e^{i\left\langle\left(k_{0}^{-1} \cdot r \varepsilon_{n}, x\right\rangle\right.}\left\langle\varphi\left(k_{0} k\right), \psi\left(k_{0}\right)\right\rangle d k_{0} \tag{3.3}\\
& =d_{\lambda} \int_{K} e^{i\left\langle\left\langle\varepsilon_{n}, k_{0} x\right\rangle\right.}\left\langle\varphi\left(k_{0} k\right), \psi\left(k_{0}\right)\right\rangle d k_{0} .
\end{align*}
$$

Note that the integral on the right-hand side makes sense even if $r \in \mathbb{C}$. Hence, with (x, k) fixed, the function $\Phi_{r}(x, k)$ of the variable r extends to the whole complex plane. One can easily see that for fixed $(x, k), z \mapsto \Phi_{z}(x, k)$ is an entire function on \mathbb{C}. Moreover, for $z \in \mathbb{C}$,

$$
\begin{equation*}
\left|\Phi_{z}(x, k)\right| \leq d_{\lambda} \int_{K}\left|e^{i\left\langle z \varepsilon_{n}, k_{0} a\right\rangle}\right| \cdot\left|\varphi\left(k_{0} k\right)\right| \cdot\left|\psi\left(k_{0}\right)\right| d k_{0} \tag{3.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\Phi_{z}(x, k)\right| \leq A \int_{K} e^{-\left\langle(\operatorname{Im} z) \varepsilon_{n}, k_{0} x\right\rangle} d k_{0} \tag{3.5}
\end{equation*}
$$

where A is a constant depending only on λ, φ, and ψ. (Note that φ and ψ are continuous functions on K and hence are bounded.)

Using the fact that $d k_{0}$ is a normalized measure on K, we obtain

$$
\begin{equation*}
\left|\left(\Phi_{z}(x, k)\right)\right| \leq A e^{|\operatorname{Im} z| \cdot\|x\|} \tag{3.6}
\end{equation*}
$$

By definition of $\Phi_{z}(x, k)$, we have

$$
\begin{equation*}
(\hat{f}(z, \lambda) \varphi \mid \psi)=\int_{K} \int_{\mathbb{R}^{n}} f(x, k) \Phi_{z}(x, k) d x d k \tag{3.7}
\end{equation*}
$$

Since f satisfies hypothesis (i) of Theorem 3.2 and $\left|\left(\Phi_{z}(x, k)\right)\right| \leq A e^{|z| \cdot\|x\|}$, we conclude that the function $r \mapsto(\hat{f}(r, \lambda) \varphi \mid \psi)$ can be extended to the whole of \mathbb{C} and indeed it can be proved that the function

$$
\begin{equation*}
z \longmapsto(\hat{f}(z, \lambda) \varphi \mid \psi) \quad \text { is an entire function. } \tag{3.8}
\end{equation*}
$$

Further, from (3.6) and (3.7), we deduce that

$$
\begin{equation*}
|(\hat{f}(z, \lambda) \varphi \mid \psi)| \leq A \int_{K} \int_{\mathbb{R}^{n}}|f(x, k)| e^{|\operatorname{Im} z| \cdot| | x| |} d x d k \tag{3.9}
\end{equation*}
$$

Let $I=](b \beta)^{-1 / \beta}(\sin (\pi / 2)(\beta-1))^{1 / \beta},(a \alpha)^{1 / \alpha}[$, and $C \in I$. Applying the convex inequality $|t y| \leq(1 / \alpha)|t|^{\alpha}+(1 / \beta)|y|^{\beta}$ to the positive numbers $C\|x\|$ and $|\operatorname{Im} z| / C$, we obtain

$$
\begin{equation*}
|\operatorname{Im} z| \cdot\|x\| \leq \frac{C^{\alpha}}{\alpha}\|x\|^{\alpha}+\frac{1}{\beta C^{\beta}}|\operatorname{Im} z|^{\beta}, \tag{3.10}
\end{equation*}
$$

thus

$$
\begin{equation*}
|(\hat{f}(z, \lambda) \varphi \mid \psi)| \leq A e^{\left(1 / \beta C^{\beta}\right)|\operatorname{Im} z|^{\beta}} \int_{K} \int_{\mathbb{R}^{n}}|f(x, k)| e^{\left(C^{\alpha} \alpha \alpha\right)\|x\|^{\alpha}} d x d k \tag{3.11}
\end{equation*}
$$

Then

$$
\begin{equation*}
|(\hat{f}(z, \lambda) \varphi \mid \psi)| \leq A e^{\left(1 / \beta C^{\beta}\right)|\operatorname{Im} z|^{\beta}} \int_{K} \int_{\mathbb{R}^{n}} e^{a\|x\|^{\alpha}}|f(x, k)| e^{\left(C^{\alpha} / \alpha-a\right)\|x\|^{\alpha}} d x d k \tag{3.12}
\end{equation*}
$$

Using this inequality, hypothesis (i), the fact that $d k$ is a normalized measure, and the inequality $a>c^{\alpha} / \alpha$, we obtain

$$
\begin{equation*}
|(\hat{f}(z, \lambda) \varphi \mid \psi)| \leq \operatorname{const} e^{\left(1 / \beta C^{\beta}\right)|\operatorname{Im} z|^{\beta}} \tag{3.13}
\end{equation*}
$$

On the other hand, since $\pi_{-r, \lambda}$ and $\pi_{r, \lambda}$ are equivalent as representations of $M(n)$,

$$
\begin{equation*}
\|\hat{f}(-r, \lambda)\|_{H S}=\|\hat{f}(r, \lambda)\|_{H S} \tag{3.14}
\end{equation*}
$$

Hypothesis (ii) of Theorem 3.2 and the inequality (3.14) imply that the function

$$
\begin{equation*}
r \longmapsto e^{b r^{\beta}}\|\hat{f}(r, \lambda)\|_{\mathrm{HS}} \quad \text { belongs to } L^{q}(\mathbb{R}) \tag{3.15}
\end{equation*}
$$

thus

$$
\begin{equation*}
r \longmapsto e^{b r^{\beta}}(\hat{f}(r, \lambda) \varphi \mid \psi)_{L^{2}\left(H_{\lambda}\right)} \quad \text { belongs to } L^{q}(\mathbb{R}) \tag{3.16}
\end{equation*}
$$

It is clear from (3.8), (3.13), (3.16) that the function $z \mapsto(\hat{f}(z, \lambda) \varphi, \psi)$ satisfies the hypothesis of Lemma 3.1, and so

$$
\begin{equation*}
(\hat{f}(z, \lambda) \varphi \mid \psi) \equiv 0 \tag{3.17}
\end{equation*}
$$

as a function of z .
Since φ, ψ, and λ are arbitrary, then $\hat{f}(r, \lambda) \equiv 0$ for all $r \in \mathbb{R}_{+}$and $\lambda \in \hat{U}$. Hence, by the Plancherel formula, we get that $f=0$ a.e. This completes the proof of the theorem.

In order to prove that our version respects the analogy with Morgan's theorem, let us now establish the sharpness of the condition

$$
\begin{equation*}
(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta}>(\sin (\pi / 2)(\beta-1))^{1 / \beta} \tag{3.18}
\end{equation*}
$$

in Theorem 3.2.
Proposition 3.3. Let $p, q \in[1,+\infty], a, b \in] 0,+\infty[$, and α, β positive real numbers satisfying $\alpha>2$ and $1 / \alpha+1 / \beta=1$.

If $(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta} \leq(\sin (\pi / 2)(\beta-1))^{1 / \beta}$, then there are infinitely many measurable functions on $M(n)$ satisfying
(i) $e^{a\|x\|^{\alpha}} f(x, k) \in L^{p}(M(n))$,
(ii) $e^{b r^{\beta}}\|\widehat{f}(r, \lambda)\|_{H S} \in L^{q}\left(\mathbb{R}^{+}, r^{n-1} d r\right)$ for any λ fixed in \hat{U}.

To prove this proposition, we use the following lemma for a, b, α, β as above.
Lemma 3.4. If $(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta}=(\sin (\pi / 2)(\beta-1))^{1 / \beta}$, then for all $m \in \mathbb{R}$ and $m^{\prime}=(2 m+$ $d(2-\alpha)) /(2 \alpha-2)$, there exists a nonzero measurable function on $M(n)$ satisfying
(i) $(1+\|x\|)^{-m} e^{a\|x\|^{x}} f \in L^{\infty}(M(n))$,
(ii) $(1+r)^{-m^{\prime}} e^{b r \beta}\|\hat{f}(r, \lambda)\|_{H S} \in L^{\infty}\left(\mathbb{R}^{+}, r^{n-1} d r\right)$ for any fixed λ in \hat{U}.

Proof. We put for (x, k) in $M(n)$

$$
\begin{equation*}
f(x, k)=-i \int_{C} z^{v} e^{z^{q}-q A\|x\|^{2} z} d z \tag{3.19}
\end{equation*}
$$

where $q=\alpha /(\alpha-2), A^{\alpha}=(1 / 4)((\alpha-2) a)^{2}, \nu=(2 m+4-\alpha) / 2(\alpha-2)$, and C is the path which lies in the half-plane $\operatorname{Re} z>0$, and goes to infinity, in the directions $\arg z= \pm \theta_{0}$, $\pi / 2 q<\theta_{0}<\pi / q$.

According to Morgan (see [2, page 190]), for $\|x\| \rightarrow \infty$, we have

$$
\begin{equation*}
f(x, k) \sim(\alpha-2)\left(\frac{(\alpha-2) a}{2}\right)^{m / \alpha} \sqrt{\left(\frac{\pi}{\alpha}\right)}\|x\|^{m} e^{-a\|x\|^{\alpha}} \tag{3.20}
\end{equation*}
$$

On the other hand, for λ fixed in $\hat{U},(\hat{f}(r, \lambda) \varphi \mid \psi)$ is equal to

$$
\begin{equation*}
-i d_{\lambda} \int_{K} \int_{\mathbb{R}^{n}} \int_{C} \int_{K} z^{\nu} e^{z^{q}-q A\|a\|^{2} z} e^{i\left\langle\left\langle\varepsilon_{n}, k_{0} a\right\rangle\right.}\left\langle\varphi\left(k_{0} k\right), \psi\left(k_{0}\right)\right\rangle d k_{0} d z d a d k, \tag{3.21}
\end{equation*}
$$

which by a change of variables $x=k_{0}^{-1} a$ is equal to

$$
\begin{equation*}
-i d_{\lambda} \int_{K} \int_{\mathbb{R}^{n}} \int_{C} \int_{K} z^{\nu} e^{z^{q}-q A\|x\|^{2} z} e^{i\left\langle\left\langle\varepsilon_{n}, x\right\rangle\right.}\left\langle\varphi\left(k_{0} k\right), \psi\left(k_{0}\right)\right\rangle d k_{0} d z d x d k \tag{3.22}
\end{equation*}
$$

Using this equality and Fubini's theorem, we obtain the following expression for ($\hat{f}(r$,入) $\varphi \mid \psi)$:

$$
\begin{equation*}
-i d_{\lambda}\left(\iint_{K}\left\langle\varphi\left(k_{0} k\right), \psi\left(k_{0}\right)\right\rangle d k_{0} d k\right) \int_{C} \int_{\mathbb{R}^{n}} z^{\nu} e^{z^{q}-q A\|x\|^{2} z} e^{i\left\langle r \varepsilon_{n}, x\right\rangle} d x d z \tag{3.23}
\end{equation*}
$$

Since

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-q A\|x\|^{2} z} e^{i\left\langle k_{0}^{-1} r \varepsilon_{n}, x\right\rangle} d x=\left(\frac{\pi}{q A z}\right)^{n / 2} e^{-r^{2} / 4 q a z}, \tag{3.24}
\end{equation*}
$$

we deduce that

$$
\begin{equation*}
(\hat{f}(r, \lambda) \varphi \mid \psi)=-i d_{\lambda}\left(\frac{\pi}{q A}\right)^{n / 2}\left(\iint_{K}\left\langle\varphi\left(k_{0} k\right), \psi\left(k_{0}\right)\right\rangle d k_{0} d k\right) \int_{C} z^{\nu-n / 2} e^{z^{q}-r^{2} / 4 a q z} d z \tag{3.25}
\end{equation*}
$$

Now, we fix an orthonormal basis $\left\{e_{j} ; j \in \mathbb{N}\right\}$ of H_{λ}. Taking into account that $\hat{f}(r, \lambda)$ is a Hilbert-Schmidt operator, we then replace φ by e_{i}, ψ by e_{j} and take the sum on $i, j \in \mathbb{N}$ to
obtain

$$
\begin{equation*}
\|\hat{f}(r, \lambda)\|_{H S}=\text { const. }\left|\int_{C} z^{\nu-n / 2} e^{z^{q}-r^{2} / 4 a q z} d z\right| \quad \text { a.e. } \tag{3.26}
\end{equation*}
$$

Adapting the method of Morgan (see [2, page 191]), we obtain

$$
\begin{equation*}
\|\hat{f}(r, \lambda)\|_{H S}=O\left(r^{m^{\prime}} e^{-b r^{\beta}}\right) \tag{3.27}
\end{equation*}
$$

with $m^{\prime}=(2 m+n(2-\alpha)) /(2 \alpha-2)$. We conclude by using the estimations (3.20) and (3.27).

Proof of Proposition 3.3. It suffices to prove the proposition for

$$
\begin{equation*}
(a \alpha)^{1 / \alpha}(b \beta)^{1 / \beta}=\left(\sin \frac{\pi}{2}(\beta-1)\right)^{1 / \beta} \tag{3.28}
\end{equation*}
$$

and the rest is a deduction. Let m be a real number verifying

$$
\begin{equation*}
m<\min \left(-\frac{n}{p}, \frac{n(1-\alpha)}{q}+\frac{n(\alpha-2)}{2}\right) \tag{3.29}
\end{equation*}
$$

with the convention $1 / r=0$ when $r=\infty$. If $m^{\prime}=(2 m+n(2-\alpha)) /(2 \alpha-2)$, then $m^{\prime}<$ $-n / q$.

For fixed λ in \hat{U}, Lemma 3.4 gives a nonzero measurable function f on $M(n)$ satisfying the inequalities

$$
\begin{gather*}
e^{a\|x\|^{\alpha}}|f(x, k)| \leq \text { const. }(1+\|x\|)^{m} \\
e^{b r^{\beta}} \mid \hat{f}(r, \lambda) \|_{\mathrm{HS}} \leq \text { const. }(1+r)^{m^{\prime}} \tag{3.30}
\end{gather*}
$$

The conditions $m<-n / p$ and $m^{\prime}<-n / q$ and the fact that dk is a normalized measure imply that $e^{a\|x\| \|^{\alpha}} f$ belongs to $L^{p}(M(n))$ and $e^{b r^{\beta}}\|\hat{f}(r, \lambda)\|_{H S}$ belongs to $L^{q}\left(\mathbb{R}^{+}, C_{n} r^{n-1} d r\right)$ for fixed λ in \hat{U}.

References

[1] G. H. Hardy, "A theorem concerning Fourier transforms," Journal of the London Mathematical Society, vol. 8, pp. 227-231, 1933.
[2] G. W. Morgan, "A note on Fourier transforms," Journal of the London Mathematical Society, vol. 9, pp. 187-192, 1934.
[3] A. Beurling, The Collected Works of Arne Beurling. Vol. 1, Contemporary Mathematicians, Birkhäuser, Boston, Mass, USA, 1989.
[4] A. Beurling, The Collected Works of Arne Beurling. Vol. 2, Contemporary Mathematicians, Birkhäuser, Boston, Mass, USA, 1989.
[5] L. Hörmander, "A uniqueness theorem of Beurling for Fourier transform pairs," Arkiv för Matematik, vol. 29, no. 2, pp. 237-240, 1991.
[6] S. C. Bagchi and S. K. Ray, "Uncertainty principles like Hardy's theorem on some Lie groups," Journal of the Australian Mathematical Society. Series A, vol. 65, no. 3, pp. 289-302, 1998.
[7] S. Ben Farah and K. Mokni, "Uncertainty principle and the $L^{p}-L^{q}$-version of Morgan's theorem on some groups," Russian Journal of Mathematical Physics, vol. 10, no. 3, pp. 245-260, 2003.
[8] L. Gallardo and K. Trimèche, "Un analogue d'un théorème de Hardy pour la transformation de Dunkl," Comptes Rendus Mathématique. Académie des Sciences. Paris, vol. 334, no. 10, pp. 849-854, 2002.
[9] E. K. Narayanan and S. K. Ray, "Lp version of Hardy's theorem on semi-simple Lie groups," Proceedings of the American Mathematical Society, vol. 130, no. 6, pp. 1859-1866, 2002.
[10] A. Bonami, B. Demange, and P. Jaming, "Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms," Revista Matemática Iberoamericana, vol. 19, no. 1, pp. 23-55, 2003.
[11] M. Cowling and J. F. Price, "Generalisations of Heisenberg's inequality," in Harmonic Analysis (Cortona, 1982), vol. 992 of Lecture Notes in Math., pp. 443-449, Springer, Berlin, Germany, 1983.
[12] R. P. Sarkar and S. Thangavelu, "On theorems of Beurling and Hardy for the Euclidean motion group," The Tohoku Mathematical Journal. Second Series, vol. 57, no. 3, pp. 335-351, 2005.
[13] G. B. Folland, A Course in Abstract Harmonic Analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995.
[14] K. I. Gross and R. A. Kunze, "Fourier decompositions of certain representations", in Symmetric Spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969-1970), W. M. Boothby and G. L. Weiss, Eds., pp. 119-139, Dekker, New York, NY, USA, 1972.
[15] M. Sugiura, Unitary Representations and Harmonic Analysis. An Introduction, Kodansha, Tokyo, Japan, 1975.

Sihem Ayadi: Département de Mathématiques, Faculté des Sciences de Monastir, Université de Monastir, Monastir 5019, Tunisia
Email address: sihem_ayadi@yahoo.fr
Kamel Mokni: Département de Mathématiques, Faculté des Sciences de Monastir, Université de Monastir, Monastir 5019, Tunisia
Email address: kamel.mokni@fsm.rnu.tn

