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1. Introduction

Unbounded traces, which form a special class of weights, on W∗-algebras [1–4] of con-
tinuous linear operators on a Hilbert space give rise to ∗-representations and ∗-anti-
representations of these algebras. The ∗-maps play a fundamental role in the classifica-
tion of W∗-algebras.

In this paper, we consider certain partial O∗-algebras, equipped with unbounded bi-
traces. For details about partial ∗-algebras and some of their applications, see, for ex-
ample, [5–11]. Unbounded bitraces are a special class of biweights. A discussion of some
features of biweights on partial ∗-algebras is given in [5] and [12, Chapter 9], and a class
of biweights possessing trace representations associated with positive Hilbert-Schmidt
operators is described in [12, Example 9.1.13]. The unbounded bitraces introduced in the
sequel are biweights with trace representations and some additional properties indicated
in Definition 3.2. They have a role to play in the classification of partial O∗-algebras,
as we briefly indicate towards the end of the paper. Moreover, as in the case of W∗-
algebras, they also give rise to ∗-representations and ∗-antirepresentations of the partial
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O∗-algebras on which they are defined. In applying these constructs, the considerations
in this paper involve the use of commutants. In the partial O∗-algebraic context in which
we work, several versions of commutants and higher commutants are possible. This is in
contrast to the situation in W∗-algebras.

Our main result, which generalizes a well-known result [1, Theorem 5.3.3] for W∗-
algebras, gives several relationships between certain commutants, bicommutants, and
tricommutants associated with the ∗-representations and ∗-antirepresentations deter-
mined by unbounded bitraces. This type of result, which is of independent interest, is
needed in an alternative approach to the formulation of the Tomita-Takesaki theory for
partial O∗-algebras that is different from the one described in [5].

The rest of this paper is structured as follows. In Section 2, we establish our nota-
tion and recall a number of notions that are needed in the sequel. In particular, we de-
scribe the various commutants and bicommutants that will be encountered later. Un-
bounded bitraces are introduced in Section 3. To illustrate the discussion in this section,
we demonstrate how a certain class of bitraces may arise. Section 4 contains our main
result (Theorem 4.6), mentioned above. Rounding off the discussion in this section, we
furnish a notion of partial W∗-algebras, which are generalizations of W∗-algebras, as
well as a set of criteria for classifying such algebras, based on the type of bitraces that are
defined on them.

2. Preliminaries

The basic structure employed in the sequel is a quadruplet (�,Γ,∗,·), called a partial
∗-algebra [5]. This is an involutive complex linear space � with involution ∗, a relation
Γ⊆�×� on �, and a partial multiplication “·” on �, such that

(1) (x, y)∈ Γ⇔ x · y ∈�;
(2) (x, y)∈ Γ⇔ (y∗,x∗)∈ Γ, and then (x · y)∗ = y∗ · x∗;
(3) (x, y) ∈ Γ and (x,z) ∈ Γ⇒ (x,αy + βz) ∈ Γ and then x · (αy + βz) = α(x · y) +

β(x · z), for all α,β ∈ C.

Remark 2.1. In view of (1), a partial∗-algebra is, in general, nonassociative, thereby mak-
ing its study largely dependent on its several classes of multipliers introduced as follows.

For a partial ∗-algebra (�,Γ,∗,·), a subset �⊆�, and a point x ∈�, let

L(x)= {y ∈� : (y,x)∈ Γ
}

,

R(x)= {y ∈� : (x, y)∈ Γ
}

,

L(�)=
⋂

x∈�

L(x),

R(�)=
⋂

x∈�

R(x),

M(�)= L(�)∩R(�).

(2.1)

Then L(x) (resp., R(x)) is the set of left (resp., right) multipliers of x; L(�) (resp., R(�))
is the set of left (resp., right) multipliers of �, and M(�) is the set of universal multipliers
(or simply multipliers) of �.
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Example 2.2. (a) If Γ=�×�, then each of the sets L(x), R(x), x ∈�, and L(�), R(�),
M(�), � ⊆�, reduces to �, showing that � is an ∗-algebra. Hence, all ∗-algebras are
partial ∗-algebras.

(b) If (�0,t) is a topological ∗-algebra, with topology t and completion �, then � is
called a quasi-∗-algebra, and the relation

Γ= {(x, y)∈�×� : either x ∈�, y ∈�0 or x ∈�0, y ∈�
}

(2.2)

induces a partial multiplication “·” on �, converting the quadruplet (�,Γ,∗,·) into a
partial ∗-algebra. In this way, it is seen that every quasi-∗-algebra is a partial ∗-algebra.

(c) A concrete partial ∗-algebra arises as follows. Let � be a complex pre-Hilbert
space, with inner product 〈·,·〉 (assumed linear on the right), norm ‖·‖, and comple-
tion �. Denote by L+(�,�) the set of all linear maps A, each with range in �, such that
domain (A)=� and domain (A∗) ⊃�. Equipped with the involution A �→ A+ = A∗��
and the usual notions of addition and scalar multiplication, L+(�,�) is a complex invo-
lutive linear space. Let

Γ= {(A,B)∈ L+(�,�)×L+(�,�) : B�⊂ domain
(
A+∗), A∗�⊂ domain

(
B∗
)}
.

(2.3)

Then, the relation Γ induces, and is induced by, a partial multiplication “·” on L+(�,�)
given by

A ·B = A+∗B for (A,B)∈ Γ. (2.4)

The quadruplet (L+(�,�),Γ,+,·) is therefore a partial ∗-algebra, which will be denoted
henceforth by L+

w(�,�).
Contained in L+

w(�,�) is the set

L+(�)= {A∈ L+(�,�) : range (A)⊆�, A∗�⊆�
}

, (2.5)

which is, indeed, an ∗-algebra with the involution A �→ A+ = A∗�� and the composition
of maps as multiplication.

Definition 2.3. Let (�1,Γ1,∗,·) and (�2,Γ2,#,◦) be partial ∗-algebras. Then, a linear
map σ : �1 →�2 is called

(a) a homomorphism (resp., an antihomomorphism) if (σ(x),σ(y))∈ Γ2 (resp., (σ(y),
σ(x))∈ Γ2) whenever (x, y)∈ Γ1 and

(i) σ(x · y)= σ(x)◦ σ(y) (resp., σ(x · y)= σ(y)◦ σ(x));
(ii) σ(x∗)= σ(x)#,

(iii) σ(e1)= e2, if � j is unital with unit ej ∈� j , j = 1,2;
(b) a representation (resp., antirepresentation) of (�1,Γ1,∗,·) if σ is a homomorphism

(resp., antihomomorphism) and (�2,Γ2,#,◦) is L+
w(�,�) for some pre-Hilbert

space � having � as its completion.
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One speaks of a faithful homomorphism (resp., antihomomorphism) σ (resp., represen-
tation π) if x ∈ �1 and σ(x) = 0 ⇒ x = 0 (resp., π(x) = 0 ⇒ x = 0). A faithful homo-
morphism (resp., antihomomorphism) σ from �1 →�2 whose inverse σ−1 is a homo-
morphism (antihomomorphism) from �2 →�1 is called an isomorphism (resp., anti-
isomorphism).

Remark 2.4. In view of (1), we will speak henceforth of a partial ∗-algebra (�,∗,·), or
simply �, when the operations have previously been specified, instead of (�,Γ,∗,·).

Definition 2.5. Let (�,∗,·) be a partial∗-algebra. A subspace of � will be called a partial
∗-subalgebra, or simply a subalgebra, if it is also a partial ∗-algebra when endowed with
the same involution ∗ and partial multiplication “·” as already on �.

Remark 2.6. In the sequel, we will be concerned with certain subalgebras of L+(�) and
L+
w(�,�).

Definition 2.7. A subalgebra
(a) of L+(�) is called an O∗-algebra on �;
(b) of L+

w(�,�) is called a partial O∗-algebra on �.

Remark 2.8. We consider mainly partial O∗-algebras on �; different classes of these arise
depending, for example, on the topologies on them or �. We first describe three topolo-
gies on partial O∗-algebras that are employed in the sequel.

Notation 2.9. Let � ⊂ L+
w(�,�) be a partial O∗-algebra on � and

�∞(�)=
{
(
ξn
)⊂� :

∞∑

n=1

(∥∥ξn
∥
∥2

+
∥
∥xξn

∥
∥2)

<∞∀x ∈�

}

,

pξ,η(x)= ∣∣〈ξ,xη〉∣∣, ξ,η ∈�, x ∈�,

p∗ξ (x)= ‖xξ‖+
∥
∥x+ξ

∥
∥, ξ ∈�, x ∈�,

p(ξn),(ηn)(x)=
∣
∣
∣
∣
∣

∞∑

n=1

〈
ξn,xηn

〉
∣
∣
∣
∣
∣,

(
ξn
)
,
(
ηn
)∈�∞(�), x ∈�.

(2.6)

The functionals pξ,η, p∗ξ , and p(ξn),(ηn), with ξ,η ∈� and (ξn),(ηn) ∈�∞(�) are semi-
norms on �.

Definition 2.10. Let � be a partial O∗-algebra on �. The locally convex topology on
� determined by pξ,η, ξ,η ∈� (resp., p∗ξ , ξ ∈�; resp., p(ξn),(ηn), (ξn),(ηn) ∈�∞(�)) is
called the weak topology tw (resp., strong ∗ topology t∗s ; resp., σ-weak topology tσw).

Notation 2.11. Let � be a partial O∗-algebra on � and

‖ξ‖x = ‖xξ‖, x ∈�, ξ ∈�. (2.7)

Let t� be the locally convex topology on � generated by the seminorms {‖·‖x : x ∈�}.
Definition 2.12. A partial O∗-algebra � on � is called

(a) closed if the locally convex space (�, t�) is complete;
(b) standard if � is closed and x+ = x∗, for each x ∈�.
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Remark 2.13. We consider standard partial O∗-algebras in the sequel.

Definition 2.14. A member e (resp., p) of a partial O∗-algebra � on � will be called
a unit (resp., projection) if e ∈M(�), e+ = e, and e · x = x = x · e, for all x ∈� (resp.,
p ∈ L+(�) and p = p+ = p · p).

A partial O∗-algebra � on � is unital if it has a unit.

Notation 2.15. (a) If � is a subset of L+
w(�,�), the set of all projections in � will be

denoted by Proj(�).
(b) Let �1 and �2 be two subsets of L+

w(�,�). Then �1 ·�2 will denote the linear
span of the set {a · b : a∈�1, b ∈�2 with a∈ L(b)}. When �2 is a singleton {x}, the set
�1 · {x} will be written simply as �1 · x.

Definition 2.16. Let � be a partial O∗-algebra on � and � a subspace of �. Then � is a
left ideal (resp., a right ideal; resp., an ideal) of � if L(�) ·�⊆� (resp., � ·R(�)⊆�;
resp., � is both a left ideal and a right ideal).

Remark 2.17. (a) Let � be a unital tσw-closed partial O∗-algebra on � and p ∈ Proj (�).
Then the following statements are easily verified:

(i) � · p is tσw-closed;
(ii) if a,b ∈� with a∈ L(b · p), then a∈ L(b) and (a · b) · p = a · (b · p);

(iii) from (i) and (ii), � · p is a tσw-closed left ideal of � for any p ∈ Proj (�).
(b) The converse of (a)(iii) can also be established under some conditions.

Commutants and bicommutants. Unlike in the case of W∗-algebras, several possibilities
arise for the commutants and bicommutants of partial O∗-algebras. We limit ourselves in
this paper to the following notions.

Commutants. Let � be a +-invariant subset of L+
w(�,�). Then the commutants �′

σ and
�′

c are defined as follows:

�′
σ =

{
X ∈ L+

w(�,�) :
〈
Xξ,A+η

〉= 〈Aξ,X+η
〉

, ∀A∈�, ξ,η ∈�
}

,

�′
c =

{
X ∈ L+(�)∩B(�) : 〈A ·Xξ,η〉 = 〈ξ,A+ ·X+η

〉
, ∀A∈�, ξ,η ∈�

}
.

(2.8)

These commutants are related, since �′
c =�′

σ ∩L+(�)∩B(�).

Bicommutants. Associated with the above commutants are the four bicommutants �′′
σσ ,

�′′
cc, �′′

cσ , and �′′
σc, which are defined as follows:

�′′
σσ =

{
X ∈ L+

w(�,�) :
〈
Xξ,A+η

〉= 〈Aξ,X+η
〉

, ∀A∈�′
σ , ξ,η ∈�

}
,

�′′
cc =

{
X ∈ L+(�)∩B(�) : 〈A ·Xξ,η〉 = 〈ξ,A+ ·X+η

〉
, ∀A∈�′

c, ξ,η ∈�
}

,

�′′
cσ =

{
X ∈ L+

w(�,�) :
〈
Xξ,A+η

〉= 〈Aξ,X+η
〉

, ∀A∈�′
c, ξ,η ∈�

}
,

�′′
σc =

{
X ∈ L+(�)∩B(�) : 〈A ·Xξ,η〉 = 〈ξ,A+ ·X+η

〉
, ∀A∈�′

σ , ξ,η ∈�
}
.

(2.9)
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There are the following relations among these bicommutants:
(i) �′′

σc =�′′
σσ ∩L+(�)∩B(�);

(ii) �′′
σσ ⊆�′′

cσ ⊂ L+
w(�,�) and �′′

σc ⊆�′′
cc ⊆ L+(�)∩B(�);

(iii) �′′
σc ⊆�′′

σσ and �′′
cc ⊆�′′

cσ .
The sets �′

σ , �′′
σσ , and �′′

cσ are t∗s -closed in L+
w(�,�). Similarly, the sets �′

c, �′′
σc, and �′′

cc

are t∗s -closed in L+(�)∩B(�). Moreover, each of the sets �′′
σσ and �′′

cσ contains �.

Remark 2.18. Additional information about commutants and bicommutants is available
in [13].

3. Ideals determined by bitraces

Let � be a unital partial O∗-algebra on �, with unit e, �+ = {x ∈� : 〈ξ,xξ〉 ≥ 0, for all
ξ ∈�} and C∗ denotes the extended complex plane.

Notation 3.1. The symbol wgt(�) will denote the set of all maps ϕ : �×�→ C∗ satis-
fying

(i) ϕ(x,αy)= αϕ(x, y), α∈ C, x, y ∈�, with 0 · (±∞)= 0;
(ii) ϕ(x, y)= ϕ(y,x), x, y ∈�;

(iii) ϕ(x · y,z)= ϕ(y,x+ · z), x, y,z ∈�, with x ∈ L(y), x+ ∈ L(z);
(iv) ϕ(x,x)∈R+∪{+∞}, x ∈�;
(v) ϕ(e,x)∈R+∪{+∞}, x ∈�+;

(vi) ϕ(e,x+ y)= ϕ(e,x) +ϕ(e, y), x, y ∈�+.

Definition 3.2. (a) A member of wgt(�) will be called a weight on �.
(b) A pair (τ,�τ) will be called a bitrace on � provided that

(i) τ ∈wgt (�);
(ii) τ(x, y)= τ(y+,x+), x, y ∈�;

(iii) �τ is an ideal of �;
(iv) the restriction of τ to �τ ×�τ (denoted in the sequel again by τ) is a positive

sesquilinear form on �τ .

Notation 3.3. (i) The set of all bitraces on � will be denoted by btr(�).
(ii) If (τ,�τ) is a bitrace on �, then �τ will be called the definition ideal of the bitrace.

Remark 3.4. (i) We will sometimes refer to τ as a bitrace, instead of the pair (τ,�τ), and
write τ ∈ btr (�).

(ii) If � is a W∗-algebra of operators on a Hilbert space and ω is a trace on �, then
the set {x ∈� : ω(x∗x) <∞} is an ideal of �.

Antithetically, when � is a partial O∗-algebra on a pre-Hilbert space �, equipped with
a weight τ satisfying Definition 3.2(b)(ii), then the set �τ = {x ∈� : τ(x,x) <∞} is not
even a left ideal of �.

(iii) To illustrate the foregoing discussion, the following result demonstrates how a
certain class of bitraces on some partial O∗-algebras may arise.

Theorem 3.5. Let � be a standard, unital, partial O∗-algebra and τ ∈ wgt(�) be such
that Definition 3.2(b)(ii) holds and τ((z · x) · b, (z · x) · b) <∞, whenever e �= z ∈ L(�),
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e �= b ∈ R(�), x ∈�. Then, the pair (τ,�τ), where �τ = {x ∈� : τ(a · x,a · x) <∞ and
τ(x · b,x · b) <∞, for all e �= a∈ L(�) and e �= b ∈ R(�)}, is a bitrace on �.

Proof. We only need to show that �τ is an ideal of �. First note that if x ∈ �τ , then
x+ ∈�τ , showing that �τ is a +-invariant set. This is because if x ∈�τ , e �= a∈ L(�) and
e �= b ∈ R(�), whence a+ ∈ R(�) and b+ ∈ L(�), then, in view of Definition 3.2(b)(ii),
it follows that

τ
(
a · x+,a · x+)= τ

(
x · a+,x · a+) <∞,

τ
(
x+ · b,x+ · b)= τ

(
b+ · x,b+ · x) <∞.

(3.1)

Next, we show that if x ∈�τ and z ∈ L(�), then z · x ∈�τ . To this end, let x ∈�τ .
Then z ∈ L(x) and a∈ L(z · x). From z ∈ L(x), we get the inclusions

x�⊂ domain
(
z+∗), (3.2)

z∗�⊂ domain
(
x∗
)
, (3.3)

and since a∈ L(z · x), there are the inclusions

(z · x)�⊂ domain
(
a+∗), (3.4)

a+�⊂ domain
(
(z · x)∗

)
. (3.5)

As � is standard, that is, as m+ =m∗ for every m∈�, (3.2) is equivalent to z∗∗x�⊂�
and (3.4) is equivalent to a+∗(z · x)� = a+∗z+∗x� = a+∗z∗∗x� ⊂�, that is, ((a · z) ·
x)�⊂�, showing that x�⊂ domain ((a · z)+∗). Analogously, (3.5) is equivalent to (z ·
x)∗a+�= (z+∗x)∗a+�= x∗z+∗∗a+�= x∗z∗a+�⊂�, that is, (a · z)+�⊂ domain (x∗).
The two relations

x�⊂ domain
(
(a · z)+∗), (a · z)+�⊂ domain

(
x∗
)

(3.6)

show that a · z ∈� and a · z ∈ L(x). As

a · (z · x)= a+∗z+∗x = a+∗z∗∗x = (a · z) · x on �, (3.7)

it follows that for x ∈�τ , z ∈ L(�), and a∈ L(�),

τ
(
a · (z · x),a · (z · x)

)= τ
(
(a · z) · x, (a · z) · x) <∞. (3.8)

Moreover, for x ∈�τ , z ∈ L(�), and b ∈ R(�), we have, by hypothesis, that

τ
(
(z · x) · b, (z · x) · b) <∞. (3.9)

The last two inequalities show that z · x ∈�τ , whenever x ∈�τ and z ∈ L(�). As �τ is
+-invariant, it follows that x · z ∈�τ whenever x ∈�τ and z ∈ R(�).
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Finally, let x, y ∈�τ , e �= a∈ L(�), and e �= b ∈ R(�). As

τ
(
a · (x+ y),a · (x+ y)

)≤ 2
(
τ(a · x,a · x) + τ(a · y,a · y)

)
,

τ
(
(x+ y) · b, (x+ y) · b)≤ 2

(
τ(x · b,x · b) + τ(y · b, y · b)

)
,

(3.10)

it follows that x+ y ∈�τ . This concludes the proof that �τ is an ideal of �. �

Remark 3.6. (a) The finiteness condition on τ ∈ btr(�) in Theorem 3.5 will be met if, for
example, τ is such that the maps x �→ a · x and y �→ y · b of � to � are continuous in the
‖·‖τ-topology, for arbitrary a∈ L(�) and b ∈ R(�), where ‖·‖τ is the norm introduced
in Section 4.

(b) Let � and τ ∈ btr (�) be as in Theorem 3.5. Suppose that e is the unit of �.
(i) If τ(e,e) <∞, then it does not follow that τ(x,x) <∞, for all x ∈�, as would

be the case were � is a W∗-algebra of operators on a Hilbert space.
(ii) If e ∈�τ , then τ(x,x) <∞, for all x ∈�.

(c) Theorem 3.5 furnishes a class of bitraces on standard, unital, partial O∗-algebras,
which are in general noncommutative. In Theorem 3.11, we also exhibit a one-
parameter family of bitraces on some selfadjoint, noncommutative partial O∗-algebras.
These examples of bitraces are of interest in the quantum statistics of thermodynamic
systems [14].

Notation 3.7. Let � be a separable Hilbert space, with inner product 〈·,·〉 and norm ‖·‖,
and H is a selfadjoint linear operator with domain in � such that exp(−βH) is nuclear
for every β > 0. Write ( fn) and (λn) for the normalized eigenvectors and corresponding
eigenvalues of H . By the nuclearity of exp(−βH) for each β > 0, ( fn) is an orthonormal
basis for � and

∞∑

n=1

exp
(−βλn

)
<∞, β > 0. (3.11)

Let �=⋂β>0D(eβH), where D(A) denotes the domain of A. Since � contains the lin-
ear span of ( fn), the set � is dense in �.

Introduce the weak partial O∗-algebra L+
w(�,�) and let

L(�)= {a∈ L(�,�) : a�⊂�
}
. (3.12)

Also recall that

L+(�)= {a∈ L(�) : a+�⊂�
}
. (3.13)

Let � ⊂ L+
w(�,�) be a partial O∗-algebra on �. For simplicity, we assume that � is

selfadjoint, that is,
⋂

a∈�D(a∗)=�. Then, with �b = {a∈� : a∈ B(�)}, we have

R(�)=�b∩L(�),

L(�)= {a∈�b : a+�⊂�
}

,

M(�)= L(�)∩R(�)=�b∩L+(�).

(3.14)
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In what follows, we assume that

e−βHx = xe−βH , x ∈�b. (3.15)

Define a one-parameter family {τβ : β > 0} of members of wgt (�) by [15]

τβ(x, y)=
∞∑

n=1

〈
x fn, y fn

〉
e−βλn , x, y ∈�, β > 0, (3.16)

and let

�τβ = {x ∈� : τβ(x,x) <∞}. (3.17)

Define �τβ by

�τβ =
{
x ∈�τβ : τβ(a · x,a · x) <∞, τβ(x · b,x · b) <∞, ∀a∈ L(�), b ∈ R(�)

}
.

(3.18)

Introduce the Hilbert space (�τβ ,〈·,·〉τβ) as in Section 4. We will first establish some
results.

Lemma 3.8. The set R(�)∩�τβ is dense in (�τβ ,〈·,·〉τβ).

Proof. Let x ∈�τβ be arbitrary. For f ∈�, x f lies in �, and hence has a representation
of the form

x f =
∞∑

n=1

〈
x+ fn, f

〉
fn, (3.19)

whence

‖x f ‖2 =
∞∑

n=1

∣
∣〈x+ fn, f

〉∣∣2
<∞. (3.20)

Define xm, 1≤m<∞, in B(�) as follows:

xmg =
m∑

n=1

〈
x+ fn,g

〉
fn, (3.21)
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for arbitrary g ∈�. Then xm ∈�b∩L(�), whence xm ∈ R(�), 1≤m<∞, and L(xm)=
�. Let a∈ R(�). As xm · a f j =

∑m
n=1〈x+ fn,a f j〉 fn, we get

τβ
(
xm · a,xm · a

)=
∞∑

j=1

〈
xm · a f j ,xm · a f j

〉
e−βλj

=
∞∑

j=1

m∑

n=1

m∑

k=1

〈
a f j ,x+ fn

〉〈
x+ fk,a f j

〉〈
fn, fk

〉
e−βλj

=
∞∑

j=1

m∑

n=1

∣
∣〈a f j ,x+ fn

〉∣∣2
e−βλj ≤

∞∑

j=1

m∑

n=1

∥
∥a f j

∥
∥2∥∥x+ fn

∥
∥2

e−βλj

≤
( m∑

n=1

∥
∥x+ fn

∥
∥2
)( ∞∑

n=1

e−βλn
)

‖a‖2 <∞.

(3.22)

Also, as a · xmg =
∑m

n=1〈x+ fn,g〉a fn, we get

τβ
(
a · xm,a · xm

)=
∞∑

j=1

〈
a · xm f j ,a · xm f j

〉
e−βλj

=
m∑

n=1

m∑

k=1

( ∞∑

j=1

〈
x f j , fn

〉〈
fk,x f j

〉
e−βλj

)
〈
a fn,a fk

〉

≤
m∑

n=1

m∑

k=1

( ∞∑

j=1

∥
∥x f j

∥
∥2

e−βλj

)
∣
∣〈a fn,a fk

〉∣∣

=
( m∑

n=1

m∑

k=1

∣
∣〈a fn,a fk

〉∣∣
)

τβ(x,x) <∞.

(3.23)

We conclude that xm ∈�τβ , whence xm ∈ R(�)∩�τβ . Finally,

∥
∥x− xm

∥
∥2
τβ =

∞∑

j=1

〈
x f j − xm f j ,x f j − xm f j

〉
e−βλj

=
∞∑

j=1

∥
∥
∥
∥
∥

∞∑

n=m+1

〈
fn,x f j

〉
fn

∥
∥
∥
∥
∥

2

e−βλj

=
∞∑

j=1

∞∑

n=m+1

∣
∣〈 fn,x f j

〉∣∣2
e−βλj

=
∞∑

n=m+1

∞∑

j=1

∣
∣〈 f j ,x+ fn

〉∣∣2
e−βλj .

(3.24)

Hence

lim
m→∞

∥
∥x− xm

∥
∥2
τβ = 0, (3.25)
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and as x ∈�τβ was arbitrary, it follows that R(�)∩�τβ is dense in �τβ . This ends the
proof. �

Lemma 3.9. For x, y ∈�τβ , τβ(x, y)= τβ(y+,x+).

Proof. Let x, y ∈�τβ and (xp), (yq) be sequences in R(�)∩�τβ such that

lim
p→∞

∥
∥x− xp

∥
∥
τβ = 0= lim

q→∞
∥
∥x− xq

∥
∥
τβ . (3.26)

We may assume that (xp) and (yq) converge to x and y, respectively, in the
∣
∣‖·‖∣∣τβ-

topology on �τβ , where

∣
∣‖z‖∣∣2

τβ =
∞∑

n=1

(∥∥z fn
∥
∥2

+
∥
∥z+ fn

∥
∥2)

e−βλn , z ∈�τβ . (3.27)

Then

∣
∣
∣
∣
∣

∞∑

n=1

(〈(
y− yq

)
fn,
(
x− xp

)
fn
〉)

e−βλn
∣
∣
∣
∣
∣≤

∣
∣
∥
∥y− yq

∥
∥
∣
∣
τβ
∣
∣
∥
∥x− xp

∥
∥
∣
∣
τβ ,

∣
∣
∣
∣
∣

∞∑

n=1

(〈(
y− yq

)+
fn,
(
x− xp

)+
fn
〉)

e−βλn
∣
∣
∣
∣
∣≤

∣
∣
∥
∥y− yq

∥
∥
∣
∣
τβ
∣
∣
∥
∥x− xp

∥
∥
∣
∣
τβ .

(3.28)

From these, and with tr(z)=
∞∑

n=1

〈 fn,z fn〉, we get

τβ(x, y)= lim
p,q→∞τ

β
(
xp, yq

)= lim
p,q→∞

∞∑

n=1

〈
xpe−βH/2 fn, yqe−βH/2 fn

〉

= lim
p,q→∞ tr

((
xpe−βH/2)+ · (yqe−βH/2)

)

= lim
p,q→∞ tr

(
e−βH yqx+

p

)= lim
p,q→∞

∞∑

n=1

〈
fn, e−βH yqx+

p

〉

= lim
p,q→∞

∞∑

n=1

〈
y+
q fn,x+

p fn
〉

e−βλn = lim
p,q→∞τ

β
(
y+
q ,x+

p

)

= τβ
(
y+,x+), by (3.28).

(3.29)

This concludes the proof. �

Remark 3.10. The following result concludes our demonstration of the existence of a
concrete bitrace on a noncommutative partial O∗-algebra.

Theorem 3.11. The set of pairs {(�τβ ,τβ) : β > 0} is a one-parameter family of bitraces
on �.
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Proof. Let x ∈�τβ and a,b ∈ L(�). Then

τβ
(
b · (a · x),b · (a · x)

)=
∞∑

n=1

〈
b · (a · x) fn,b · (a · x) fn

〉
e−βλn

=
∞∑

n=1

∥
∥b+∗a+∗x fn

∥
∥2

e−βλn

≤ ∥∥b+∗a+∗∥∥2
∞∑

n=1

∥
∥x fn

∥
∥2

e−βλn

= ∥∥b+∗a+∗∥∥2
τβ(x,x) <∞.

(3.30)

Similarly, for x ∈�τβ , a∈ L(�), and b ∈ R(�), one checks that

τβ
(
(a · x) · b, (a · x) · b)≤ ∥∥a+∗+∗∥∥2

∞∑

n=1

∥
∥x+∗b fn

∥
∥2

e−βλn . (3.31)

Then since b∈ R(�), whence

b fn =
∑

α∈Λ

〈
fα,b fn

〉
fα, (3.32)

for some finite subset Λ of the natural numbers, we get

τβ
(
(a · x) · b, (a · x) · b)≤ 2

∑

α∈Λ

∥
∥x+∗ fα

∥
∥2
( ∞∑

n=1

e−βλn
)
∥
∥a+∗+∗∥∥2‖b‖2 <∞. (3.33)

Hence a · x ∈�τβ whenever x ∈�τβ and a∈ L(�). From this, we conclude that for each
β > 0, �τβ is an ideal since, by Lemma 3.9, z+ ∈�τβ whenever z ∈�τβ . Hence {(�τβ ,τβ) :
β > 0} is indeed a one-parameter family of bitraces on �. This ends the proof. �

4. Representations determined by bitraces

Let � be a partial O∗-algebra and (τ,�τ) a bitrace on �. Introduce 	τ as 	τ = {x ∈
�τ : τ(x,x)= 0} and define λτ : �τ →�τ/	τ by λτ(x)= x+ 	τ . Let [λτ(�τ)] be the linear
span of λτ(�τ). A sesquilinear form (linear on the right) is defined on [λτ(�τ)] through
its action on λτ(�τ) as follows:

〈
λτ(x),λτ(y)

〉
τ = τ(x, y), x, y ∈�τ . (4.1)

Then, �τ denotes the completion of [λτ(�τ)] in the norm topology furnished by the
norm ‖·‖τ induced by 〈·,·〉τ .

Remark 4.1. (1) If τ ∈ btr (�) is faithful, that is, if τ(x,x) = 0⇒ x = 0, then 	τ = {0},
whence λτ(x)= x on �τ .

(2) For the GNS construction in respect of an arbitrary biweight, see [12, Section 9.1].
In the case of bitraces, which are our focus in this paper, we will show that to each regular
bitrace (τ,�τ) on � there correspond two representations πτ and ρτ of �. These enable
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us to introduce, for example, the conjugation operator J which is of much importance in
the following discussion.

Definition 4.2. (1) A bitrace (τ,�τ) on � will be called regular if
(i) �τ �= {0};

(ii) there is a subspace 
τ ⊂M(�)∩�τ such that
(a) the linear span [λτ(
τ)] of λτ(
τ) is dense in �τ ;
(b) (α) τ(x1 · b1,x2 · b2)= τ(b1, (x+

1 · x2) · b2);
(β) τ(b1 · z1,b2 · z2) = τ(b1,b2 · (z2 · z+

1 )) for all b1,b2 ∈ 
τ , x1,x2 ∈ �
with x+

1 ∈ L(x2), and z1,z2 ∈� with z2 ∈ L(z+
1 ).

(2) If (τ,�τ)∈ btr (�) is regular, then the subspace 
τ will be called a core.

Notation 4.3. (a) The set of all regular members of btr(�) will be denoted by Btr (�).
We will sometimes abbreviate (τ,�τ)∈ Btr (�) by τ.

(b) If τ ∈ Btr (�) and 
τ is a core for τ, then the symbol �τ will denote the linear
space [λτ(
τ)].

(c) Let τ ∈ Btr (�) and 
τ be a core for τ. On the dense subspace �τ ⊂�τ , define the
linear maps πτ(x) and ρτ(x), x ∈�, by

πτ(x)λτ(y)= λτ(x · y), x ∈�, y ∈
τ

ρτ(x)λτ(y)= λτ(y · x), x ∈�, y ∈
τ ,
(4.2)

and denote πτ(x) (resp., ρτ(x)) again by πτ(x) (resp., ρτ(x)), x ∈�. Then, πτ (resp., ρτ)
is a representation (resp., antirepresentation) of � in L+(�τ ,�τ).

(d) Since τ(x+,x+) = τ(x,x), x ∈ �τ , it follows that the involution in �τ is ‖·‖τ-
isometric, and hence extends to an antilinear isometry J : �τ →�τ , x �→ x+, satisfying
J2 = I , the identity map on �τ .

Remark 4.4. Employing the foregoing notation, we introduce the following notions.

Definition 4.5. Let � be a unital partial O∗-algebra on �, with unit e. A bitrace τ ∈
btr (�) will be called

(i) finite if e ∈�τ ;
(ii) semifinite if there is a net {tα} ⊂ 
τ ∩�+, satisfying {πτ(tα)} ⊂ L+(�τ)∩ B(�)

and ‖πτ(tα)‖ ≤ 1 for each α, such that {πτ(tα)} converges strongly to the identity
element of B(�τ);

(iii) normal if for each t∗s -convergent increasing net {tα} ⊂ 
τ ∩ �+, satisfying
{πτ(tα)} ⊂ L+(�τ)∩B(�) and ‖πτ(tα)‖ ≤ 1 for each α, with limit t ∈ 
τ ∩�+,
the net {τ(tα,x)} converges to τ(t,x) for every x ∈
τ .

Theorem 4.6. Let � be a standard, unital, partial O∗-algebra and (τ,�τ) ∈ Btr(�) a
semifinite normal bitrace on �. Then, πτ (resp., ρτ) is a normal representation (resp., an-
tirepresentation) of � into L+(�τ ,�τ) satisfying the following properties:

(i) Jπτ(x)J = ρτ(x+), and Jρτ(x)J = πτ(x+), x ∈�;
(ii) πτ(�)′′σc ⊂ ρτ(�)′c ⊂ πτ(�)′′cσ ;
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(iii) πτ(�)′′′ccσ ⊂ ρτ(�)′′cσ ⊂ πτ(�)′′′σcσ ;
(iv) ρτ(�)′′σc ⊂ πτ(�)′c ⊂ ρτ(�)′′cσ ;
(v) ρτ(�)′′′ccσ ⊂ πτ(�)′′cσ ⊂ ρτ(�)′′′σcσ .

Remark 4.7. (i) If � is a W∗-algebra of operators, and π and ρ are the ∗-representation
and∗-antirepresentation, respectively, determined by some unbounded trace on �, then
we simply have the following relationships: π(�)′ = ρ(�) and ρ(�)′ = π(�) [2]. Parts
(ii) to (v) of Theorem 4.6 reduce to these results if � is a W∗-algebra.

(ii) Theorem 4.6 will be established by means of several lemmas.

Lemma 4.8. Under the hypotheses of Theorem 4.6, πτ(�)⊂ ρτ(�)′σ and ρτ(�)⊂ πτ(�)′σ .

Proof. For x1,x2 ∈� and y,z ∈
τ , we have

〈
ρτ
(
x1
)
λτ(z),πτ

(
x2
)
λτ(y)

〉
τ =

〈
λτ
(
z · x1

)
,λτ
(
x2 · y

)〉

= τ
(
z · x1,x2 · y

)= τ
(
y+ · x+

2 ,x+
1 · z+)

= τ
(
x+

2 , y · (x+
1 · z+))= τ

(
x+

2 ,
(
y · x+

1

) · z+)

= τ
(
x+

2 · z, y · x+
1

)= 〈λτ
(
x+

2 · z
)
,λτ
(
y · x+

1

)〉
τ

= 〈πτ
(
x2
)+
λτ(z),ρτ

(
x1
)+
λτ(y)

〉
τ

(4.3)

showing that πτ(�)⊂ ρτ(�)′σ and ρτ(�)⊂ πτ(�)′σ . �

Lemma 4.9. Let t ∈
τ ∩�+ and X ∈ ρτ(�)′c, with X+ = X . Then, under the hypotheses of
Theorem 4.6, Jπτ(t)Xλτ(t)= πτ(t)Xλτ(t).

Proof. This is seen as follows. First note that πτ(t)Xλτ(t) is well defined as X ∈ L+(�τ)∩
B(�τ) and πτ(t) has �τ as its domain. For y ∈
τ , we have

〈
Jπτ(t)Xλτ(t),λτ(y)

〉
τ =

〈
Jλτ(y),πτ(t)Xλτ(t)

〉
τ

= 〈λτ(y+),πτ(t)Xλτ(t)
〉
τ =

〈
πτ(t)λτ(y+),Xλτ(t)

〉
τ

= 〈ρτ(y+)λτ(t),Xλτ(t)
〉
τ =

〈
λτ(t),ρτ(y)Xλτ(t)

〉
τ

= 〈Xλτ(t),ρτ(y)λτ(t)
〉
τ , as X ∈ ρτ(�)′c,

= 〈Xλτ(t),πτ(t)λτ(y)
〉
τ

= 〈πτ(t)Xλτ(t),λτ(y)
〉
τ , for arbitrary y ∈
τ ,

(4.4)

showing that

Jπτ(t)Xλτ(t)= πτ(t)Xλτ(t). (4.5)
�
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Lemma 4.10. Under the hypotheses of Lemma 4.9, πτ(t)Xπτ(t) lies in πτ(�)′′σσ .

Proof. As � is semifinite, there is a net {xα} in 
τ such that πτ(t)Xλτ(t) = limα λτ(xα).
By Lemma 4.9,

πτ(t)Xλτ(t)= lim
α

1
2

(
λτ
(
xα
)

+ Jλτ
(
xα
))= lim

α

1
2
λτ
(
xα + x+

α

)
. (4.6)

Thus we may assume, as we do henceforth, that the net {xα} satisfies x+
α = xα.

We note that the net {ρτ(y)λτ(xα)} is Cauchy. This is because for any two indices α,β,

∥
∥ρτ(y)λτ

(
xα
)− ρτ(y)λτ

(
xβ
)∥∥= ∥∥πτ

(
xα
)
λτ(y)−πτ

(
xβ
)
λτ(y)

∥
∥

= ∥∥(πτ
(
xα
)−πτ

(
xβ
))
λτ(y)

∥
∥,

(4.7)

and {πτ(xα)} ⊂ L+(�τ)∩B(�τ) converges strongly to the identity of B(�τ). Hence, since
limα ρτ(y)λτ(xα) exists, as it is just seen, limα λτ(xα)= πτ(t)Xλτ(t), and πτ(t)Xλτ(t) is in
the domain of ρτ(y), it follows that

lim
α
ρτ(y)λτ

(
xα
)= ρτ(y) lim

α
λτ
(
xα
)= ρτ(y)πτ(t)Xλτ(t) (4.8)

because ρτ(y) is closed.
Let y,z ∈
τ and A∈ πτ(�)′σ . Then,

〈
πτ(t)Xπτ(t)λτ(y),A+λτ(z)

〉
τ

= 〈πτ(t)Xρτ(y)λτ(t),A+λτ(z)
〉
τ

= 〈πτ(t)ρτ(y)Xλτ(t),A+λτ(z)
〉
τ , since t ∈
τ ∩�+, X ∈ ρτ(�)′c,

= 〈ρτ(y)πτ(t)Xλτ(t),A+λτ(z)
〉
τ

= lim
α

〈
ρτ(y)λτ

(
xα
)
,A+λτ(z)

〉
τ

= lim
α

〈
πτ(xα)λτ(y),A+λτ(z)

〉
τ

= lim
α

〈
Aλτ(y),πτ

(
xα
)+
λτ(z)

〉
τ , since A∈ πτ(�)′σ ,

= lim
α

〈
Aλτ(y),ρτ(z)λτ

(
xα
)〉

τ , since x+
α = xα,

= 〈Aλτ(y),ρτ(z)πτ(t)Xλτ(t)
〉
τ

= 〈Aλτ(y),πτ(t)Xρτ(z)λτ(t)
〉
τ

= 〈Aλτ(y),πτ(t)Xπτ(t)λτ(z)
〉
τ

(4.9)

showing that πτ(t)Xπτ(t) lies in πτ(�)′′σσ . �

Proof of Theorem 4.6. As τ is semifinite, there is a net {tα} ⊂
τ ∩�+, satisfying {πτ(tα)}
⊂ L+(�τ)∩B(�) and ‖πτ(tα)‖ ≤ 1 for each α, such that {πτ(tα)} converges strongly to
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the identity element of B(�τ). Hence,

weak-lim
α
πτ
(
tα
)
Xπτ

(
tα
)= X , (4.10)

since, for arbitrary η ∈�τ ,

lim
α

〈
η,πτ

(
tα
)
Xπτ

(
tα
)
λτ(y)

〉
τ

= lim
α

〈
πτ
(
tα
)+
η,Xπτ

(
tα
)
λτ(y)

〉
τ = lim

α

〈
πτ
(
tα
)
η,Xπτ

(
tα
)
λτ(y)

〉
τ

=
〈

lim
α
πτ
(
tα
)
η, lim

α
Xπτ

(
tα
)
λτ(y)

〉

τ
=
〈
η, lim

α
Xπτ

(
tα
)
λτ(y)

〉

τ

= lim
α

〈
η,Xπτ

(
tα
)
λτ(y)

〉
τ = lim

α

〈
Xη,πτ

(
tα
)
λτ(y)

〉
τ

=
〈
Xη, lim

α
πτ
(
tα
)
λτ(y)

〉

τ
= 〈Xη,λτ(y)

〉
τ =

〈
η,Xλτ(y)

〉
τ ,

(4.11)

where use has been made of the facts that the net {πτ(tα)} strongly converges to the iden-
tity map and the net {Xπτ(tα)λτ(y)} is Cauchy in �τ for each y ∈
τ , since X is bounded.

Hence,

lim
α

〈
A+λτ(z),πτ

(
tα
)
Xπτ

(
tα
)
λτ(y)

〉
τ =

〈
A+λ(z),Xλτ(y)

〉
τ (4.12)

for arbitrary A∈ πτ(�)′σ and y,z ∈
τ , whence, by Lemma 3.9,

lim
α

〈
πτ
(
tα
)
Xπτ

(
tα
)
λτ(z),Aλτ(y)

〉
τ =

〈
A+λτ(z),Xλτ(y)

〉
τ , (4.13)

showing that
〈
Xλτ(z),Aλτ(y)

〉
τ =

〈
A+λτ(z),Xλτ(y)

〉
τ . (4.14)

Hence, X ∈ πτ(�)′′σσ . This shows that

ρτ(�)′c ⊂ πτ(�)′′σσ . (4.15)

By Lemma 4.8,

ρτ(�)⊂ πτ(�)′σ , (4.16)

whence

πτ(�)′′σc ⊂ ρτ(�)′c. (4.17)

Combining (4.15) and (4.17) yields

πτ(�)′′σc ⊂ ρτ(�)′c ⊂ πτ(�)′′σσ ⊆ πτ(�)′′cσ , (4.18)

which is (ii) of the theorem. From this relation, by intersecting with L+(�τ)∩B(�τ), we
get

πτ(�)′′σc ⊂ ρτ(�)′c ⊂ πτ(�)′′cσ ∩L+(�τ
)∩B

(
�τ
)= πτ(�)′′cc, (4.19)
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whence

πτ(�)′′′ccσ ⊂ ρτ(�)′′cσ ⊂ πτ(�)′′′σcσ . (4.20)

This is (iii) of the theorem.
Similarly, the relation

πτ(�)⊂ ρτ(�)′σ (4.21)

obtained in Lemma 4.8 implies that

ρτ(�)′σc ⊂ πτ(�)′c (4.22)

while (4.15) implies that

πτ(�)′σ ⊂ ρτ(�)′′cσ . (∗)

Since πτ(�)′c ⊂ πτ(�)′σ , (∗) implies that

πτ(�)′c ⊂ ρτ(�)′′cσ . (4.23)

Combining (4.22) and (4.23) yields

ρτ(�)′′σc ⊂ πτ(�)′c ⊂ ρτ(�)′′cσ , (4.24)

which is (iv) of the theorem. From this relation, by intersecting with L+(�τ)∩B(�τ), we
get

ρτ(�)′′σc ⊂ πτ(�)′c ⊂ ρτ(�)′′cσ ∩L+(�τ
)∩B

(
�τ
)= ρτ(�)′′cc, (4.25)

whence

ρτ(�)′′′ccσ ⊂ πτ(�)′′cσ ⊂ ρτ(�)′′′σcσ . (4.26)

This is (v) of the theorem, thus completing proof of the theorem. �

Definition 4.11. A unital partial O∗-algebra � on � will be called a partial W∗-algebra
if � is t∗s -closed and �′′

cσ =�.

Remark 4.12. (i) The notion of a partial W∗-algebra is a generalization of the notion
of a W∗-algebra. In view of the existence of a multiplicity of commutants and higher
commutants of a given partial O∗-algebra, several generalizations of the notion of W∗-
algebra are possible. For example, in [5, 16], a partial GW∗-algebra � is defined as a
partial O∗-algebra � on � which satisfies �

′′
wσ =� (and some other conditions), where

�
′
w is the weak bounded commutant [5] of �. Every partial GW∗-algebra is a quasi-∗-

algebra [5] because it always contains a W∗-algebra that is t∗s -dense in it.
The notion of a partial W∗-algebra introduced in this paper appears natural, as it

is not merely a quasi-∗-algebra [5]. A detailed study of the connection between partial
W∗-algebras and partial GW∗-algebras is ongoing.
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(ii) Partial W∗-algebras may be classified as follows by means of the type of bitraces
that are defined on them.

Definition 4.13. A partial W∗-algebra � on � will be called
(i) finite if there is a faithful, normal, regular finite bitrace on �;

(ii) semifinite if there is a faithful, normal, regular semifinte bitrace on �;
(iii) properly infinite if there is no nonzero normal regular finite bitrace on �;
(iv) purely infinite if there is no nonzero normal regular semifinite bitrace on �.

Remark 4.14. A systematic study of these classes of partial W∗-algebra will be pursued
elsewhere.
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