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1. Introduction

For a real-valued, measurable function f defined on [0,∞), its nth moment is defined as
sn( f ) = ∫∞0 xn f (x)dx, n ∈N = {0,1, . . .}. Let (sn)n≥0 be a sequence of real numbers. If f
is a real-valued, measurable function defined on [0,∞) with moment sequence (sn)n≥0,
we say that f is a solution to the Stieltjes moment problem (related to (sn)n≥0). If the so-
lution is unique, the moment problem is called M-determinate. Otherwise, the moment
problem is said to be M-indeterminate. When we replace N with Z we can formulate the
same problem (the so-called strong Stieltjes moment problem).

In [1–3], Stieltjes was the first to give examples ofM-indeterminate moment problems.
He showed that the log-normal distribution with density on (0,∞) given as

dσ(x)= (2πσ2)−1/2
x−1 exp

(

−
(

logx
)2

2σ2

)

, σ > 0, (1.1)

together with the densities (a∈ [−1,1])

dσ(x)
(
1 + asin

(
2πσ−2 logx

))≥ 0, (1.2)
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have all the moment sequence (en
2σ2/2)n≥0. So, the log-normal moment problem is M-

indeterminate.
In fact, for β ∈R, we have

sn
(
xβdσ

)= q−(n+β)2/2, n∈ Z, (1.3)

where q = e−σ2
.

The Stieltjes’ example and the work in [4] gave rise to the present paper. By looking
for real-valued, measurable functions h such that

gσ ,β(x)= xβdσ(x)
{

1 +h
(
σ−2 log

(
xqβ
))}

(1.4)

satisfies sn(gσ ,β)= sn(xβdσ) for all n∈ Z, we are faced (Proposition 2.1) with the problem
of characterizing the real-valued, measurable functions h satisfying

∫

R
exp

(−σ2x2

2

)
h(x+n)dx = 0, ∀n∈ Z. (1.5)

In particular, if h is a 1-periodic, real-valued, measurable function, then the last equality
is equivalent to

∫ 1

0
θ
(
x,2−1σ−2)h(x)dx = 0, (1.6)

where θ is the so-called theta function given by

θ(x, t)= (4πt)−1/2
∑

n∈Z
e−(x+n)2/4t (see [5, page 59]). (1.7)

The 1-periodic, positive function θ satisfies the heat equation on R2
+:

∂u

∂t
(x, t)= ∂2u

∂x2
(x, t). (1.8)

Notice that if h satisfies (1.5) or (1.6), then so does ah, a ∈ R. Moreover, when h is
bounded below (above), there is a∈R such that 1 + ah≥ 0. Hence, in this case a proba-
bility density function can be obtained by a standard normalizing procedure.

It only remains for us to find some interesting 1-periodic functions h satisfying (1.6).
By setting hc(x)= qc

2/2σ2M−1
c θ(x+ c,2−1σ−2)−1− 1, c ∈ [0,1), we obtain the well-known

classical solution (see, e.g., [4])

wc(x)= dσ(x)
(
1 +hc

(
σ−2 logx

))= xc−1

Mc
(
q,−q1/2−cx,−q1/2+c/x;q

)
∞

(1.9)

to the log-normal moment problem, where Mc is the constant that makes
∫∞

0 wc(x)dx = 1.
Information about theta functions and orthogonal polynomials can be found in [6].

To get more examples, for α >−1, we define the following function:

θα(x, t)=
∑

n∈Z

(
2πn

)2(1+α)
e−4π2n2t+2πnix. (1.10)
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Clearly, θα is a 1-periodic function in the variable x and satisfies the heat equation on R2
+.

In addition, for α≥−1 and t1, t2 > 0, we show that

∫ 1

0
θ
(
y, t1

)
θα
(
x− y, t2

)
dy = θα

(
x, t1 + t2

)
. (1.11)

Therefore, the following 1-periodic, continuous function satisfies the condition (1.6):

hy,t,α(x)= θα(y− x, t)− θα
(
y,2−1σ−2 + t

)
, y ∈ [0,1), t > 0. (1.12)

Furthermore, for α > −1, we have
∫ 1

0 θα(x, t)dx = 0 for all t > 0, thus the following 1-
periodic, continuous function satisfies the condition (1.6):

ht,α(x)= θα(x, t)θ
(
x,2−1σ−2)−1

, t > 0, α >−1. (1.13)

In [7, 8], Christiansen also generates new measures from old ones. The similarity of his
work with the one developed here comes from the quasiperiodicity of the theta function.

The paper is organized as follows. Preliminaries are given in Section 2. We define the
family {θα}α≥−1 of heat functions in Section 3, where more functions h satisfying (1.6) are
shown. The last two sections refer to the generalized Stieltjes-Wigert and the q-Laguerre
moment problems, respectively. Finally, we show a nonperiodic, continuous function h
fulfilling the condition (1.5).

2. Notation and preliminaries

For (x, t)∈R2
+, let (see [5, pages 33, 59])

K(x, t)= (4πt)−1/2e−x
2/4t,

θ(x, t)=
∑

n∈Z
K(x+n, t)=

∑

n∈Z
e−4π2n2t+2πnix.

(2.1)

The positive functions K , θ satisfy the heat equation on R2
+. Clearly, θ is a 1-periodic

function in the variable x. Moreover,

∫

R
K(x, t)dx = 1,

∫ 1

0
θ(x, t)dx = 1, ∀t > 0. (2.2)

For c ∈ [0,1), we set

�c :=
∫ 1

0

θ
(
x,2−1σ−2

)

θ
(
x+ c,2−1σ−2

)dx. (2.3)

Throughout this paper we will write q = e−σ2
, σ > 0 fixed. The density of the log-

normal distribution with parameter σ2 can be written as

dσ(x)= 1
x
K
(

logx,2−1σ2). (2.4)
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For β ∈R, we have

xβdσ(x)= qβ−β
2/2dσ

(
xqβ
)
. (2.5)

Therefore,

sβ
(
dσ
)

:=
∫∞

0
xβdσ(x)dx = q−β

2/2
∫∞

0
dσ(x)dx

= q−β
2/2
∫

R
K
(
x,2−1σ2)dx = q−β

2/2.
(2.6)

In particular, the strong Stieltjes moment sequence of xβdσ is given by

sn
(
xβdσ

)= q−(n+β)2/2, n∈ Z. (2.7)

For 0 < q < 1, n∈N, we introduce some notation from q-calculus (see [9, page 233]):

(p;q)0 := 1, (p;q)n :=
n−1∏

k=0

(
1− pqk

)
, n≥ 1, (p;q)∞ :=

∞∏

k=0

(
1− pqk

)
. (2.8)

For β ∈R, we set

(p;q)β := (p;q)∞(
pqβ;q

)
∞
. (2.9)

The following easily verified identities will be used:

(
p;q
)
n =

(p;q)∞(
pqn;q

)
∞

, (p;q)n+β =
(
pqn;q

)
β(p;q)n. (2.10)

We use the following notation:

(
p1, p2, . . . , pk;q

)
n =

(
p1;q

)
n

(
p2;q

)
n ···

(
pk;q

)
n,

(
p1, p2, . . . , pk;q

)
∞ =

(
p1;q

)
∞
(
p2;q

)
∞···

(
pk;q

)
∞.

(2.11)

For z ∈ C, we consider the two q-exponential functions

eq(z)=
∞∑

k=0

zk

(q;q)k
= 1

(z;q)∞
, |z| < 1,

Eq(z)=
∞∑

k=0

q(k2)zk

(q;q)k
= (−z;q)∞.

(2.12)

For x ∈R, we define

Lq(x)=
∑

n∈Z
q(1/2)n2

xn. (2.13)
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The value of the sum Lq(x) is known by Jacobi’s triple product identity

Lq(x)= (q,−√qx,−√q/x;q)∞. (2.14)

It is easy to check the identity

√
σ2

2π
qx

2/2Lq
(
q−x
)= θ

(
x,2−1σ−2), ∀x ∈R. (2.15)

For c ∈ [0,1), we introduce the following constant (see [4]):

Mc :=
∫∞

0

xc−1

Lq
(
xq−c

)dx = πqc(c−1/2)

sin(πc)

(
qc,q1−c;q

)
∞

(q;q)2∞
(2.16)

for c > 0, and M0 = log(q−1). By the monotone convergence theorem and equality
(2.15) we have

�c =
∑

n∈Z

∫ 1

0

K
(
x+n,2−1σ−2

)

θ
(
x+ c,2−1σ−2

) dx =
∫

R

qx
2/2

q(x+c)2/2Lq
(
q−(x+c)

)dx = q−c
2/2σ−2Mc. (2.17)

Proposition 2.1. Let h ∈ L1(R,e−σ2(x−n)2/2dx) for all n ∈ N (Z). The function gσ ,β(x) =
xβdσ(x){1 + h(σ−2 log(xqβ))} has the same (strong) Stieltjes moment sequence as xβdσ if
and only if

∫

R
K
(
x,2−1σ−2)h

(
x+n

)
dx = 0 for every n∈N(Z). (2.18)

Proof. By using (2.5) and changing variables y =−n+ σ−2 log(xqβ) we obtain

sn
(
gσ ,β
)= sn

(
xβdσ

)
+ q−(β+n)2/2

∫∞

−∞
K
(
y,2−1σ−2)h(y +n)dy, (2.19)

and the result follows. �

In particular, if h is a 1-periodic function in L1((0,1)), then sn(gσ ,β)= sn(xβdσ) for all
n∈ Z if and only if

∫ 1

0
θ
(
x,2−1σ−2)h(x)dx = 0. (2.20)

Remark 2.2. If h satisfies (2.18) or (2.20), then so does ah, a ∈ R. Moreover, when h is
bounded below (above), there is a∈R such that 1 + ah≥ 0.

Definition 2.3. For β ∈ R, let Ṽβ denote the set of real-valued, measurable functions f
defined on [0,∞) solving the strong moment problem

sn( f )= q−(n+β)2/2 := sn,β, n∈ Z. (2.21)

Example 2.4. For β ∈R, xβdσ ∈ Ṽβ.
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Now we want to find some interesting 1-periodic functions h satisfying (2.20).

Example 2.5. By setting hc(x)=�−1
c θ(x+ c,2−1σ−2)−1−1, with c∈[0,1) and using (2.15),

(2.17), and (2.20), we obtain the classical solution

wc(x)= dσ(x)
{

1 +hc
(
σ−2 logx

)}= xc−1

McLq
(
xq−c

) ∈ Ṽ0. (2.22)

Example 2.6. If f ∈ Ṽ0, then an easy calculation shows that

qβ−β
2/2 f

(
qβx
)∈ Ṽβ, β ∈R. (2.23)

Example 2.7. Let f be a 1-periodic function integrable on (0,1). Then the function

h(x)=
(
f (x)−

∫ 1

0
f (x)dx

)
θ
(
x,2−1σ−2)−1

(2.24)

satisfies (2.20). In particular, we can put ft(x)= θ(x, t) with t > 0.

To get more examples, in the next section we introduce a family of functions satisfying
the heat equation for which functions fulfilling the condition (2.20) can be defined.

3. The families of heat functions {Kα}α, {θα}α
We follow the notation in [10, Chapter 9]. For f ∈ L1(R), we define its Fourier transform
as

(Φ f )(ξ)=
∫∞

−∞
f (x)e−ixξ

dx√
2π

. (3.1)

For α≥−1 and t > 0 fixed, the function ξ2(1+α)e−ξ2t is in L1(R), so we define

Kα(x, t)= 1√
2π

Φ−1(ξ2(1+α)e−ξ
2t
)
(x)= 1√

2π

∫∞

−∞
ξ2(1+α)e−ξ

2t cos(xξ)
dξ√
2π

. (3.2)

Then Kα is a real-valued function that satisfies the heat equation on R2
+. We can rewrite

Kα(x, t)= 1√
π
t−1−αK(x, t)

∫∞

−∞
ξ2(1+α)e−(ξ−ix/2√t)2

dξ

= 1√
π
t−1−αK(x, t)

∫∞

−∞

(
ξ +

ix

2
√
t

)2(1+α)

e−ξ
2
dξ.

(3.3)

Therefore,

∣
∣Kα(x, t)

∣
∣≤ Cαt

−1−αK(x, t)
∫∞

−∞

(
ξ2(1+α) +

x2(1+α)

t1+α

)
e−ξ

2
dξ ≤ Cαt

−1−αK(x, t)
[

1 +
x2(1+α)

t1+α

]
.

(3.4)

Since xλe−x ≤ Cλe−x/2 for x,λ > 0, we have

x2(1+α)

(4t)1+α
K(x, t)= 1√

4πt

(
x2(1+α)

(4t)1+α
e−x

2/4t

)

≤ Cα√
4πt

e−x
2/8t = CαK(x,2t). (3.5)
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Whence,

∣
∣Kα

(
x, t
)∣∣≤ Cαt

−1−α(K(x, t) +K(x,2t)
)
, (3.6)

and Kα(·, t)∈ L1(R) for all t > 0.
The convolution of f ,g ∈ L1(R) is given by

( f ∗ g)(x)=
∫

R
f (y)g(x− y)

dy√
2π

. (3.7)

Using the fact that Φ( f ∗ g)=Φ( f )Φ(g), the definition of Kα, and the inversion formula,
we get

∫

R
Kα
(
y, t1

)
Kβ
(
x− y, t2

)
dy = Kα+β+1

(
x, t1 + t2

)
, (3.8)

whenever α,β ≥−1, t1, t2 > 0.
Next, for α≥−1, we introduce the function

θα(x, t)=
∑

n∈Z
Kα(x+n, t). (3.9)

From (3.6) we have the estimate
∣
∣θα(x, t)

∣
∣≤ Cαt

−1−α(θ(x, t) + θ(x,2t)
)
. (3.10)

Remark 3.1. From (3.2) we have that K−1 ≡ K , θ−1 ≡ θ. If α∈N, then

Kα = (−1)1+α ∂
1+αK

∂t1+α
, θα = (−1)1+α ∂

1+αθ

∂t1+α
. (3.11)

For α >−1, the inversion formula implies

∫ 1

0
θα(x, t)dx =

∫∞

−∞
Φ−1(ξ2(1+α)e−ξ

2t
)
(x)

dx√
2π
= ξ2(1+α)e−ξ

2t
∣
∣
ξ=0 = 0, ∀t > 0.

(3.12)

Example 3.2. For α >−1, t > 0, the function

ht,α(x)= θα(x, t)θ
(
x,2−1σ−2)−1

(3.13)

satisfies (2.20).

For α,β ≥−1, t1, t2 > 0, the equality (3.8) implies

∫ 1

0
θα
(
y, t1

)
θβ
(
x− y, t2

)
dy = θα+β+1

(
x, t1 + t2

)
. (3.14)

In particular, for α≥−1, β =−1, we obtain

∫ 1

0
θ
(
y, t2

)
θα
(
x− y, t1

)
dy =

∫ 1

0
θα
(
y, t1

)
θ
(
x− y, t2

)
dy = θα

(
x, t1 + t2

)
. (3.15)
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Example 3.3. For y ∈ [0,1), t > 0, the following function fulfills (2.20):

hy,t,α(x)= θα(y− x, t)− θα
(
y,2−1σ−2 + t

)
. (3.16)

The following proposition gives an explicit formula for θα.

Proposition 3.4. For α >−1,

θα(x, t)=
∑

n∈Z
(2πn)2(1+α)e−4π2n2t+2πnix. (3.17)

Proof. From (3.6) we have

∣
∣
∣
∣
∣

∑

m∈Z
Kα(x+m, t)

∣
∣
∣
∣
∣≤

Cα

t1+α

(
θ(x, t) + θ(x,2t)

)
. (3.18)

Hence, the series converges uniformly on compact subsets of R2
+ and therefore it is con-

tinuous. Since the series is 1-periodic in x, it admits a representation as a Fourier series,

∑

m∈Z
Kα(x+m, t)=

∑

m∈Z
am(t)e2πmix, (3.19)

where convergence is in L2([0,1]). Moreover,

∫ 1

0

∑

m∈Z

∣
∣Kα(x+m, t)

∣
∣dx ≤ Cα

t1+α

∫∞

−∞

(
K(x, t) +K(x,2t)

)
dx = Cα

t1+α
. (3.20)

By the dominated convergence theorem we have

am(t)=
∫ 1

0

[
∑

n∈Z
Kα(x+n, t)

]

e−2πmixdx =
∫∞

−∞

√
2πKα(x, t)e−2πmix dx√

2π

= (Φ[√2πKα(·, t)])(2πm)= (2πm)2(1+α)e−4π2m2t .

(3.21)

�

The last result implies that θα satisfies the heat equation on R2
+.

Example 3.5. If h(x)=∑n∈Z cne2πnix ∈ L2([0,1]), then h satisfies (2.20) if and only if

∑

n∈Z
cne

−2π2n2/σ2 = 0. (3.22)
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4. Generalized Stieltjes-Wigert

For 0≤ p < 1, the generalized Stieltjes-Wigert moment problem has the following weight
function on (0,∞):

g(x; p,q) :=
(
p,− p

√
q

x
;q
)

∞
dσ(x). (4.1)

When p = 0, the function g is the log-normal density. The next result is based on ideas in
[4].

Proposition 4.1. For every positive function f ∈ Ṽβ, β ≥ 0, the function (p,−p√q/x;
q)∞ f (x) has the Stieltjes moment sequence

sn,β,p := (p;q)n+βq
−(n+β)2/2, n∈N. (4.2)

Proof. Since all the functions below are positive, using (2.12) and (2.9) we have

∫∞

0
xng(x; p,q) f (x)dx = (p;q)∞

∞∑

k=0

qk
2/2pk

(q;q)k

∫∞

0
xn−k f (x)dx

= (p;q)∞q−(n+β)2/2
∞∑

k=0

(
pqn+β

)k

(q;q)k

= (p;q)n+βq
−(n+β)2/2, n∈N.

(4.3)

In fact, the last inequality holds for n ∈ Z, β ∈ R as long as pqn+β < 1. In particular, for
p = q1/2 we obtain

∫∞

0
xn
(
q1/2,−q/x;q

)
∞ f (x)dx = (q1/2;q

)
n+βq

−(n+β)2/2 (4.4)

for n∈ Z, β ∈R whenever qn+β+1/2 < 1. �

Example 4.2. For β≥0, q−β2/2+βwc(qβx)(p,−p√q/x;q)∞ has the moment sequence (sn,β,p).

More examples can be obtained if we combine (2.20) and the results in Section 3.

5. q-Laguerre

The normalized q-Laguerre polynomials L(α)
m (x;q) (see [11]) belong to an M-indetermi-

nate moment problem with moments:

Sn,α := q−αn−(n+1
2 )(qα+1;q

)
n, n∈N, (5.1)

with 0 < q < 1, α >−1.

Proposition 5.1. Let α > −1. For every positive function f ∈ Ṽα+1/2, the function
q(α+1/2)2/2(qα+1,−q/x;q)∞ f (x) has the Stieltjes moment sequence Sn,α.
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Proof. Let f ∈ Ṽα+1/2. It follows from (4.4) with β = α+ 1/2, (2.9), and (2.10) that the
function q(α+1/2)2/2(q1/2;q)−1

α+1/2(q1/2,−q/x;q)∞ f (x) has the moment sequence

q(α+1/2)2/2(q1/2;q
)−1
α+1/2

(
q1/2;q

)
n+α+1/2q

−(n+α+1/2)2/2 = Sn,α. (5.2)

The result follows since (q1/2;q)−1
α+1/2(q1/2;q)∞ = (qα+1;q)∞. �

Example 5.2. Example 2.6 with β = α+ 1/2 >−1/2 implies that the function

qα+1/2(qα+1,−q/x;q
)
∞wc

(
qα+1/2x

)= qc(α+1/2)
(
qα+1,−q/x;q

)
∞x

c−1

Mc
(
q,−qα+1−cx,−qc−α/x;q

)
∞

(5.3)

with c ∈ (0,1] has moment sequence Sn,α. In particular, when α= c− 1 and using (2.16),
we obtain the function

− sin(πα)
π

(q;q)∞(
q−α;q

)
∞

xα

(−x;q)∞
. (5.4)

More examples can be obtained if we combine (2.20) and the results in Section 3.
Finally, we show a nonperiodic, continuous function h fulfilling condition (2.18).

Example 5.3. For γ ∈R\2πQ, consider h(x)= (1 + k cos(2πx))cosγx, where

k = −∫R e−σ2x2/2 cos(γx)dx
∫
R e−σ

2x2/2 cos(γx)cos(2πx)dx
< 0. (5.5)

So, h is not periodic at all and satisfies (2.18).
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