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For a prime p, we obtain an upper bound on the discrepancy of fractions r/p, where r
runs through all of roots modulo p of all monic univariate polynomials of degree d whose
vector of coefficients belongs to a d-dimensional box �. The bound is nontrivial starting
with boxes � of size |�| ≥ pd/2+ε for any fixed ε < 0 and sufficiently large p.
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1. Introduction

For an integer m and a polynomial f (X)∈ Z[X], we consider the set of fractions

�m, f =
{
r

m
| f (r)≡ 0 (modm), 0≤ r ≤m− 1

}
, (1.1)

that is, the set of fractions r/m where r runs through all distinct roots of the congruence
f (r)≡ 0(modm).

Hooley [1] has proved that for any irreducible polynomial f (X)∈ Z[X], the sequence
� f (X) of all fractions r/m∈�m, f taken over all nonnegative integers m≤ X , that is,

� f (X)=
{
r

m

}
r∈�m, f ,m≤X

, (1.2)

is asymptotically uniformly distributed in the [0,1] interval when X →∞, although the
bound on the discrepancy of the sequence � f (X) is rather weak. For quadratic polyno-
mials f a stronger bound on the discrepancy has been obtained using a different method
by Hooley [2], see [3, 4] for further references to more recent improvements and appli-
cations.
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Furthermore, for many applications it is desirable to have a result about the uniformity
of distribution of the same fractions when the modulus m= p runs only through prime
numbers p ≤ X . Accordingly, we define the sequence

� f (X)=
{
r

p

}
r∈�p, f , p≤X

. (1.3)

For quadratic polynomials f , the uniformity of distribution of the sequence � f (X) has
been shown by Duke et al. [3] and Tóth [4]. However, for arbitrary polynomials this
result appears to be out of reach nowadays. Here we consider a dual question when the
prime p is fixed but the polynomial f varies over some natural family of polynomials.

More precisely, for a box

�= [g0,g0 +h0
)×···× [gd−1,gd−1 +hd−1

)
, (1.4)

where g0, . . . ,gd−1 are arbitrary integers and the side lengths h0, . . . ,hd−1 ≤ p are positive
integers, we use �d(�) to denote the set of monic polynomials

f (X)= Xd + ad−1X
d−1 + ···+ a0 ∈ Z[X],

(
a0, . . . ,ad−1

)∈�. (1.5)

Assuming that all integers in the interval [g0,g0 +h0) are nonzero modulo p, we obtain
upper bounds for the discrepancy of the sequence

�d(p;�)=
{
r

p

}
r∈�p, f , f∈�d(�)

(1.6)

which are nontrivial when, for any fixed ε > 0 and sufficiently large p,

|�| ≥ pd/2+ε, (1.7)

where |�| = h0 ···hd−1 is the volume of �.
As the following example shows, the condition a0 �≡ 0(mod p) is necessary if one wants

to treat “small” boxes �. Indeed, if h0 = 1, h1 = ··· = hd−1 = p, and g0 = ··· = gd−1 = 0,
the set �d(�) is of relatively large size #�d(�)= pd−1 but has a very biased distribution
of roots as every polynomial f ∈�d(�) vanishes at zero.

2. Notation

We recall that the discrepancy Δ(�) of a finite sequence � of (not necessarily distinct)
real numbers in the unit interval [0,1) is defined by

Δ(�)= sup
	⊆[0,1)

∣∣∣∣N(	,�)
#�

−|	|
∣∣∣∣, (2.1)

where the supremum is taken over all subintervals 	= [β,γ) of the interval [0,1),N(	,�)
is the number of α∈�∩	, and |	| = γ−β is the length of 	.

For a prime p and a real z, we denote

ep(z)= exp
2πiz
p

. (2.2)
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We also define the “delta”-function on the residue classes modulo p

δp(v)=
⎧⎨
⎩

1, if v ≡ 0(mod p),

0, if v �≡ 0(mod p).
(2.3)

In particular, we use the identity

1
p

p−1∑
u=0

ep(uv)= δp(v) (2.4)

to express various counting functions via exponential sums.
Throughout the paper, any implied constants in symbols O and � may depend on

the degree of the polynomial but are absolute otherwise. We recall that the notations
U � V and U = O(V) are both equivalent to the statement that |U| ≤ cV holds with
some constant c > 0.

3. Main result

Theorem 3.1. Suppose that the box � is given by (1.4) with 0 < g0 ≤ g0 +h0 ≤ p. Then for
the discrepancy Δ(�d(p;�)) of the set �d(p;�), one has

Δ
(
�d(p;�)

)�|�|−2/d p(log p)2. (3.1)

Proof. For an integer r, we use 
d(r, p;�) to denote the set of polynomials f ∈�d(�)
with r ∈�p, f . Using the identity (2.4), we write

#
d(r, p;�)= 1
p

p−1∑
u=0

ep
(
urd

)d−1∏
ν=0

gν+hν−1∑
aν=gν

ep
(
uaνr

ν
)

= |�|
p

+
1
p

p−1∑
u=1

ep
(
urd

)d−1∏
ν=0

gν+hν−1∑
aν=gν

ep
(
uaνr

ν
)
.

(3.2)

Let us fix an interval 	= [β,γ)⊆ [0,1). We also recall that the condition of the theo-
rem implies that 
d(0, p;�)=∅. Then, for the number N(	,�d(p,�)) of r/p ∈�d(p;
�)∩	 we have

N
(
	,�d(p;�)

)= ∑
βp≤r<γp

#
d(r, p;�)= |�|
p

(
(γ−β)p+O(1)

)
+

1
p
E, (3.3)

where

|E| ≤
∑

βm≤r<γm
r �=0

p−1∑
u=1

d−1∏
ν=0

∣∣∣∣∣
gν+hν−1∑
aν=gν

ep
(
uaνr

ν
)∣∣∣∣∣. (3.4)

Let hi and hj be the two largest side lengths.
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Estimating the sums over aν with ν �= i, j trivially as hν, and extending the range of
summation to all r = 1, . . . , p− 1, we obtain

|E|� |�|
hihj

p−1∑
r=1

p−1∑
u=1

∣∣∣∣∣
gi+hi−1∑
ai=gi

ep
(
uair

i
)∣∣∣∣∣
∣∣∣∣∣
gj+hj−1∑
aj=gj

ep
(
uajr

j
)∣∣∣∣∣. (3.5)

Let ‖v‖p denote the unique integer w in the interval |w| < p/2 with w ≡ u(mod p). We
now recall that for any v �≡ 0(mod p), we have the bound

∣∣∣∣∣
f +h−1∑
a= f

ep(av)

∣∣∣∣∣�
p

‖v‖p , (3.6)

that (in a more general form) dates back to Weyl [5], see also [6, Bound (8.6)].
From this bound we derive

|E|� |�|p2

hihj

p−1∑
r=1

p−1∑
u=1

1∥∥uri∥∥p
∥∥ur j∥∥p . (3.7)

For each pair of integers (s, t)∈ [1, p− 1]2 there are at most d pairs of (u,r)∈ [1, p− 1]2

with

uri ≡ s(mod p), ur j ≡ t(mod p), (3.8)

(since they imply that ri− j ≡ s/t(mod p) which leads to at most |i− j| ≤ d− 1 values for
r, each of which then leads to a unique values of u). Hence

|E|� |�|p2

hihj

p−1∑
s=1

p−1∑
t=1

1
‖s‖p‖t‖p =

|�|p2

hihj

( p−1∑
s=1

1
‖s‖p

)2

� |�|p2(log p)2

hihj
. (3.9)

Remarking that hihj ≥ |�|2/d and using (3.3), we obtain

N
(
	,�d(p;�)

)= (γ−β)|�|+O
(|�|p−1 + |�|1−2/d p(log p)2). (3.10)

Since |�| ≤ pd, the first term never dominates and we obtain

N
(
	,�d(p;�)

)= (γ−β)|�|+O
(|�|1−2/d p(log p)2). (3.11)

Using the above bound also with β = 0, γ = 1, we conclude the proof. �

4. Remarks

There are several natural generalisations of our result which lead to interesting open ques-
tions.

For example, motivated by the approach of [7] one can ask the following question.
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Open Question. Obtain an upper bound on the discrepancy of the point set (r1/p, . . . ,
rk/p) formed by the roots of systems of k polynomial congruences in k variables

f j
(
r1, . . . ,rs

)≡ 0(mod p), j = 1, . . . ,k, (4.1)

with all polynomials of total degree d whose coefficients belong to a prescribed box.
It is well known that using the Bombieri bound [8], one can prove that the discrepancy

Dp, f of the point set (r1/p,r2/p) arising from points on an absolutely irreducible curve

f
(
r1,r2

)≡ 0(mod p) (4.2)

of degree d ≥ 2 satifies

Dp, f =O
(
p−1/2(log p)2); (4.3)

see [9] for various generalisations of this result and further references.
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Birkhäuser, Boston, Mass, USA, 2004.

[8] E. Bombieri, “On exponential sums in finite fields,” American Journal of Mathematics, vol. 88,
no. 1, pp. 71–105, 1966.

[9] A. Granville, I. E. Shparlinski, and A. Zaharescu, “On the distribution of rational functions along
a curve over Fp and residue races,” Journal of Number Theory, vol. 112, no. 2, pp. 216–237, 2005.

Igor E. Shparlinski: Department of Computing, Macquarie University, Sydney 2109, NSW, Australia
Email address: igor@ics.mq.edu.au

mailto:igor@ics.mq.edu.au

	1. Introduction
	2. Notation
	3. Main result
	4. Remarks
	References

