
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2007, Article ID 34301, 17 pages
doi:10.1155/2007/34301

Research Article
Global Existence and Blow-Up Solutions and
Blow-Up Estimates for Some Evolution Systems
with p-Laplacian with Nonlocal Sources

Zhoujin Cui and Zuodong Yang

Received 20 September 2006; Accepted 21 February 2007

Recommended by Alfonso Castro

This paper deals with p-Laplacian systems ut − div(|∇u|p−2∇u) = ∫ Ωvα(x, t)dx, x ∈Ω,
t > 0, vt − div(|∇v|q−2∇v) = ∫ Ωuβ(x, t)dx, x ∈ Ω, t > 0, with null Dirichlet boundary
conditions in a smooth bounded domain Ω ⊂ RN , where p,q ≥ 2, α,β ≥ 1. We first get
the nonexistence result for related elliptic systems of nonincreasing positive solutions.
Secondly by using this nonexistence result, blow up estimates for above p-Laplacian sys-
tems with the homogeneous Dirichlet boundary value conditions are obtained under
Ω = BR = {x ∈ RN : |x| < R} (R > 0). Then under appropriate hypotheses, we establish
local theory of the solutions and obtain that the solutions either exist globally or blow up
in finite time.
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1. Introduction

In this paper, we study the following nonlocal p-Laplacian systems in a smooth bounded
domain Ω⊂RN (N ≥ 1):

ut −div
(|∇u|p−2∇u)=

∫

Ω
vα(x, t)dx, x ∈Ω, t > 0,

vt −div
(|∇v|q−2∇v)=

∫

Ω
uβ(x, t)dx, x ∈Ω, t > 0,

u(x, t)= v(x, t)= 0, x ∈ ∂Ω, t > 0,

u(x,0)= u0(x), v(x,0)= v0(x), x ∈Ω,

(1.1)
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where p,q ≥ 2, α,β ≥ 1. u0(x) ∈ L∞(Ω) ∩W
1,p
0 (Ω), v0(x) ∈ L∞(Ω) ∩W

1,q
0 (Ω) and

∂u0(x)/∂η,∂v0(x)/∂η < 0 on ∂Ω, η denotes the unit outer normal vector on the boundary.
As well as the nonexistence of positive solutions of the related elliptic systems,

−div
(|∇u|p−2∇u)=

∫

Ω
vα(x)dx, x ∈Ω,

−div
(|∇v|q−2∇v)=

∫

Ω
uβ(x)dx, x ∈Ω.

(1.2)

Equations (1.1) are the classical reaction-diffusion system of Fujita-type for p = q = 2.
If p �= 2, q �= 2, (1.1) appears in the theory of non-Newtonian fluids [1, 2] and in non-
linear filtration theory [3]. In the non-Newtonian fluids theory, the pair (p,q) is a char-
acteristic quantity of the medium. Media with (p,q) > (2,2) are called dilatant fluids and
those with (p,q) < (2,2) are called pseudoplastics. If (p,q) = (2,2), they are Newtonian
fluids.

In the past two decades, many physical phenomena were formulated into nonlocal
mathematical models (see [4–9] and the references therein) and studied by many authors.
Degenerate parabolic equations involving a nonlocal source, which arise in a population
model that communicates through chemical means, were studied in [10, 11].

As a matter of course, (1.1) with p = q = 2 give semilinear parabolic equations and
have been studied by many authors. Over the last few years, much effort has been devoted
to the study of blow-up properties for nonlocal semilinear parabolic equations of the type
vt =	v + g(t) (see [12–14]). Conditions on blowing up, blow-up set, blow-up rate, and
asymptotic behavior of solutions are obtained, see [4, 5]. The problem concerning (1.1)
includes the existence and multiplicity of global solutions, blowing-up, blow-up rates and
blow-up sets, uniqueness and nonuniqueness, and so forth. For (1.2), there are problems
such as existence and nonexistence, uniqueness and nonuniqueness, and so on. On the
contrary, it seems that little is known about the result for quasilinear reaction-diffusion
system (non-Newtonian filtration systems) and quasilinear elliptic system (e.g., [15–18]).
For the scalar problem, a few authors (see [8, 19]) investigated the following equation:

ut −div
(|∇u|p−2∇u)= uq, (1.3)

with initial and boundary conditions. Roughly speaking, their results are
(1) the solution u exists globally if q < p− 1, and
(2) u blows up in finite time if q > p− 1 and u0(x) is sufficiently large.

The authors in [7] studied the following equation:

ut −div
(|∇u|p−2∇u)=

∫

Ω
uq(x, t)dx, (1.4)

with null Dirichlet conditions and obtained that the solution either exists globally or
blows up in finite time. Under appropriate hypotheses, they have local theory of the so-
lution and obtain that the solution either exists globally or blows up in finite time.
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The authors in [9] deal with the following reaction-diffusion system:

ut −	u=
∫

Ω
f
(
v(y, t)

)
dy, x ∈Ω, t > 0,

vt −	v =
∫

Ω
g
(
u(y, t)

)
dy, x ∈Ω, t > 0,

(1.5)

with initial and boundary conditions. They proved that there exists a unique classical
solution and the solution either exists globally or blows up in finite time. Furthermore,
they obtain the blow-up set and asymptotic behavior provided that the solution blows up
in finite time.

For p-Laplacian systems, Yang and Lu in [15] studied the following equations:

ut −div
(|∇u|p−2∇u)= vα,

vt −div
(|∇v|q−2∇v)= ωβ,

ωt −div
(|∇ω|m−2∇ω)= uγ, x ∈Ω, t > 0.

(1.6)

They derive some estimates near the blow-up point for positive solutions and nonexis-
tence of positive solutions of the relate elliptic systems.

The main purpose of this paper is to derive some estimates near the blow-up point
and investigate the global existence and blow-up of solutions for problem (1.1).

The outline of the paper is as follows. In the next section, we investigate the global
nonexistence for elliptic system (1.2). Section 3 is devoted to blow-up estimate for sys-
tem (1.1). In Section 4, we give the local existence and uniqueness of system (1.1). In
Section 5, we give the blow-up property of solutions to (1.1).

After finishing this paper, we learn from a recent paper by Li [20] that he obtained the
results of global existence and blow-up of solutions for (1.1). As we will show in Sections
4 and 5, our proof for the results of global existence and blow-up of solutions given here
is simpler than [20].

2. Nonexistence for elliptic system (1.2)

Motivated by [12, 13, 15, 16, 18], we consider radially symmetric solutions of the elliptic
system (1.2), that is, suppose that u(x)= u(r), v(x)= v(r) with r = |x|.

Let

z1 = (p+ 1)(q− 1) +α(q+ 1)
αβ− (p− 1)(q− 1)

− N − p

p− 1
,

z2 = (q+ 1)(p− 1) +β(p+ 1)
αβ− (p− 1)(q− 1)

− N − q
q− 1

.

(2.1)

We give the following theorem
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Theorem 2.1. Assume that
(i) N >max{p,q}, αβ > (p− 1)(q− 1) with p,q > 1;

(ii) z1 ≥ 0 or z2 ≥ 0.
Then system (1.2) has no positive radially symmetric solution.

To prove Theorem 2.1, system (1.2) can be written in radial coordinates as

(
Φp(u′)

)′
+
N − 1
r

Φp(u′) +
∫ r

0
vα = 0, (2.2)

(
Φq(v′)

)′
+
N − 1
r

Φq(v′) +
∫ r

0
uβ = 0, (2.3)

u(0) > 0, v(0) > 0, u′(0)= v′(0)= 0, (2.4)

in RN with N ≥max{p,q}, where Φp(u)= |u|p−2u, Φq(v)= |v|q−2v, p,q > 1.
By the similar argument of [15, Lemma 2], we can prove the following lemmas.

Lemma 2.2. Let (u,v) be a positive and radially symmetric solution of (2.2)–(2.4). Then for
r > 0,

(
r p+1

N

)1/(p−1)

vα/(p−1) ≤−ru′ ≤ N − p

p− 1
u(r),

(
rq+1

N

)1/(q−1)

uβ/(q−1) ≤−rv′ ≤ N − q
q− 1

v(r).

(2.5)

From (2.5), we have the following lemma.

Lemma 2.3. Suppose that the conditions in Theorem 2.1 are satisfied. Let (u,v) be a positive
and radially symmetric solution of (2.2)–(2.4). Then

u(r)≤ Cr−((p+1)(q−1)+α(q+1))/(αβ−(p−1)(q−1)),

v(r)≤ Cr−((q+1)(p−1)+β(p+1))/(αβ−(p−1)(q−1)),
(2.6)

in which C = C(N ,α,β, p,q).

Proof of Theorem 2.1. Let (u,v) be a nontrivial positive and radially symmetric solution
of (2.2)–(2.4). We consider first the case z1 > 0 or z2 > 0.

By Lemma 2.2,

(
rN−pup−1(r)

)′ = rN−p−1up−2[(p− 1)ru′(r) + (N − p)u(r)
]≥ 0, (2.7)

we have u(r)≥ cr−(N−p)/(p−1) and (u(r)r(N−p)/(p−1)), (v(r)r(N−q)/(q−1)) are nondecreasing
on (0,+∞). From Lemma 2.3 and for r > r0 > 0, we obtain that rz1 ≤ C or rz2 ≤ C. Since
z1 > 0 or z2 > 0, this leads to a contradiction for r sufficiently large.
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Suppose next that z1 = 0 (the case z2 = 0 being similar). From (2.2), it follows that for
r ≥ r0 ≥ 0,

rN−1
∣
∣u′(r)

∣
∣p−1− rN−1

0

∣
∣u′
(
r0
)∣∣p−1 =

∫ r

r0

sN−1
(∫ s

0
vα(t)dt

)
ds. (2.8)

By Lemma 2.2, we have vα(t)≥ Ctα(q+1)/(q−1)uαβ/(q−1) and hence

rN−1
∣
∣u′(r)

∣
∣p−1 ≥ C

∫ r

r0

sN−1
(∫ s

0
tα(q+1)/(q−1)uαβ/(q−1)dt

)
ds. (2.9)

Now taking into account that u(t)≥ Ct(p−N)/(p−1), we obtain

rN−1
∣
∣u′(r)

∣
∣p−1 ≥ C

∫ r

r0

sN−1
(∫ s

0
tα(q+1)/(q−1)tαβ(p−N)/((p−1)(q−1))dt

)
ds

= C
∫ r

r0

s−1ds= C ln
(
r

r0

)
,

(2.10)

where we have used the assumption z1 = 0.
On the other hand, from

ru′ +
N − p

p− 1
u(r)≥ 0, for r > 0, (2.11)

we find that

(
N − p

p− 1

)p−1

up−1(r)≥ ∣∣u′(r)∣∣p−1
r p−1. (2.12)

Together with (2.10), this implies that

r(N−p)/(p−1)u(r)≥ C
(

ln
(
r

r0

))1/(p−1)

. (2.13)

This is impossible, however, since from Lemma 2.3, estimate implies that

r(N−p)/(p−1)u(r)≤ Crz1 = C. (2.14)

This contradiction concludes the proof of the theorem. �

3. Blow-up estimate of system (1.1)

Motivated by Weissler [12], Caristi and Mitidieri [13], and Yang and Lu [15], we use
the nonexistence result of the elliptic system (1.2) obtained in Section 2 to establish the
blow-up estimates for the quasilinear reaction-diffusion system (1.1). In this section, we
impose the condition Ω= BR = {x ∈RN : |x| < R} (R > 0) to system (1.1).
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Theorem 3.1. Let (u,v) be a solution of (1.1). Assume that
(i) u(·, t), v(·, t) are nonnegative, radially symmetric, and radially decreasing functions

of r = |x|;
(ii) ut(x, t), vt(x, t) attain the maxima at x = 0 for every t ∈ (0,T);

(iii) ut(x, t)≥ 0, vt(x, t)≥ 0 for (x, t)∈QT = BR× (0,T);
(iv) u,v have a blow-up time T < +∞;
(v) integer N >max{p,q}, αβ > (p− 1)(q− 1) with p,q ≥ 2 with z1 ≥ 0 or z2 ≥ 0;

(vi) there are positive constants k1 and k2 and η < T such that

k2
(
u(0, t)

)δ2/δ1 ≤ v(0, t)≤ k1
(
u(0, t)

)δ2/δ1 for t ∈ (η,T). (3.1)

Then there are positive constants c1, c2 and t1 ∈ (0,T) such that

u(x, t)≤ u(0, t)≤ c1(T − t)−δ1 , v(x, t)≤ v(0, t)≤ c2(T − t)−δ2 (3.2)

for (x, t)∈QT ×Qt1 , where

δ1 = αq+ (q− 1)p
α
(
pβ+ q(p− 2)

)− p(q− 1)
, δ2 = βp+ (p− 1)q

β
(
qα+ p(q− 2)

)− q(p− 1)
. (3.3)

Proof. Define m(t)= u(0, t)1/τ1 , n(t)= v(0, t)1/τ2 for t ∈ (0,T), where

τ1 = αq+ (q− 1)p
αβ− (p− 1)(q− 1)

, τ2 = βp+ (p− 1)q
αβ− (p− 1)(q− 1)

. (3.4)

By putting γ(t) = m(t) + n(t), ω1(t) = (u(r/γ(t), t))/γ(t)τ1 ,ω2(t) = (v(r/γ(t), t))/γ(t)τ2 ,
r = |x|, using the symmetry and Assumptions (ii)–(iii) in Theorem 3.1, it follows that

0≤ (Φp
(
ω′1
))′

+
N − 1
r

Φp
(
ω′1
)

+
∫ r

0
ωα2 ≤

ut(0, t)
γ(t)p+(p−1)τ1

+
vt(0, t)

γ(t)q+(q−1)τ2
, (3.5)

0≤ (Φq
(
ω′2
))′

+
N − 1
r

Φq
(
ω′2
)

+
∫ r

0
ω
β
1 ≤

ut(0, t)
γ(t)p+(p−1)τ1

+
vt(0, t)

γ(t)q+(q−1)τ2
(3.6)

for any t ∈ (0,T) and r ∈ [0,Rγ(t)).
Since u(x, t), v(x, t) achieve their maxima at x = 0, we easily see that ω1 and ω2 are

bounded. Indeed,

0≤ ω1(r, t)≤ u(0, t)
γ(t)τ1

≤ 1, 0≤ ω2(r, t)≤ v(0, t)
γ(t)τ2

≤ 1. (3.7)



Z. Cui and Z. Yang 7

Multiplying (3.5) by w1,r (where w1,r express partial derivation of ω1 for r), and then
integrating with respect to r on (0,r), we have

(p− 1)
p

∣
∣ω1,r

∣
∣p +ω1

∫ r

0
ωα2 (s)ds−

∫ r

0
ω1,rω

α
2ds≤ 0. (3.8)

From (3.8) and ω1,r ≤ 0, it follows that

∣
∣ω1

∣
∣≤

(
K1p

p− 1

)1/p

(3.9)

for t ∈ (0,T) and r ∈ [0,Rγ(t)). Similarly, we get

∣
∣ω2

∣
∣≤

(
K2q

q− 1

)1/q

(3.10)

for t ∈ (0,T) and r ∈ [0,Rγ(t)), where K1, K2 are positive constants.
Now we proceed by contradiction to claim that

liminf
t→T

ut(0, t)
γ(t)p+(p−1)τ1

+
vt(0, t)

γ(t)q+(q−1)τ2
= C > 0. (3.11)

Otherwise, suppose that there exists a sequences {tn} ⊆ (0,T) with tn→ T such that

liminf
tn→T

ut
(
0, tn

)

γ(t)p+(p−1)τ1
+

vt
(
0, tn

)

γ(t)q+(q−1)τ2
= 0. (3.12)

By using Ascoli-Arzelá theorem, there exists a sequence (still denoted by {tn}) such that

ω1
(·, tn

)−→ ω1(·), ω2
(·, tn

)−→ ω2(·), as n−→ +∞, (3.13)

hold uniformly on a compact subset of [0,+∞). Now in the sense of distributions,

(
Φp
(
ω′1
))′

+
N − 1
r

Φp
(
ω′1
)

+
∫ r

0
ωα2 = 0,

(
Φq
(
ω′2
))′

+
N − 1
r

Φq
(
ω′2
)

+
∫ r

0
ω
β
1 = 0.

(3.14)

The absolute continuity of ω1, ω2 implies that ω1, ω2 are C1(0,+∞). By the local existence
and uniqueness of initial value problem for (3.14) and using the argument in [4, 5], we
conclude that ω1,ω2 > 0 on (0,+∞) with ω′1(0)= ω′2(0)= 0.

If N = 2, p > 2, we proceed as follow. From (3.14), we infer that rΦp(ω′1), rΦq(ω′2) are
decreasing and that there exist M > 0 and r0 > 0 such that

rΦp
(
ω′1
)≤M for r ∈ (r0,+∞). (3.15)
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The last inequality implies that

ω1(s)≥ ω1(s)−ω1(t)= (−M)1/(p−1)
∫ t

s
r−1/(p−1)dr

= (−M)1/(p−1)(t(p−2)/(p−1)− s(p−2)/(p−1))
(3.16)

for r0 ≤ s≤ t. Letting t→ +∞ in (3.16), we obtain a contraction.
If N = 2, p = 2, proceeding similarly as above implies that

ω1(s) > ω1(s)−ω1(t) > (−M)
[

ln(t)− ln(s)
]

(3.17)

for r0 ≤ s≤ t. Letting t→ +∞ in the inequality, we obtain a contraction.
Finally, if N >max{p,q} ≥ 2 holds, we know from Theorem 2.1 that system (3.14) has

no positive solutions. We conclude that (3.11) is true. It follows from (3.11) that there
exists t1 ∈ (0,T) such that for any t ∈ (t1,T), we have

0≤ ut(0, t)
γ(t)p+(p−1)τ1

+
vt(0, t)

γ(t)q+(q−1)τ2
≤ ut(0, t)
u(0, t)(1+δ1)/δ1

+
vt(0, t)

v(0, t)(1+δ2)/δ2
. (3.18)

Integrating (3.18) on (t,s)⊆ (t1,T) and then letting s→ T , we obtain

c(T − t)≤ δ1u(0, t)−1/δ1 + δ2v(0, t)−1/δ2 . (3.19)

By using condition (vi) in (3.19), we have

u(x, t)≤ u(0, t)≤ c1(T − t)−δ1 for any (x, t)∈QT\Qt1 . (3.20)

In the same way, we have the blow-up estimate for v. The proof is complete. �

Remark 3.2. From the condition in Theorem 3.1, we fell that the condition (vii) is rather
strong. We guess that the condition (vii) may be removed and a better result can be ob-
tained:

u(0, t)=O((T − t)−δ1
)
, v(0, t)=O((T − t)−δ2

)
, as t −→ T. (3.21)

Further discussion on this problem will be made.

4. Local existence and uniqueness

In this section, we study the global existence of (1.1) under appropriate hypotheses. From
the point of physics, we need only to consider the nonnegative solutions. Moreover, if we
assume u0(x),v0(x)≥ 0, by Lemma 4.5 (proved later), we can show that (u(x, t),v(x, t))≥
0 a.e. in Ω× (0,T). Since (1.1) are the degenerate parabolic equations for |∇u| = 0,
|∇v| = 0, one cannot expect the existence of classical solution of (1.1). As it is now well
known that degenerate equations need not posses classical solutions, most of studies of
p-Laplacian equations concerned with weak solutions (see [7, 9]). We begin by giving a
precise denition of a weak solution for problem (1.1). Let QT =Ω× (0,T), T > 0,

Ψ≡ {ψ(x, t)∈ C1,1(QT
)
; ψ(x,T)= 0, ψ(x, t)|∂Ω = 0

}
. (4.1)



Z. Cui and Z. Yang 9

Definition 4.1. A pair of function (u(x, t),v(x, t)) is called a sub-(or super-) solutions of

(1.1) on QT if and only if (u,v) ∈ C(0,T ;L∞(Ω))∩ Lp(0,T ;W
1,p
0 (Ω)), (ut,vt) ∈ L2(0,T ;

L2(Ω)), (u(x; t);v(x; t))≥ (≤)0, (u(x, t),v(x, t))|t=0 ≥ (≤)(u0(x),v0(x)), and

∫

Ω
u
(
x, t2

)
ψ1
(
x, t2

)
dx−

∫

Ω
u
(
x, t1

)
ψ1
(
x, t1

)
dx

≥ (≤)
∫ t2

t1

∫

Ω
uψ1 tdxdt−

∫ t2

t1

∫

Ω
|∇u|p−2∇u∇ψ1dxdt+

∫ t2

t1

∫

Ω
ψ1(x, t)

∫

Ω
vα(x, t)dxdt,

∫

Ω
v
(
x, t2

)
ψ2
(
x, t2

)
dx−

∫

Ω
v
(
x, t1

)
ψ2
(
x, t1

)
dx

≥ (≤)
∫ t2

t1

∫

Ω
vψ2 tdxdt−

∫ t2

t1

∫

Ω
|∇v|q−2∇v∇ψ2dxdt+

∫ t2

t1

∫

Ω
ψ2(x, t)

∫

Ω
uβ(x, t)dxdt

(4.2)

hold for all 0 < t1 < t2 < T , where ψi(x, t)∈Ψ (i= 1,2). A weak solution of (1.1) is a vector
function which is both a subsolution and a supersolution of (1.1). For every T <∞, if
(u,v) is a solution of (1.1), we say (u,v) is global.

Remark 4.2. Clearly, every nonnegative classical (sub-, super-) solution of (1.1) is a weak
(sub-, super-) solution of (1.1) in the sense of Definition 4.1.

By a modification of the method given in [7], we obtain the following results.

Theorem 4.3 (local existence). There exists a T0 such that (1.1) admit a solution (u,v)∈
C(0,T0;L∞(Ω))∩Lp(0,T0;W

1,p
0 (Ω)).

Theorem 4.4 (uniqueness). The solution (u,v) of (1.1) is uniqueness determined by the

initial data (u0,v0)∈ L∞(Ω)∩W1,p
0 (Ω).

In order to prove Theorem 4.3-Theorem 4.4, as in [7], we establish a comparison
lemma, which will be used in later proofs and may show an independent interest.

Lemma 4.5. Suppose (u(x, t),v(x, t)) and (u(x, t),v(x, t)) are super and lower solutions of
(1.1), respectively, then (u(x, t),v(x, t))≤ (u(x, t),v(x, t)) a.e. in QT .

Proof of this lemma is similar as in [7] only need a little modification, we omit it here.

Proof of Theorem 4.3. Consider the following approximate problems for (1.1):

unt −div
((∣∣∇un

∣
∣2

+ ε1n
)(p−2)/2∇un

)=
∫

Ω
vαn(x, t)dx, (x, t)∈Ω× (0,T),

vnt −div
((∣∣∇vn

∣
∣2

+ ε2n
)(q−2)/2∇vn

)=
∫

Ω
u
β
n(x, t)dx, (x, t)∈Ω× (0,T),

un(x, t)= vn(x, t)= 0, (x, t)∈ ∂Ω× (0,T],

un(x,0)= uε1n
0 (x), vn(x,0)= vε2n

0 (x), x ∈Ω.

(4.3)
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Here ε1n, ε2n are strictly decreasing sequence, 0 < ε1n, ε2n < 1, and ε1n,ε2n → 0, as n→∞.
(uε1n

0 ,vε2n
0 ) ∈ C∞0 (Ω) are approximation functions for the initial data (u0(x),v0(x)) such

that |uε1n
0 |L∞(Ω) ≤ |u0|L∞(Ω), |vε2n

0 |L∞(Ω) ≤ |v0|L∞(Ω), |∇uε1n
0 |L∞(Ω) ≤ |∇u0|L∞(Ω), |∇vε2n

0 |L∞(Ω)

≤ |∇v0|L∞(Ω) for all εin (i= 1,2), and (uε1n
0 ,vε2n

0 )→ (u0,v0) strongly in W
1,p
0 (Ω).

Equations (4.3) are a nondegenerate problem for each fixed εin (i = 1,2). It is easy
to prove that it admits a unique classic solution (un,vn) by using Schauder’s fixed-point
theorem.

To find the limit function (u(x, t),v(x, t)) of the sequence (un(x, t),vn(x, t)), we divide
our proof into four steps.
Step 1. There exist a small T0 > 0 and a constant M > 0, independent of n, such that

∣
∣un

∣
∣
L∞(QT0 ) ≤M,

∣
∣vn
∣
∣
L∞(QT0 ) ≤M. (4.4)

To this end, we consider the ordinary differential equation:

K ′(t)= |Ω|(K(t) + 1
) p̂

,

K(0)=max
{

max
x∈Ω

u0(x),max
x∈Ω

v0(x)
}

,
(4.5)

where p̂ =max{α,β}. It is obvious that there exists T0 > 0, such that (4.5) has a bounded
solution K(t) > 0 on [0,T0]. By Lemma 4.5, we get u(x, t) ≤ K(t) ≤M, v(x, t) ≤ K(t) ≤
M, where M =max{K(t) | t ∈ [0,T0]}. We draw the conclusion.
Step 2. There exist constants M1,M2 > 0, independent of n, such that

∣
∣∇un

∣
∣
Lp(QT0 ) ≤M1,

∣
∣∇vn

∣
∣
Lq(QT0 ) ≤M2. (4.6)

In fact, multiplying (4.3) by un, vn and integrating over QT0 , we obtain

1
2

∫

Ω
u2
n

(
x,T0

)
dx+

∫ T0

0

∫

Ω

(∣∣∇un
∣
∣2

+ ε1n
)(p−2)/2∣∣∇vn

∣
∣2
dxdt

= 1
2

∫

Ω

(
uε1n

0 (x)
)2
dx+

∫ T0

0

(∫

Ω
un(x, t)dx

)(∫

Ω
vαn(x, t)dx

)
dt,

1
2

∫

Ω
v2
n

(
x,T0

)
dx+

∫ T0

0

∫

Ω

(∣∣∇vn
∣
∣2

+ ε2n
)(q−2)/2∣∣∇vn

∣
∣2
dxdt

= 1
2

∫

Ω

(
vε2n

0 (x)
)2
dx+

∫ T0

0

(∫

Ω
vn(x, t)dx

)(∫

Ω
u
β
n(x, t)dx

)
dt.

(4.7)

By |uε1n
0 |L∞(Ω) ≤ |u0|L∞(Ω), |vε2n

0 |L∞(Ω) ≤ |v0|L∞(Ω) and (4.4), we get

∫ T0

0

∫

Ω

∣
∣∇un

∣
∣pdxdt ≤ 1

2

∣
∣u0

∣
∣2
L∞(Ω) +T0|Ω|2Mα+1,

∫ T0

0

∫

Ω

∣
∣∇vn

∣
∣qdxdt ≤ 1

2

∣
∣v0
∣
∣2
L∞(Ω) +T0|Ω|2Mβ+1.

(4.8)
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Step 3. There exist constants M3,M4 > 0, independent of n, such that

∣
∣unt

∣
∣
L2(QT0 ) ≤M3,

∣
∣vnt

∣
∣
L2(QT0 ) ≤M4.

(4.9)

To do so, multiplying (4.3) by unt, vnt and integrating over QT0 , we have

∫ T0

0

∫

Ω
u2
nt(x, t)dxdt =−

∫ T0

0

∫

Ω

(∣∣∇un
∣
∣2

+ ε1n
)(p−2)/2∇un∇untdxdt

+
∫ T0

0

(∫

Ω
un(x, t)dx

)(∫

Ω
vαn(x, t)dx

)
dt,

∫ T0

0

∫

Ω
v2
nt(x, t)dxdt =−

∫ T0

0

∫

Ω

(∣∣∇vn
∣
∣2

+ ε2n
)(q−2)/2∇vn∇vntdxdt

+
∫ T0

0

(∫

Ω
vn(x, t)dx

)(∫

Ω
u
β
n(x, t)dx

)
dt.

(4.10)

By Hölder inequality, |uε1n
0 |L∞(Ω) ≤ |u0|L∞(Ω), |vε2n

0 |L∞(Ω) ≤ |v0|L∞(Ω), and (4.6), we yield

∫ T0

0

∫

Ω
u2
nt(x, t)dxdt ≤−1

2

∫

Ω

(∣∣∇un
∣
∣2

+ ε1n
)p/2

dx+
1
2

∫

Ω

(∣∣∇uε1n
0

∣
∣2

+ ε1n)p/2dx

+ |Ω|(α−1)/α
∫ T0

0

(∫

Ω
vαndx

)(α+1)/α

dt ≤M′
3,

∫ T0

0

∫

Ω
v2
nt(x, t)dxdt ≤−1

2

∫

Ω

(∣∣∇vn
∣
∣2

+ εvn
)q/2

dx+
1
2

∫

Ω

(∣∣∇vε2n
0

∣
∣2

+ ε2n)q/2dx

+ |Ω|(β−1)/β
∫ T0

0

(∫

Ω
u
β
ndx

)(β+1)/β

dt ≤M′
4.

(4.11)

Therefore, by virtue of (4.4)–(4.9) and the Ascoli-Arzelá theorem, we can choose subse-
quences, still denoted by {un}, {vn} for convenience, such that

un −→ u, vn −→ v, a.e. for (x, t)∈Ω× (0,T0
)
, (4.12)

∇un −→∇u, ∇vn −→∇v, weakly in Lp
(
0,T0;Lp(Ω)

)
, (4.13)

unt −→ ut, vnt −→ vt, weakly in L2(0,T0;L2(Ω)
)
, (4.14)

∣
∣∇un

∣
∣p−2(

un
)
xi
−→ ω1i,

∣
∣∇vn

∣
∣q−2(

vn
)
xi
−→ ω2i,

weakly in Lp/(p−1)(0,T0;Lp/(p−1)(Ω)
)
. (4.15)
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Step 4. We show that ω1i = |∇un|p−2uxi , ω2i = |∇vn|q−2vxi . Multiplying (4.3) by ψ(un−
u), ψ(vn−u) and integrating over QT0 , we have

∫ T0

0

∫

Ω
ψ
(
un−u

)
untdxdt+

∫ T0

0

∫

Ω
ψ
(∣∣∇un

∣
∣2

+ ε1n
)(p−2)/2∇un∇

(
un−u

)
dxdt

+
∫ T0

0

∫

Ω

(
un−u

)(∣∣∇un
∣
∣2

+ ε1n
)(p−2)/2∇un∇ψdxdt

=
∫ T0

0

∫

Ω
ψ
(
un−u

)
(∫

Ω
vαn(x, t)dx

)
dxdt,

∫ T0

0

∫

Ω
ψ
(
vn− v

)
vntdxdt+

∫ T0

0

∫

Ω
ψ
(∣∣∇vn

∣
∣2

+ ε2n
)(q−2)/2∇vn∇

(
vn− v

)
dxdt

+
∫ T0

0

∫

Ω

(
vn− v

)(∣∣∇vn
∣
∣2

+ ε2n
)(q−2)/2∇vn∇ψdxdt

=
∫ T0

0

∫

Ω
ψ
(
vn− v

)
(∫

Ω
u
β
n(x, t)dx

)
dxdt.

(4.16)

Using (4.4), (4.12), and (4.14), we can get

lim
n→∞

∫ T0

0

∫

Ω
ψ
∣
∣∇un

∣
∣p−2∇un∇

(
un−u

)
dxdt = 0,

lim
n→∞

∫ T0

0

∫

Ω
ψ
∣
∣∇vn

∣
∣q−2∇vn∇

(
vn− v

)
dxdt = 0,

(4.17)

where ψ ∈ C1,1
0 (QT0 ),ψ ≥ 0. The left is the same as [8, Theorem 2.1]. Therefore, we com-

plete our proof by a standard limiting process. �

Proof of Theorem 4.4. Assume that (u1,v1) and (u2,v2) are solutions of (1.1), using
Lemma 4.5 repeatedly, we can get (u1,v1)= (u2,v2) a.e. in Ω× [0,T0]. �

5. Global existence and blow-up

In this section, we will discuss the global existence and blow-up in finite time of the
solution for system (1.1). Our approach in a combination principle and super- and sub-
techniques which are similar as in [7]. Firstly, we suppose p,q > 2.

Theorem 5.1 (global existence). Assume that one of the following conditions hold:
(1) α < p− 1 and β < q− 1;
(2) α= p− 1, β = q− 1, and |Ω| is sufficiently small;
(3) α > p− 1, β > q− 1, and u0(x), v0(x) are sufficiently small.

Then the solution of system (1.1) exists globally.
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Theorem 5.2 (blow-up in finite time). Assume that
(i) α= p− 1, β = q− 1, and |Ω| is sufficiently large or

(ii) α > p− 1, β > q− 1, and u0(x), v0(x) are sufficiently large.

Then the solution of system (1.1) blows up in finite time.

Proof of Theorem 5.1. Let φ(x) be the solution of the elliptic problem

−div
(|∇φ|p−2∇φ)= 1, x ∈Ω, φ(x)= 0, x ∈ ∂Ω. (5.1)

Then we have φ(x)≥ 0 on Ω, ∂φ(x)/∂η < 0 on the boundary ∂Ω, and there exists M > 0
such that maxx∈Ωφ(x)=M (see [21, 22]).

Let (u,v)= (aφ(x),aψ(x)), where a > 0 will be determined later.
(1) In the case α < p − 1 and β < q − 1, we can choose a > max{(|Ω|Mα)1/(p−α−1),

(|Ω|Mβ)1/(q−β−1), supx∈Ωu0(x)/φ(x), supx∈Ω v0(x)/ψ(x)}, since ∂φ(x)/∂η,∂ψ(x)/∂η < 0
on ∂Ω. Thus we have

ut −div
(|∇u|p−2∇u)= ap−1 ≥ aαMα|Ω| ≥ aα

∫

Ω
ψαdx,

vt −div
(|∇v|q−2∇v)= aq−1 ≥ aβMβ|Ω| ≥ aβ

∫

Ω
φβdx.

(5.2)

Noticing u(x, t) = 0, v(x, t) = 0 on ∂Ω× (0,+∞) and u(x,0) ≥ u0(x), v(x,0) ≥ v0(x) in
Ω, we get u(x, t) ≤ u(x, t), v(x, t) ≤ v(x, t) in Ω× (0,+∞) by Lemma 4.5. Hence, u(x, t),
v(x, t) exist globally.

(2) In this case, we can choose a > {supx∈Ωu0(x)/φ(x), supx∈Ω v0(x)/φ(x)}, then (5.2)
can be proved that |Ω| ≤min{1/Mα,1/Mβ}. The left is the same as in (1).

(3) In this case, to insure inequality (5.2) holds, we need only that choose a <
min{(|Ω|Mα)1/(p−α−1), (|Ω|Mβ)1/(q−β−1)}, thus for the fixed a and sufficiently small u0(x),
v0(x), we choose a > max{supx∈Ωu0(x)/φ(x), supx∈Ω v0(x)/φ(x)}. The left is the same as
in (1). �

Proof of Theorem 5.2. (i) Without lose of generality, we can suppose that 0 ∈Ω. We get
our conclusion by a small modification of the results of [8, Section 4].

(ii) To prove u(x, t) and v(x, t) blow-up in finite time, according to sub- and superso-
lution, we need only to find blowing up subsolutions. The proof is similar, as here we use
an argument as done in [5, 7].

Let φ ∈ C1(Ω), φ(x) ≥ 0, φ(x) �≡ 0, and φ(x)|∂Ω = 0. By translation, we may assume
without loss of generality that 0∈Ω and φ(0) > 0. Set

z1(x, t)= 1
(T − t)γ1

V
( |x|

(T − t)σ1

)
, z2(x, t)= 1

(T − t)γ2
V
( |x|

(T − t)σ2

)
(5.3)

with

V(y)=
(

1 +
A

2
− y2

2A

)

+
, y ≥ 0, (5.4)
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where γ1,γ2,σ1,σ2 > 0, A > 1, and 0 < T < 1 are to be determined later. Note that

suppz1(·, t)= B(0,R(T − t)σ1
)⊂ B(0,RTσ1

)⊂Ω,

suppz2(·, t)= B(0,R(T − t)σ2
)⊂ B(0,RTσ2

)⊂Ω

(5.5)

for sufficiently small T > 0 with R= (A(2 +A))1/2.
Denote y1 = |x|/(T − t)σ1 , y2 = |x|/(T − t)σ2 , a series of computation shows

zi,t(x, t)= γi
(
V
(
yi
)

+ σi yiV ′(yi
))

(T − t)γi+1 , −	zi(x, t)= N/A

(T − t)γi+2σi
, i= 1,2. (5.6)

As in [7], we have

∣
∣div

(∣∣∇z1
∣
∣p−2∇z1

)∣∣≤ N(p− 1)
(

diam(Ω)
)p−2

A(T − t)(γ1+2σ1)(p−1) =Q1. (5.7)

In the same way, we have

∣
∣div

(∣∣∇z2
∣
∣q−2∇z2

)∣∣≤ N(q− 1)
(

diam(Ω)
)q−2

A(T − t)(γ2+2σ2)(q−1) =Q2. (5.8)

If 0≤ yi ≤ A, we have 1≤V(yi)≤ 1 +A/2 and V ′(yi)≤ 0, i= 1,2, then

∫

Ω
zα2 (x, t)dx = 1

(T − t)γ2α

∫

B(0,R(T−t)σ2 )
Vα
( |x|

(T − t)σ2

)
≥ M̃1

(T − t)γ2α−Nσ2
,

∫

Ω
z
β
1 (x, t)dx = 1

(T − t)γ1β

∫

B(0,R(T−t)σ1 )
Vβ
( |x|

(T − t)σ1

)
≥ M̃2

(T − t)γ1β−Nσ1
,

(5.9)

where M̃1 =
∫
B(0,R)V

α(|ξ|)dξ, M̃2 =
∫
B(0,R)V

β(|ξ|)dξ. Hence,

z1,t −div
(∣∣∇z1

∣
∣p−2∇z1

)−
∫

Ω
zα2dx ≤

γ1(1 +A/2)
(T − t)γ1+1 +Q1− M̃1

(T − t)γ2α−Nσ2
, (5.10)

z2,t −div
(∣∣∇z2

∣
∣q−2∇z2

)−
∫

Ω
z
β
1dx ≤

γ2(1 +A/2)
(T − t)γ2+1 +Q2− M̃2

(T − t)γ1β−Nσ1
. (5.11)
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If yi > A, we have V(yi)≤ 1 and V ′(yi)≤−1, i= 1,2, then

z1,t −div
(∣∣∇z1

∣
∣p−2∇z1

)−
∫

Ω
zα2dx ≤

γ1− σ1A

(T − t)γ1+1 +Q1, (5.12)

z2,t −div
(∣∣∇z2

∣
∣q−2∇z2

)−
∫

Ω
z
β
1dx ≤

γ2− σ2A

(T − t)γ2+1 +Q2. (5.13)

Since p,q > 2 and α > p− 1, β > q− 1, we can choose σ1,σ2 > 0, which is sufficiently small,
θ > 0, and

2σ1(p− 1) +Nσ1

α− p+ 1
<

1− 2σ1(p− 1)
p− 2

,
2σ2(p− 1) +Nσ2

β− q+ 1
<

1− 2σ2(q− 1)
q− 2

,

(5.14)

which satisfy

0 < γ1 <
1− 2σ1(p− 1)

p− 2
, 0 < γ2 <

1− 2σ2(q− 1)
q− 2

, (5.15)

then we have

γ2α−Nσ2 > γ1 + 1 >
(
γ1 + 2σ1

)
(p− 1), γ1β−Nσ1 > γ2 + 1 >

(
γ2 + 2σ2

)
(q− 1).

(5.16)

Select A >max{1,γ1/σ1,γ2/σ2}, then for T > 0 sufficiently small, (5.10)–(5.13) imply that

z1,t −div
(∣∣∇z1

∣
∣p−2∇z1

)−
∫

Ω
zα2dx ≤ 0, z2,t −div

(∣∣∇z2
∣
∣q−2∇z2

)−
∫

Ω
z
β
1dx ≤ 0,

(5.17)

in which (x, t)∈Ω× (0,T).
Since φ(0) > 0 and φ are continuous, there exist two positive numbers ρ and ε, such

that φ(x)≥ ε for all x ∈ B(0,ρ)⊂Ω. Taking T small enough such that B(0,RTσi)⊂ B(0,ρ)
(i = 1,2), and hence zi ≤ 0 on Ω× (0,T). From (5.5), it follows that z1(x,0) ≤Mφ(x),
z2(x,0)≤Mφ(x) for sufficiently largeM. By Lemma 4.5, we have (z1,z2)≤ (u,v) provided
that (u0(x),v(0)) ≥ (Mφ(x),Mφ(x)) and (u,v) can exist no later than t = T . This shows
that (u,v) blows up in finite time for large initial data. �
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