Research Article

On Relative Homotopy Groups of Modules

C. Joanna Su

Received 10 May 2007; Accepted 16 August 2007
Recommended by Mónica Clapp

In his book "Homotopy Theory and Duality," Peter Hilton described the concepts of relative homotopy theory in module theory. We study in this paper the possibility of parallel concepts of fibration and cofibration in module theory, analogous to the existing theorems in algebraic topology. First, we discover that one can study relative homotopy groups, of modules, from a viewpoint which is closer to that of (absolute) homotopy groups. Then, through the study of various cases, we learn that the classic fibration/cofibration relation does not come automatically. Nonetheless, the ability to see the relative homotopy groups as absolute homotopy groups, in a stronger sense, promises to justify our ultimate search.

Copyright © 2007 C. Joanna Su. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In [1], Peter Hilton developed homotopy theory in module theory, parallel to the existing homotopy theory in topology. However, unlike homotopy theory in topology, there are two types of homotopy theory in module theory, the injective theory and the projective theory. They are dual but not isomorphic. In this paper, we emphasize the injective relative homotopy groups (of modules) and approach the proofs in a way that does not refer to elements of sets, so one can proceed with the dual, in projective relative homotopy theory, without further arguments.

During the search for the analogy between the relative homotopy groups in module theory and those in topology, we realize that the (injective) relative homotopy group, $\bar{\pi}_{n}(A, \beta), n \geq 1$, for a map $\beta: B_{1} \rightarrow B_{2}$ has a structure which is fairly similar to an (injective) absolute homotopy group, namely, $\bar{\pi}_{n}(A, \operatorname{coker}\{\iota, \beta\})$, where $\iota: B_{1} \hookrightarrow C B_{1}$ is the
inclusion of B_{1} into an injective container $C B_{1}$ that induces a short exact sequence:

$$
\begin{equation*}
B_{1} \xrightarrow{\{\iota, \beta\}} C B_{1} \oplus B_{2} \longrightarrow \operatorname{coker}\{\iota, \beta\} . \tag{1.1}
\end{equation*}
$$

Thereafter, we analyze the phenomena related $\bar{\pi}_{n}(A, \beta)$ and $\bar{\pi}_{n}(A, \operatorname{coker}\{\iota, \beta\})$ through cases. As expected, the two are not always isomorphic; nevertheless, the fact that all relative homotopy groups are isomorphic to certain "strong (absolute) homotopy groups" gives rise to the possibility of developing parallel concepts of fibration and cofibration in projective and injective homotopy theories, respectively, in module theory, corresponding to the existing fibration/cofibration relation in algebraic topology.

2. Relative homotopy groups-from a different viewpoint

In the injective relative homotopy theory of modules, for a given Λ-module homomorphism $\beta: B_{1} \rightarrow B_{2}$ and a given Λ-module A, one computes the nth relative homotopy group, $\bar{\pi}_{n}(A, \beta), n \geq 1$, through the diagram

where ι_{0} is the inclusion map which embeds A into an injective container $C A$, and ϵ_{1} is the quotient map to ΣA, called the suspension of A, as the quotient. We say that the map $(\rho, \sigma): \iota_{n-1} \rightarrow \beta$ is i-nullhomotopic, denoted $(\rho, \sigma) \simeq_{i} 0$, if it can be extended to an injective container of ι_{n-1}, and that $\bar{\pi}_{n}(A, \beta)=\operatorname{Hom}\left(\iota_{n-1}, \beta\right) / \operatorname{Hom}_{0}\left(\iota_{n-1}, \beta\right)$, where $\operatorname{Hom}\left(\iota_{n-1}, \beta\right)$ is the abelian group of maps of ι_{n-1} to β, and $\operatorname{Hom}_{0}\left(\iota_{n-1}, \beta\right)$ the subgroup consisting of i-nullhomotopic maps.

The computation of such diagrams, as (2.1), is rather challenging at times, especially during the search for suitable definitions of fibration and cofibration in module theory, analogous to those in topology. Therefore we examine the diagram, of relative homotopy groups, from another viewpoint: First assuming that the map $\beta: B_{1} \rightarrow B_{2}$ is monomorphic so (2.1) is essentially

In (2.2), each pair of maps $(\rho, \sigma): \iota_{n-1} \rightarrow \beta$ induces a map $\sigma^{\prime}: \Sigma^{n} A \rightarrow \operatorname{coker} \beta$. We define $\operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker} \beta\right)$ to be the subgroup of $\operatorname{Hom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker} \beta\right)$ consisting of such induced maps; it gives the relative homotopy group $\bar{\pi}_{n}(A, \beta)$ an alternative aspect.

Theorem 2.1. Suppose given a monomorphism $\beta: B_{1} \hookrightarrow B_{2}$. For each A, consider the diagram

where $\iota_{0}: A \hookrightarrow C A$ is the inclusion of A into an injective container $C A, \epsilon_{1}$ the quotient map with ΣA, called the suspension of A, as the quotient, and κ the expected quotient map. Then,

$$
\begin{equation*}
\bar{\pi}_{n}(A, \beta) \cong \operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker} \beta\right) / \kappa_{*} l_{n}^{*} \operatorname{Hom}_{\Lambda}\left(C \Sigma^{n} A, B_{2}\right), \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker} \beta\right)
\end{aligned}
$$

To prepare for the proof of Theorem 2.1, we first state a couple of existing propositions. Proposition 2.2 ([2]). In $\operatorname{Hom}\left(\iota_{n-1}, \beta\right)$, when β is monomorphic, $(\rho, \sigma) \simeq_{i} 0$ if and only if $\sigma=\beta \theta+\chi \iota_{n} \epsilon_{n}$ for some $\theta: C \Sigma^{n-1} A \rightarrow B_{1}$ and $\chi: C \Sigma^{n} A \rightarrow B_{2} ;$

Proposition 2.3 [1]. In the commutative diagram of short exact sequences:

α factors through μ if and only if γ factors through ϵ^{\prime}.
Proof of Theorem 2.1. We define

$$
\begin{equation*}
\phi: \bar{\pi}_{n}(A, \beta) \rightarrow \operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker} \beta\right) / \kappa_{*} \iota_{n}^{*} \operatorname{Hom}_{\Lambda}\left(C \Sigma^{n} A, B_{2}\right) \tag{2.8}
\end{equation*}
$$

by $\phi([(\rho, \sigma)])=\left[\sigma^{\prime}\right]$ and show that ϕ is an isomorphism; first, suppose given a $[(\rho, \sigma)] \in$ $\bar{\pi}_{n}(A, \beta)$ and assume that $(\rho, \sigma) \simeq_{i} 0$. By Proposition 2.2, $\sigma=\beta \theta+\chi \iota_{n} \epsilon_{n}$ for some θ : $C \Sigma^{n-1} A \rightarrow B_{1}$ and $\chi: C \Sigma^{n} A \rightarrow B_{2}$. Thus, $\sigma^{\prime} \epsilon_{n}=\kappa \sigma=\kappa\left(\beta \theta+\chi \iota_{n} \epsilon_{n}\right)=\kappa \beta \theta+\kappa \chi \iota_{n} \epsilon_{n}=$ $\kappa \chi \iota_{n} \epsilon_{n}$, so $\sigma^{\prime}=\kappa \chi \iota_{n}$, due to the fact that ϵ_{n} is surjective. Hence, $\sigma^{\prime} \in \mathcal{K}_{*} \iota_{n}^{*} \operatorname{Hom}_{\Lambda}\left(C \Sigma^{n} A, B_{2}\right)$ and ϕ is well defined.

To prove ϕ monomorphic, suppose given a $[(\rho, \sigma)] \in \bar{\pi}_{n}(A, \beta)$ and assume that $\phi([(\rho, \sigma)])=\left[\sigma^{\prime}\right]=0 \in \operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker} \beta\right) / \kappa_{*} \iota_{n}^{*} \operatorname{Hom}_{\Lambda}\left(C \Sigma^{n} A, B_{2}\right)$. That is, $\sigma^{\prime}=\kappa \chi \iota_{n}$ for some $\chi: C \Sigma^{n} A \rightarrow B_{2}$, which means that σ^{\prime} factors through the map κ. Then, by an immediate corollary of Proposition 2.3, namely, $\gamma=0$ if and only if ξ factors through μ^{\prime}, there exists an $\eta: C \Sigma^{n-1} A \rightarrow B_{1}$ such that $\sigma-\chi \iota_{n} \epsilon_{n}=\beta \eta$;

Hence, $(\rho, \sigma) \simeq_{i} 0$ by Proposition 2.2, and thus ϕ is monomorphic.
Finally, the definition of $\operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker} \beta\right)$ yields that each σ^{\prime} is induced from a commutative square

Thus, ϕ is epimorphic.
We remark that one can interpret $\operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker} \beta\right)$ as the "reversible" subgroup of $\operatorname{Hom}_{\Lambda}\left(\Sigma^{n} A\right.$, $\left.\operatorname{coker} \beta\right)$; suppose given a map $\sigma^{\prime} \in \operatorname{Hom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker} \beta\right)$, we say that σ^{\prime} is reversible if it can pull back and produce a commutative diagram (2.2). Furthermore, it reveals a connection between the relative homotopy group $\bar{\pi}_{n}(A, \beta)$ and the (absolute) homotopy group $\bar{\pi}_{n}(A, \operatorname{coker} \beta)$.

Next, for the general case that $\beta: B_{1} \rightarrow B_{2}$ is arbitrary, we exploit the mapping cylinder of β and Theorem 2.5 follows immediately after Proposition 2.4.

Proposition 2.4 [2]. Suppose given maps $\beta: B_{1} \rightarrow B_{2}$ and $\iota: B_{1} \rightarrow C B_{1}$, where $C B_{1}$ is an injective container of B_{1} so that $\{\iota, \beta\}: B_{1} \mapsto C B_{1} \oplus B_{2}$ is a monomorphism, then, for arbitrary $A, \bar{\pi}_{n}(A,\{\iota, \beta\}) \cong \bar{\pi}_{n}(A, \beta)$ canonically, $n \geq 1$.

Theorem 2.5. Suppose given $\beta: B_{1} \rightarrow B_{2}$. For each A, consider the diagram

where $\iota_{0}: A \hookrightarrow C A$ is the inclusion of A into an injective container $C A, \epsilon_{1}$ is the quotient map with ΣA, called the suspension of A, as the quotient, $1: B_{1} \hookrightarrow C B_{1}$ is the inclusion of B_{1} into an injective container $C B_{1}$, and κ is the expected quotient map. Then,

$$
\begin{equation*}
\bar{\pi}_{n}(A, \beta) \cong \operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker}\{\iota, \beta\}\right) / \kappa_{*} \iota_{n}^{*} \operatorname{Hom}_{\Lambda}\left(C \Sigma^{n} A, C B_{1} \oplus B_{2}\right), \tag{2.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& \operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker}\{l, \beta\}\right)
\end{aligned}
$$

As we mentioned earlier, our argument does not involve references to elements of sets, so one can proceed with the dual, in projective relative homotopy theory, automatically. As an illustration, for a given Λ-module homomorphism $\alpha: A_{1} \rightarrow A_{2}$ and a given Λ module B, one alternatively views the projective relative homotopy group $\underline{\pi}_{n}(\alpha, B), n \geq 1$, as follows.

Theorem 2.6. Suppose given $\alpha: A_{1} \rightarrow A_{2}$. For each B, consider the diagram

where $\eta_{0}: P B \rightarrow B$ is the projection of a projective ancestor $P B$ onto B, μ_{1} is the inclusion map with ΩB, called the loop space of B, as the kernel, $\eta: P A_{2} \rightarrow A_{2}$ is the projection of a projective ancestor $P A_{2}$ onto A_{2}, and 1 is the expected inclusion map. Then,

$$
\begin{equation*}
\underline{\pi}_{n}(\alpha, B) \cong \operatorname{RHom}_{\Lambda}\left(\operatorname{ker}\langle\alpha, \eta\rangle, \Omega^{n} B\right) / \iota^{*} \eta_{n_{*}} \operatorname{Hom}_{\Lambda}\left(A_{1} \oplus P A_{2}, P \Omega^{n} B\right), \tag{2.15}
\end{equation*}
$$

where

$$
\begin{align*}
& \operatorname{RHom}_{\Lambda}\left(\operatorname{ker}\langle\alpha, \eta\rangle, \Omega^{n} B\right) \\
& \quad=\left\{\begin{array}{lll}
\rho\left|\in \operatorname{Hom}_{\Lambda}\left(\operatorname{ker}\langle\alpha, \eta\rangle, \Omega^{n} B\right)\right| \rho \mid \text { is the restriction } \\
\text { of a commutative square } & A_{1} \oplus P A_{2} \xrightarrow{\langle\alpha, \eta\rangle} A_{2} \\
& \rho \downarrow & { }_{\downarrow} \\
& P \Omega^{n-1} B \xrightarrow{\eta_{n-1}} & \Omega^{n-1} B
\end{array}\right\} . \tag{2.16}
\end{align*}
$$

3. Various cases for $\beta: B_{1} \rightarrow B_{2}$

Here, we have Theorem 2.5, which does not only give us an alternative way of computing relative homotopy groups for a map $\beta: B_{1} \rightarrow B_{2}$, but also shows a close connection between the (injective) relative homotopy groups $\bar{\pi}_{n}(A, \beta)$ and the (injective) homotopy groups $\bar{\pi}_{n}(A$, coker $\{\iota, \beta\})$. The latter indicates the possibility of developing analogous concepts of fibration and cofibration in module theory to those existing ones in algebraic topology. Before further commenting on this matter, we demonstrate a few calculations through analyzing these phenomena on $\operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A\right.$, $\left.\operatorname{coker}\{\iota, \beta\}\right)$.

First, we examine the case that the map $\beta: B_{1} \rightarrow B_{2}$ is the zero map. The homotopy exact sequence of a map $\beta: B_{1} \rightarrow B_{2}$ (see [1, Theorem 13.15]), thus,

$$
\cdots \xrightarrow{\partial} \bar{\pi}_{n}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \bar{\pi}_{n}\left(A, B_{2}\right) \xrightarrow{J} \bar{\pi}_{n}(A, \beta) \xrightarrow{\partial} \bar{\pi}_{n-1}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \cdots
$$

$$
\begin{equation*}
\xrightarrow{\partial} \bar{\pi}_{1}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \bar{\pi}_{1}\left(A, B_{2}\right) \xrightarrow{J} \bar{\pi}_{1}(A, \beta) \xrightarrow{\partial} \bar{\pi}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \bar{\pi}\left(A, B_{2}\right), \tag{3.1}
\end{equation*}
$$

yields a short exact sequence

$$
\begin{equation*}
\bar{\pi}_{n}\left(A, B_{2}\right) \stackrel{J}{\longleftrightarrow} \bar{\pi}_{n}(A, \beta) \xrightarrow{\partial} \bar{\pi}_{n-1}\left(A, B_{1}\right) \tag{3.2}
\end{equation*}
$$

as $\beta_{*}=0$. In addition, the special feature of the zero map suggests that (3.2) actually splits, thus, the relative homotopy group $\bar{\pi}_{n}(A, \beta)$ is the direct sum of the other two.

Theorem 3.1. Assume that $\beta: B_{1} \rightarrow B_{2}$ is the zero map. Then, for each A,

$$
\begin{equation*}
\bar{\pi}_{n}(A, \beta) \cong \bar{\pi}_{n-1}\left(A, B_{1}\right) \oplus \bar{\pi}_{n}\left(A, B_{2}\right), \text { canonically, } \quad n \geq 1 . \tag{3.3}
\end{equation*}
$$

Before proceeding with its proof, we note that the theorem can also be derived using the conventional method, namely, compute $\bar{\pi}_{n}(A, \beta)$ through the commutative square

Proof. In diagram (2.11), thus,

we first note that $\operatorname{coker}\{\iota, \beta\}=\operatorname{coker}\{\iota, 0\}=\Sigma B_{1} \oplus B_{2}$ and that $\kappa=\left\{\left\langle\kappa_{1}, 0\right\rangle,\left\langle 0,1_{B_{2}}\right\rangle\right\}$, where $\iota: B_{1} \hookrightarrow C B_{1}$ is the inclusion of B_{1} into an injective container $C B_{1}, \kappa_{1}$ is the quotient
map to ΣB_{1}, called the suspension of B_{1}, and $1_{B_{2}}$ is the identity map on B_{2}. So (2.11) is essentially

Moreover, it is the natural combination of the two commutative diagrams

Thus we define
$\phi: \operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker}\{\iota, \beta\}\right) / \kappa_{*} \iota_{n}^{*} \operatorname{Hom}_{\Lambda}\left(C \Sigma^{n} A, C B_{1} \oplus B_{2}\right) \longrightarrow \bar{\pi}_{n-1}\left(A, B_{1}\right) \oplus \bar{\pi}_{n}\left(A, B_{2}\right)$
by $\phi\left(\left[\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right\}\right]\right)=\left([\rho],\left[\sigma_{2}^{\prime}\right]\right)$ and show that ϕ is an isomorphism. First, suppose given $\left[\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right\}\right] \in \operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker}\{\iota, \beta\}\right) / \kappa_{*} \iota_{n}^{*} \operatorname{Hom}_{\Lambda}\left(C \Sigma^{n} A, C B_{1} \oplus B_{2}\right)$ and assume that $\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right\} \in \kappa_{*} \iota_{n}^{*} \operatorname{Hom}_{\Lambda}\left(C \Sigma^{n} A, C B_{1} \oplus B_{2}\right)$. Then there exists $\left\{\chi_{1}, \chi_{2}\right\}: C \Sigma^{n} A \rightarrow C B_{1} \oplus B_{2}$ such that $\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right\}=\kappa \circ\left\{\chi_{1}, \chi_{2}\right\} \circ \iota_{n}$. Equivalently, one has $\sigma_{1}^{\prime}=\kappa_{1} \circ \chi_{1} \circ \iota_{n}$ in (3.7) and $\sigma_{2}^{\prime}=1_{B_{2}} \circ$ $\chi_{2} \circ \iota_{n}=\chi_{2} \circ \iota_{n}$ in (3.8). The former says that the map σ_{1}^{\prime} factors through κ_{1}; therefore, by Proposition 2.3, $\rho=\theta \iota_{n-1}$ for some $\theta: C \Sigma^{n-1} A \rightarrow B_{1}$. Hence $[\rho]=0$ in $\bar{\pi}_{n-1}\left(A, B_{1}\right)$. The latter says that $\left[\sigma_{2}^{\prime}\right]=0$ in $\bar{\pi}_{n}\left(A, B_{2}\right)$. So ϕ is well defined.

To show that ϕ is monomorphic, suppose given

$$
\begin{equation*}
\left[\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right\}\right] \in \operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker}\{\iota, \beta\}\right) / \kappa_{*} \iota_{n}^{*} \operatorname{Hom}_{\Lambda}\left(C \Sigma^{n} A, C B_{1} \oplus B_{2}\right) \tag{3.10}
\end{equation*}
$$

and assume that $\phi\left(\left[\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right\}\right]\right)=\left([\rho],\left[\sigma_{2}^{\prime}\right]\right)=(0,0) \in \bar{\pi}_{n-1}\left(A, B_{1}\right) \oplus \bar{\pi}_{n}\left(A, B_{2}\right)$. That is, $\rho=$ $\gamma \iota_{n-1}$ for some $\gamma: C \Sigma^{n-1} A \rightarrow B_{1}$ and $\sigma_{2}^{\prime}=\eta \iota_{n}$ for some $\eta: C \Sigma^{n} A \rightarrow B_{2}$, respectively. The former says that the map ρ factors through ι_{n-1} in (3.7); therefore, by Proposition 2.3, $\sigma_{1}^{\prime}=\kappa_{1} \tau$ for some $\tau: \Sigma^{n} A \rightarrow C B_{1}$. Moreover, $\tau=\nu_{n}$ for some $\nu: C \Sigma^{n} A \rightarrow C B_{1}$, due to the facts that $C B_{1}$ is injective and that ι_{n} is monomorphic. Therefore, $\sigma_{1}^{\prime}=\kappa_{1} \nu_{n}$ and hence $\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right\}=\left\{\kappa_{1} \circ \nu \circ \iota_{n}, \eta \circ \iota_{n}\right\}=\left\{\kappa_{1} \circ \nu \circ \iota_{n}, 1_{B_{2}} \circ \eta \circ \iota_{n}\right\}=\kappa \circ\{\nu, \eta\} \circ \iota_{n} \in \kappa_{*} \iota_{n}^{*} \operatorname{Hom}_{\Lambda}$ $\left(C \Sigma^{n} A, C B_{1} \oplus B_{2}\right)$.

Finally, suppose given $\left([\rho],\left[\sigma_{2}^{\prime}\right]\right) \in \bar{\pi}_{n-1}\left(A, B_{1}\right) \oplus \bar{\pi}_{n}\left(A, B_{2}\right)$. We use the map ρ to complete a diagram (3.7)—since $C B_{1}$ is injective and ι_{n-1} is monomorphic, there exists a map
$\sigma_{1}: C \Sigma^{n-1} A \rightarrow C B_{1}$ such that $\iota \rho=\sigma_{1} \iota_{n-1}$ and σ_{1}^{\prime} is then the induced map:

Similarly, the map σ_{2}^{\prime} completes diagram (3.8), precisely,

Now ϕ is epimorphic because of the existence of the commutative diagram

Theorem 3.1 also implies a couple of immediate consequences.
Corollary 3.2. If $B_{1}=0$, then, for each $A, \bar{\pi}_{n}(A, \beta) \cong \bar{\pi}_{n}\left(A, B_{2}\right)$.
Corollary 3.3. If $B_{2}=0$, then, for each $A, \bar{\pi}_{n}(A, \beta) \cong \bar{\pi}_{n-1}\left(A, B_{1}\right)$.
The dual of Theorem 3.1 and its corollaries say that if we assume that $\alpha: A_{1} \rightarrow A_{2}$ is the zero map, then for each $B, \underline{\pi}_{n}(\alpha, B) \cong \underline{\pi}_{n-1}\left(A_{2}, B\right) \oplus \underline{\pi}_{n}\left(A_{1}, B\right)$ for $n \geq 1$. Specifically, if $A_{2}=0$, then $\underline{\pi}_{n}(\alpha, B) \cong \underline{\pi}_{n}\left(A_{1}, B\right)$, and if $A_{1}=0$, then $\underline{\pi}_{n}(\alpha, B) \cong \underline{\pi}_{n-1}\left(A_{2}, B\right)$. Notice that as $A_{2}=0$, one sees from diagram (2.14) in Theorem 2.6 that $\underline{\pi}_{n}(\alpha, B) \cong \underline{\pi}_{n}(\operatorname{ker}\langle\alpha, \eta\rangle, B)$; however, the isomorphism fails when $A_{1}=0$. As an example, consider the Λ-map $\alpha: 0 \rightarrow$ \mathbb{Z}, where Λ is the integral group ring of the finite cyclic group C_{k} with generator τ and \mathbb{Z} is regarded as a trivial C_{k}-module. Then,

$$
\underline{\pi}_{n}(\alpha, \mathbb{Z}) \cong \bar{\pi}_{n-1}(\mathbb{Z}, \mathbb{Z})= \begin{cases}\mathbb{Z} / k, & \text { for } n \text { odd } \tag{3.14}\\ 0, & \text { for } n \text { even }\end{cases}
$$

(See [3, Theorem 3.1].) On the other hand, the well-known projective resolution of \mathbb{Z}, thus,

where the maps ϵ, ρ, σ are the augmentation of $\mathbb{Z} C_{k}$, multiplication by $\tau-1$, and multiplication by $\tau^{k-1}+\cdots+\tau+1$, respectively, gives us that

$$
\underline{\pi}_{n}(\operatorname{ker}\langle\alpha, \eta\rangle, \mathbb{Z}) \cong \underline{\pi}_{n}(\Omega \mathbb{Z}, \mathbb{Z}) \cong \underline{\pi}_{n}\left(I C_{k}, \mathbb{Z}\right) \cong\left\{\begin{array}{ll}
\underline{\pi}\left(I C_{k}, \mathbb{Z}\right), & \text { for } n \text { even } \tag{3.16}\\
\underline{\pi}\left(I C_{k}, I C_{k}\right), & \text { for } n \text { odd }
\end{array}=0,\right.
$$

because all the maps in $\operatorname{Hom}_{\Lambda}\left(I C_{k}, \mathbb{Z}\right)$ and $\operatorname{Hom}_{\Lambda}\left(I C_{k}, I C_{k}\right)$ are p-nullhomotopic.
Similarly, as $B_{1}=0, \bar{\pi}_{n}(A, \beta) \cong \bar{\pi}_{n}(A, \operatorname{coker}\{1, \beta\})$; however, this position alters when $B_{2}=0$; consider the Λ-map $\beta: \mathbb{Q} / \mathbb{Z} \rightarrow 0$, where, again, Λ is the integral group ring of the finite cyclic group C_{k} and \mathbb{Q} / \mathbb{Z} is regarded as a trivial C_{k}-module. Then,

$$
\bar{\pi}_{n}(\mathbb{Q} / \mathbb{Z}, \beta) \cong \bar{\pi}_{n-1}(\mathbb{Q} / \mathbb{Z}, \mathbb{Q} / \mathbb{Z}) \cong \begin{cases}\mathbb{Z} / k, & \text { for } n \text { odd } \tag{3.17}\\ 0, & \text { for } n \text { even. }\end{cases}
$$

(See [3, Theorem 2.6].) For $\bar{\pi}_{n}(A, \operatorname{coker}\{\iota, \beta\})$, we adopt the injective resolution of \mathbb{Q} / \mathbb{Z} :

where $\Delta=\epsilon^{*}$ is the diagonal map, and obtain that

$$
\begin{align*}
\bar{\pi}_{n}(\mathbb{Q} / \mathbb{Z}, \operatorname{coker}\{l, \beta\}) & \cong \bar{\pi}_{n}(\mathbb{Q} / \mathbb{Z}, \Sigma \mathbb{Q} / \mathbb{Z}) \cong \bar{\pi}_{n}\left(\mathbb{Q} / \mathbb{Z}, I(\mathbb{Q} / \mathbb{Z})^{k}\right) \\
& \cong\left\{\begin{array}{ll}
\bar{\pi}\left(\mathbb{Q} / \mathbb{Z}, I(\mathbb{Q} / \mathbb{Z})^{k}\right), & \text { for } n \text { even } \\
\bar{\pi}\left(I(\mathbb{Q} / \mathbb{Z})^{k}, I(\mathbb{Q} / \mathbb{Z})^{k}\right), & \text { for } n \text { odd }
\end{array}=0,\right. \tag{3.19}
\end{align*}
$$

again because all the maps in $\operatorname{Hom}_{\Lambda}\left(\mathbb{Q} / \mathbb{Z}, I(\mathbb{Q} / \mathbb{Z})^{k}\right)$ and $\operatorname{Hom}_{\Lambda}\left(I(\mathbb{Q} / \mathbb{Z})^{k}, I(\mathbb{Q} / \mathbb{Z})^{k}\right)$ are i-nullhomotopic.

Therefore, as one may expect, the classic fibration/cofibration does not hold for arbitrary maps in module theory. The same phenomena arise again even when we generalize B_{1} and B_{2}, respectively, to injective modules.

Theorem 3.4. Let $\beta: B_{1} \rightarrow B_{2}$ be arbitrary. Then, for each A,
(i) if B_{1} is injective, then $\bar{\pi}_{n}(A, \beta) \cong \bar{\pi}_{n}\left(A, B_{2}\right) \cong \bar{\pi}_{n}(A$, coker $\{\iota, \beta\})$;
(ii) if B_{2} is injective, then $\bar{\pi}_{n}(A, \beta) \cong \bar{\pi}_{n-1}\left(A, B_{1}\right)$.

Proof. The first halves of both parts of the theorem, namely, $\bar{\pi}_{n}(A, \beta) \cong \bar{\pi}_{n}\left(A, B_{2}\right)$ when B_{1} is injective and $\bar{\pi}_{n}(A, \beta) \cong \bar{\pi}_{n-1}\left(A, B_{1}\right)$ when B_{2} is injective, come directly from the (injective) homotopy exact sequence of the map $\beta: B_{1} \rightarrow B_{2}$, thus,

$$
\begin{equation*}
\cdots \xrightarrow{\partial} \bar{\pi}_{n}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \bar{\pi}_{n}\left(A, B_{2}\right) \xrightarrow{J} \bar{\pi}_{n}(A, \beta) \xrightarrow{\partial} \bar{\pi}_{n-1}\left(A, B_{1}\right) \xrightarrow{\beta_{*}} \bar{\pi}_{n-1}\left(A, B_{2}\right) \xrightarrow{J} \cdots \tag{3.20}
\end{equation*}
$$

To prove that $\bar{\pi}_{n}(A, \beta) \cong \bar{\pi}_{n}(A$, coker $\{L, \beta\})$ when B_{1} is injective, one considers diagram (2.11), but now $C B_{1}=B_{1}$. Thus,

Since B_{1} is injective, the short exact sequence $B_{1} \stackrel{\{\iota, \beta\}}{\longrightarrow} B_{1} \oplus B_{2} \xrightarrow{\kappa}$ coker $\{\iota, \beta\}$ splits. Thus there exists a map $\nu: \operatorname{coker}\{\iota, \beta\} \rightarrow B_{1} \oplus B_{2}$ such that $\kappa \circ \nu=1_{\operatorname{coker}\{\iota, \beta\}}$. Applying Theorem 2.5, we define $\chi: \bar{\pi}_{n}(A, \beta) \rightarrow \bar{\pi}_{n}(A, \operatorname{coker}\{1, \beta\})$ by $\chi\left(\bar{\sigma}^{\prime}\right)=\left[\sigma^{\prime}\right]$ and show that χ is an isomorphism.

First, if $\bar{\sigma}^{\prime}=0$ in $\bar{\pi}_{n}(A, \beta)$, then there is $\theta: C \Sigma^{n} A \rightarrow B_{1} \oplus B_{2}$ such that $\sigma^{\prime}=\kappa \circ \theta \circ$ ι_{n}, which also means that $\chi\left(\bar{\sigma}^{\prime}\right)=\left[\sigma^{\prime}\right]=0$ in $\bar{\pi}_{n}(A, \operatorname{coker}\{\iota, \beta\})$. So χ is well defined. To show that χ is monomorphic, suppose given $\bar{\sigma}^{\prime} \in \bar{\pi}_{n}(A, \beta)$ such that $\chi\left(\bar{\sigma}^{\prime}\right)=\left[\sigma^{\prime}\right]=0$, then $\sigma^{\prime}=\omega \circ \iota_{n}$ for some $\omega: C \Sigma^{n} A \rightarrow \operatorname{coker}\{\iota, \beta\}$. Thus, $\sigma^{\prime}=\omega \circ \iota_{n}=1_{\text {coker }\{\iota \beta\}} \circ \omega \circ \iota_{n}=$ $\kappa \circ \nu \circ \omega \circ I_{n}$, which forces $\bar{\sigma}^{\prime}=0$. Thus, χ is monomorphic. Finally, the fact that every $\sigma^{\prime}: \Sigma^{n} A \rightarrow \operatorname{coker}\{l, \beta\}$ yields a commutative diagram

allows us to conclude that χ is epimorphic.
Examining the connection between $\bar{\pi}_{n}(A, \beta)$ and $\bar{\pi}_{n}(A, \operatorname{coker}\{\iota, \beta\})$, even for the rather simple case that B_{2} is injective, we find that, for a map $\sigma^{\prime}: \Sigma^{n} A \rightarrow \operatorname{coker}\{l, \beta\}$ to be related to an element in $\bar{\pi}_{n}(A, \beta), \sigma^{\prime}$ ought to be "reversible" in a diagram such as (2.11), that is, σ^{\prime} must guarantee the existence of a pair (ρ, σ), or equivalently, σ^{\prime} is the induced map of (ρ, σ). Conversely, for a pair $(\rho, \sigma): \iota_{n-1} \rightarrow\{\iota, \beta\}$ to be related to an element in $\bar{\pi}_{n}(A, \operatorname{coker}\{\iota, \beta\})$, the reversible σ^{\prime} ought to, simultaneously, factor through not only ι_{n} but also κ as (ρ, σ) is i-nullhomotopic. These lead precisely to our group
$\operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A, \operatorname{coker}\{\iota, \beta\}\right) / \kappa_{*} \iota_{n}^{*} \operatorname{Hom}_{\Lambda}\left(C \Sigma^{n} A, C B_{1} \oplus B_{2}\right)$ in Theorem 2.5. One can see this exact targeting through the following exemplification.

Theorem 3.5. Assume that $\beta: B_{1} \rightarrow B_{2}$ is epimorphic. If the inclusion map $B_{1} / \operatorname{ker} \beta \rightarrow$ $C B_{1} / \operatorname{ker} \beta$, where $C B_{1}$ is an injective container of B_{1}, induces a splitting short exact sequence, namely, $B_{1} / \operatorname{ker} \beta \rightarrow C B_{1} / \operatorname{ker} \beta \rightarrow C B_{1} / B_{1}$, then, for each A,

$$
\begin{equation*}
\bar{\pi}_{n}(A, \beta) \cong \bar{\pi}_{n-1}\left(A, B_{1}\right) \oplus \bar{\pi}_{n}\left(A, B_{2}\right), \quad n \geq 1 . \tag{3.23}
\end{equation*}
$$

Proof. First, one can show that, when $\beta: B_{1} \rightarrow B_{2}$ is epimorphic, coker $\{\iota, \beta\}$ is isomorphic to $C B_{1} / \operatorname{ker} \beta$. In addition, since the short exact sequence $B_{1} / \operatorname{ker} \beta \rightarrow C B_{1} / \operatorname{ker} \beta \rightarrow C B_{1} / B_{1}$ splits, $C B_{1} / \operatorname{ker} \beta \cong C B_{1} / B_{1} \oplus B_{1} / \operatorname{ker} \beta \cong C B_{1} / B_{1} \oplus B_{2}=\Sigma B_{1} \oplus B_{2}$. Hence, diagram (2.11) becomes

where $\kappa=\left\{\left\langle\kappa_{1}, 0\right\rangle,\left\langle 0,-1_{B_{2}}\right\rangle\right\}, \iota: B_{1} \hookrightarrow C B_{1}$ is the inclusion of B_{1} into an injective container $C B_{1}, \kappa_{1}$ is the quotient map to ΣB_{1}, called the suspension of B_{1}, and $1_{B_{2}}$ is the identity map on B_{2}. In addition, as diagram (3.6) in Theorem 3.1, (3.24) is the natural combination of the two commutative diagrams

Hereafter, the proof that $\phi: \bar{\pi}_{n}(A, \beta) \rightarrow \bar{\pi}_{n-1}\left(A, B_{1}\right) \oplus \bar{\pi}_{n}\left(A, B_{2}\right)$ defined by $\phi\left(\left[\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right\}\right]\right)$ $=\left([\rho],\left[\sigma_{2}^{\prime}\right]\right)$ is an isomorphism is mostly like that given for Theorem 3.1, only one notices that the argument for ϕ being epimorphic is quite subtle; suppose given $\left([\rho],\left[\sigma_{2}^{\prime}\right]\right) \in$ $\bar{\pi}_{n-1}\left(A, B_{1}\right) \oplus \bar{\pi}_{n}\left(A, B_{2}\right)$. First, we use the map ρ to assure the existence of a diagram (3.25)—since $C B_{1}$ is injective and ι_{n-1} is monomorphic, there is a map $\sigma_{1}: C \Sigma^{n-1} A \rightarrow$ $C B_{1}$ such that $\iota \rho=\sigma_{1} \iota_{n-1}$. Thus, we have the induced map σ_{1}^{\prime} in the diagram

Furthermore, the fact that the map $\beta: B_{1} \rightarrow B_{2}$ factors through $C B_{1}$ as

leads to the existence of a commutative square

The combination of the two yields a commutative diagram, thus,

with $\left\{\sigma_{1}^{\prime}, \theta\right\}$ being the induced map, where $\theta: \Sigma^{n} A \rightarrow B_{2}$, and $\sigma_{2}=-\theta \circ \epsilon_{n}$. Finally ϕ is epimorphic, due to the existence of the diagram

which is commutative because $\left\{\sigma_{1}, \sigma_{2}+\left(\theta-\sigma_{2}^{\prime}\right) \circ \epsilon_{n}\right\} \circ \iota_{n-1}=\left\{\sigma_{1} \circ \iota_{n-1}, \sigma_{2} \circ \iota_{n-1}\right\}=$ $\left\{\sigma_{1}, \sigma_{2}\right\} \circ \iota_{n-1}=\{\iota, \beta\} \circ \rho$ and $\kappa \circ\left\{\sigma_{1}, \sigma_{2}+\left(\theta-\sigma_{2}^{\prime}\right) \circ \epsilon_{n}\right\}=\left\{\kappa_{1} \circ \sigma_{1},-1_{B_{2}} \circ\left(\sigma_{2}+\left(\theta-\sigma_{2}^{\prime}\right) \circ\right.\right.$ $\left.\left.\left.\epsilon_{n}\right)\right\}=\left\{\kappa_{1} \circ \sigma_{1},-1_{B_{2}} \circ\left(\sigma_{2}+\theta \circ \epsilon_{n}-\sigma_{2}^{\prime} \circ \epsilon_{n}\right)\right\}=\left\{\sigma_{1}^{\prime} \circ \epsilon_{n}, \sigma_{2}^{\prime} \circ \epsilon_{n}\right)\right\}=\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right\} \circ \epsilon_{n}$.

It appears that the (injective) relative homotopy groups $\bar{\pi}_{n}(A, \beta)$ always have a close connection with the (injective) homotopy groups $\bar{\pi}_{n}(A, \operatorname{coker}\{1, \beta\})$. Precisely speaking, though $\bar{\pi}_{n}(A, \beta)$ may not always be isomorphic to $\bar{\pi}_{n}(A, \operatorname{coker}\{\iota, \beta\})$, it is indeed isomorphic to $\operatorname{RHom}_{\Lambda}\left(\Sigma^{n} A\right.$, coker $\left.\{L, \beta\}\right) / \kappa_{*} l_{n}^{*} \operatorname{Hom}_{\Lambda}\left(C \Sigma^{n} A, C B_{1} \oplus B_{2}\right)$, a group that proceeds from $\bar{\pi}_{n}(A, \operatorname{coker}\{l, \beta\})$ and has a structure similar to $\bar{\pi}_{n}(A, \operatorname{coker}\{l, \beta\})$ and which we tentatively call a strong (injective) homotopy group, $S \bar{\pi}_{n}(A, \operatorname{coker}\{l, \beta\})$. Should a suitable, general, definition become available, the concepts of cofibration in the injective homotopy theory of modules and, by duality, fibration in the projective homotopy theory of modules will both be within reach.

Acknowledgment

The author would like to express his deep appreciation to Professor Peter Hilton for proofreading the paper and for making valuable suggestions.

C. Joanna Su

References

[1] P. Hilton, Homotopy Theory and Duality, chapter 13, Gordon and Breach Science, New York, NY, USA, 1965.
[2] C. J. Su, "The category of long exact sequences and the homotopy exact sequence of modules," International Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 22, pp. 13831395, 2003.
[3] C. J. Su, "Some examples of nontrivial homotopy groups of modules," International Journal of Mathematics and Mathematical Sciences, vol. 27, no. 3, pp. 189-195, 2001.
C. Joanna Su: Department of Mathematics and Computer Science, Providence College, Providence, Rhode Island 02918, USA
Email address: jsu@providence.edu

