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In his book “Homotopy Theory and Duality,” Peter Hilton described the concepts of
relative homotopy theory in module theory. We study in this paper the possibility of
parallel concepts of fibration and cofibration in module theory, analogous to the exist-
ing theorems in algebraic topology. First, we discover that one can study relative homo-
topy groups, of modules, from a viewpoint which is closer to that of (absolute) homo-
topy groups. Then, through the study of various cases, we learn that the classic fibra-
tion/cofibration relation does not come automatically. Nonetheless, the ability to see the
relative homotopy groups as absolute homotopy groups, in a stronger sense, promises to
justify our ultimate search.
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1. Introduction

In [1], Peter Hilton developed homotopy theory in module theory, parallel to the existing
homotopy theory in topology. However, unlike homotopy theory in topology, there are
two types of homotopy theory in module theory, the injective theory and the projective
theory. They are dual but not isomorphic. In this paper, we emphasize the injective rela-
tive homotopy groups (of modules) and approach the proofs in a way that does not refer
to elements of sets, so one can proceed with the dual, in projective relative homotopy
theory, without further arguments.

During the search for the analogy between the relative homotopy groups in module
theory and those in topology, we realize that the (injective) relative homotopy group,
πn(A,β), n ≥ 1, for a map β : B1 → B2 has a structure which is fairly similar to an (in-
jective) absolute homotopy group, namely, πn(A, coker{ι,β}), where ι : B1↩CB1 is the
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inclusion of B1 into an injective container CB1 that induces a short exact sequence:

B1
{ι,β}

CB1⊕B2 coker{ι,β} . (1.1)

Thereafter, we analyze the phenomena related πn(A,β) and πn(A, coker{ι,β}) through
cases. As expected, the two are not always isomorphic; nevertheless, the fact that all rela-
tive homotopy groups are isomorphic to certain “strong (absolute) homotopy groups” gives
rise to the possibility of developing parallel concepts of fibration and cofibration in pro-
jective and injective homotopy theories, respectively, in module theory, corresponding to
the existing fibration/cofibration relation in algebraic topology.

2. Relative homotopy groups—from a different viewpoint

In the injective relative homotopy theory of modules, for a given Λ-module homomor-
phism β : B1 → B2 and a given Λ-module A, one computes the nth relative homotopy
group, πn(A,β), n≥ 1, through the diagram

0 Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ

ΣnA

kerβ B1
β

B2 cokerβ

(2.1)

where ι0 is the inclusion map which embeds A into an injective container CA, and ε1

is the quotient map to ΣA, called the suspension of A, as the quotient. We say that
the map (ρ,σ) : ιn−1 → β is i-nullhomotopic, denoted (ρ,σ) �i 0, if it can be extended
to an injective container of ιn−1, and that πn(A,β)=Hom(ιn−1,β)/Hom0(ιn−1,β), where
Hom(ιn−1,β) is the abelian group of maps of ιn−1 to β, and Hom0(ιn−1,β) the subgroup
consisting of i-nullhomotopic maps.

The computation of such diagrams, as (2.1), is rather challenging at times, especially
during the search for suitable definitions of fibration and cofibration in module theory,
analogous to those in topology. Therefore we examine the diagram, of relative homotopy
groups, from another viewpoint: First assuming that the map β : B1 → B2 is monomor-
phic so (2.1) is essentially

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ

ΣnA

σ ′

B1
β

B2
κ

cokerβ.

(2.2)

In (2.2), each pair of maps (ρ,σ) : ιn−1 → β induces a map σ ′ : ΣnA→ cokerβ. We de-
fine RHomΛ(ΣnA, cokerβ) to be the subgroup of HomΛ(ΣnA, cokerβ) consisting of such
induced maps; it gives the relative homotopy group πn(A,β) an alternative aspect.
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Theorem 2.1. Suppose given a monomorphism β : B1 � B2. For each A, consider the dia-
gram

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ

ΣnA

σ ′

ιn
CΣnA

B1
β

B2
κ

cokerβ

(2.3)

where ι0 : A↩CA is the inclusion of A into an injective container CA, ε1 the quotient map
with ΣA, called the suspension of A, as the quotient, and κ the expected quotient map. Then,

πn(A,β)∼= RHomΛ
(
ΣnA, cokerβ

)/
κ∗ι∗n HomΛ

(
CΣnA,B2

)
, (2.4)

where

RHomΛ
(
ΣnA, cokerβ

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ ′ ∈HomΛ
(
ΣnA, cokerβ

) | σ ′ is the induced map of

a commutative square Σn−1A
ιn−1

ρ

CΣn−1A

σ

B1
β

B2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
(2.5)

To prepare for the proof of Theorem 2.1, we first state a couple of existing propositions.

Proposition 2.2 ([2]). In Hom(ιn−1,β), when β is monomorphic, (ρ,σ)�i 0 if and only if
σ = βθ + χιnεn for some θ : CΣn−1A→ B1 and χ : CΣnA→ B2;

Σn−1A
ιn−1

ρ

CΣn−1A

θ

εn

σ

ΣnA
ιn

σ ′
CΣnA

χ

B1
β

B2
κ

cokerβ

(2.6)

Proposition 2.3 [1]. In the commutative diagram of short exact sequences:

A
μ

α

B
ε

ξ

C

γ

A′
μ′

B′
ε′

C′

(2.7)

α factors through μ if and only if γ factors through ε′.

Proof of Theorem 2.1. We define

φ : πn(A,β)→ RHomΛ
(
ΣnA, cokerβ

)/
κ∗ι∗n HomΛ

(
CΣnA,B2

)
(2.8)
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by φ([(ρ,σ)])= [σ ′] and show that φ is an isomorphism; first, suppose given a [(ρ,σ)]∈
πn(A,β) and assume that (ρ,σ) �i 0. By Proposition 2.2, σ = βθ + χιnεn for some θ :
CΣn−1A → B1 and χ : CΣnA → B2. Thus, σ ′εn = κσ = κ(βθ + χιnεn) = κβθ + κχιnεn =
κχιnεn, so σ ′ =κχιn, due to the fact that εn is surjective. Hence, σ ′ ∈κ∗ι∗n HomΛ(CΣnA,B2)
and φ is well defined.

To prove φ monomorphic, suppose given a [(ρ,σ)] ∈ πn(A,β) and assume that
φ([(ρ,σ)]) = [σ ′] = 0 ∈ RHomΛ(ΣnA, cokerβ)/κ∗ι∗n HomΛ(CΣnA,B2). That is, σ ′ = κχιn
for some χ : CΣnA→ B2, which means that σ ′ factors through the map κ. Then, by an
immediate corollary of Proposition 2.3, namely, γ = 0 if and only if ξ factors through μ′,
there exists an η : CΣn−1A→ B1 such that σ − χιnεn = βη;

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ−χιnεn
η

ΣnA

0

B1
β

B2
κ

cokerβ

(2.9)

Hence, (ρ,σ)�i 0 by Proposition 2.2, and thus φ is monomorphic.
Finally, the definition of RHomΛ(ΣnA, cokerβ) yields that each σ ′ is induced from a

commutative square

Σn−1A
ιn−1

CΣn−1A

B1
β

B2

(2.10)

Thus, φ is epimorphic. �

We remark that one can interpret RHomΛ(ΣnA, cokerβ) as the “reversible” subgroup
of HomΛ(ΣnA, cokerβ); suppose given a map σ ′ ∈HomΛ(ΣnA, cokerβ), we say that σ ′ is
reversible if it can pull back and produce a commutative diagram (2.2). Furthermore, it
reveals a connection between the relative homotopy group πn(A,β) and the (absolute)
homotopy group πn(A, cokerβ).

Next, for the general case that β : B1 → B2 is arbitrary, we exploit the mapping cylinder
of β and Theorem 2.5 follows immediately after Proposition 2.4.

Proposition 2.4 [2]. Suppose given maps β : B1 → B2 and ι : B1↩CB1, where CB1 is an
injective container of B1 so that {ι,β} : B1 � CB1⊕B2 is a monomorphism, then, for arbi-
trary A, πn(A,{ι,β})∼= πn(A,β) canonically, n≥ 1.

Theorem 2.5. Suppose given β : B1 → B2. For each A, consider the diagram

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ

ΣnA
ιn

σ ′

CΣnA

B1
{ι,β}

CB1⊕B2
κ

coker{ι,β}

(2.11)
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where ι0 : A↩CA is the inclusion of A into an injective container CA, ε1 is the quotient map
with ΣA, called the suspension of A, as the quotient, ι : B1↩CB1 is the inclusion of B1 into
an injective container CB1, and κ is the expected quotient map. Then,

πn(A,β)∼= RHomΛ
(
ΣnA, coker{ι,β})/κ∗ι∗n HomΛ

(
CΣnA,CB1⊕B2

)
, (2.12)

where

RHomΛ
(
ΣnA, coker{ι,β})

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ ′ ∈HomΛ
(
ΣnA, coker{ι,β}) | σ ′ is the induced map

of a commutative square Σn−1A
ιn−1

ρ

CΣn−1A

σ

B1
{ι,β}

CB1⊕B2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
(2.13)

As we mentioned earlier, our argument does not involve references to elements of sets,
so one can proceed with the dual, in projective relative homotopy theory, automatically.
As an illustration, for a given Λ-module homomorphism α : A1 → A2 and a given Λ-
module B, one alternatively views the projective relative homotopy group πn(α,B), n≥ 1,
as follows.

Theorem 2.6. Suppose given α : A1 → A2. For each B, consider the diagram

ker〈α,η〉 ι

ρ|

A1⊕PA2
〈α,η〉

ρ

A2

σ

PΩnB
ηn

ΩnB
μn

PΩn−1B
ηn−1

Ωn−1B

(2.14)

where η0 : PB � B is the projection of a projective ancestor PB onto B, μ1 is the inclusion
map with ΩB, called the loop space of B, as the kernel, η : PA2 � A2 is the projection of a
projective ancestor PA2 onto A2, and ι is the expected inclusion map. Then,

πn(α,B)∼= RHomΛ
(
ker〈α,η〉,ΩnB

)/
ι∗ηn∗ HomΛ

(
A1⊕PA2,PΩnB

)
, (2.15)

where

RHomΛ
(

ker〈α,η〉,ΩnB
)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∣
∣∈HomΛ

(
ker〈α,η〉,ΩnB

) | ρ∣∣ is the restriction

of a commutative square A1⊕PA2
〈α,η〉

ρ

A2

σ

PΩn−1B
ηn−1

Ωn−1B

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
(2.16)
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3. Various cases for β : B1 → B2

Here, we have Theorem 2.5, which does not only give us an alternative way of computing
relative homotopy groups for a map β : B1 → B2, but also shows a close connection be-
tween the (injective) relative homotopy groups πn(A,β) and the (injective) homotopy
groups πn(A, coker{ι,β}). The latter indicates the possibility of developing analogous
concepts of fibration and cofibration in module theory to those existing ones in algebraic
topology. Before further commenting on this matter, we demonstrate a few calculations
through analyzing these phenomena on RHomΛ(ΣnA, coker{ι,β}).

First, we examine the case that the map β : B1 → B2 is the zero map. The homotopy
exact sequence of a map β : B1 → B2 (see [1, Theorem 13.15]), thus,

··· ∂
πn
(
A,B1

) β∗
πn
(
A,B2

) J
πn(A,β)

∂
πn−1

(
A,B1

) β∗ ···

∂
π1
(
A,B1

) β∗
π1
(
A,B2

) J
π1(A,β)

∂
π
(
A,B1

) β∗
π
(
A,B2

)
,

(3.1)

yields a short exact sequence

πn
(
A,B2

) J
πn(A,β)

∂
πn−1

(
A,B1

)
(3.2)

as β∗ = 0. In addition, the special feature of the zero map suggests that (3.2) actually
splits, thus, the relative homotopy group πn(A,β) is the direct sum of the other two.

Theorem 3.1. Assume that β : B1 → B2 is the zero map. Then, for each A,

πn(A,β)∼= πn−1
(
A,B1

)⊕πn
(
A,B2

)
, canonically, n≥ 1. (3.3)

Before proceeding with its proof, we note that the theorem can also be derived using
the conventional method, namely, compute πn(A,β) through the commutative square

Σn−1A
ιn−1

CΣn−1A

B1
β=0

B2

(3.4)

Proof. In diagram (2.11), thus,

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ

ΣnA
ιn

σ ′

CΣnA

B1
{ι,β}

CB1⊕B2
κ

coker{ι,β}

(3.5)

we first note that coker{ι,β} = coker{ι,0} = ΣB1 ⊕ B2 and that κ = {〈κ1,0〉,〈0,1B2〉},
where ι : B1↩CB1 is the inclusion of B1 into an injective container CB1, κ1 is the quotient
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map to ΣB1, called the suspension of B1, and 1B2 is the identity map on B2. So (2.11) is
essentially

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ={σ1,σ2}

ΣnA
ιn

σ ′={σ ′1,σ ′2}

CΣnA

B1
{ι,0}

CB1⊕B2
κ

ΣB1⊕B2

(3.6)

Moreover, it is the natural combination of the two commutative diagrams

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ1

ΣnA
ιn

σ ′1

CΣnA

B1
ι

CB1
κ1

ΣB1

(3.7)

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ2

ΣnA
ιn

σ ′2

CΣnA

B1
β=0

B2
1B2

B2

(3.8)

Thus we define

φ : RHomΛ
(
ΣnA, coker{ι,β})/κ∗ι∗n HomΛ

(
CΣnA,CB1⊕B2

)−→ πn−1
(
A,B1

)⊕πn
(
A,B2

)

(3.9)

by φ([{σ ′1,σ ′2}]) = ([ρ],[σ ′2]) and show that φ is an isomorphism. First, suppose given
[{σ ′1,σ ′2}] ∈ RHomΛ(ΣnA, coker{ι,β})/κ∗ι∗n HomΛ(CΣnA,CB1 ⊕ B2) and assume that
{σ ′1,σ ′2}∈κ∗ι∗n HomΛ(CΣnA,CB1⊕B2). Then there exists {χ1,χ2} : CΣnA→ CB1⊕B2 such
that {σ ′1,σ ′2} = κ◦ {χ1,χ2} ◦ ιn. Equivalently, one has σ ′1 = κ1 ◦ χ1 ◦ ιn in (3.7) and σ ′2 = 1B2 ◦
χ2 ◦ ιn = χ2 ◦ ιn in (3.8). The former says that the map σ ′1 factors through κ1; therefore, by
Proposition 2.3, ρ = θιn−1 for some θ : CΣn−1A→ B1. Hence [ρ] = 0 in πn−1(A,B1). The
latter says that [σ ′2]= 0 in πn(A,B2). So φ is well defined.

To show that φ is monomorphic, suppose given

[{σ ′1,σ ′2}]∈ RHomΛ
(
ΣnA, coker{ι,β})/κ∗ι∗n HomΛ

(
CΣnA,CB1⊕B2

)
(3.10)

and assume that φ([{σ ′1,σ ′2}])= ([ρ],[σ ′2])= (0,0)∈ πn−1(A,B1)⊕πn(A,B2). That is, ρ =
γιn−1 for some γ : CΣn−1A→ B1 and σ ′2 = ηιn for some η : CΣnA→ B2, respectively. The
former says that the map ρ factors through ιn−1 in (3.7); therefore, by Proposition 2.3,
σ ′1 = κ1τ for some τ : ΣnA→ CB1. Moreover, τ = νιn for some ν : CΣnA→ CB1, due to the
facts that CB1 is injective and that ιn is monomorphic. Therefore, σ ′1 = κ1νιn and hence
{σ ′1,σ ′2} = {κ1 ◦ ν ◦ ιn,η ◦ ιn} = {κ1 ◦ ν ◦ ιn,1B2 ◦ η ◦ ιn} = κ ◦ {ν,η} ◦ ιn ∈ κ∗ι∗n HomΛ

(CΣnA,CB1⊕B2).
Finally, suppose given ([ρ],[σ ′2])∈ πn−1(A,B1)⊕πn(A,B2). We use the map ρ to com-

plete a diagram (3.7)—since CB1 is injective and ιn−1 is monomorphic, there exists a map
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σ1 : CΣn−1A→ CB1 such that ιρ= σ1ιn−1 and σ ′1 is then the induced map:

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ1

ΣnA

σ ′1

B1
ι

CB1
κ1

ΣB1

(3.11)

Similarly, the map σ ′2 completes diagram (3.8), precisely,

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ ′2εn

ΣnA

σ ′2

B1
0

B2
1B2

B2

(3.12)

Now φ is epimorphic because of the existence of the commutative diagram

Σn−1A
ιn−1

ρ

CΣn−1A
εn

{σ1,σ ′2εn}

ΣnA

{σ ′1,σ ′2}

B1
{ι,0}

CB1⊕B2
κ

ΣB1⊕B2

(3.13)

�

Theorem 3.1 also implies a couple of immediate consequences.

Corollary 3.2. If B1 = 0, then, for each A, πn(A,β)∼= πn(A,B2).

Corollary 3.3. If B2 = 0, then, for each A, πn(A,β)∼= πn−1(A,B1).

The dual of Theorem 3.1 and its corollaries say that if we assume that α : A1 → A2 is
the zero map, then for each B, πn(α,B)∼= πn−1(A2,B)⊕πn(A1,B) for n≥ 1. Specifically, if
A2 = 0, then πn(α,B)∼= πn(A1,B), and if A1 = 0, then πn(α,B)∼= πn−1(A2,B). Notice that
as A2 = 0, one sees from diagram (2.14) in Theorem 2.6 that πn(α,B)∼= πn(ker〈α,η〉,B);
however, the isomorphism fails when A1 = 0. As an example, consider the Λ-map α : 0→
Z, where Λ is the integral group ring of the finite cyclic group Ck with generator τ and Z
is regarded as a trivial Ck-module. Then,

πn(α,Z)∼= πn−1(Z,Z)=
⎧
⎨

⎩
Z/k, for n odd,

0, for n even.
(3.14)
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(See [3, Theorem 3.1].) On the other hand, the well-known projective resolution of Z,
thus,

··· ρ
ZCk

σ
ZCk

ρ
ZCk

ε
Z

ICk Z ICk

(3.15)

where the maps ε, ρ, σ are the augmentation of ZCk, multiplication by τ − 1, and multi-
plication by τk−1 + ···+ τ + 1, respectively, gives us that

πn

(
ker〈α,η〉,Z)∼= πn(ΩZ,Z)∼= πn

(
ICk,Z

)∼=
⎧
⎨

⎩
π
(
ICk,Z

)
, for n even

π
(
ICk,ICk

)
, for n odd

= 0, (3.16)

because all the maps in HomΛ(ICk,Z) and HomΛ(ICk,ICk) are p-nullhomotopic.
Similarly, as B1 = 0, πn(A,β) ∼= πn(A, coker{ι,β}); however, this position alters when

B2 = 0; consider the Λ-map β :Q/Z→ 0, where, again, Λ is the integral group ring of the
finite cyclic group Ck andQ/Z is regarded as a trivial Ck-module. Then,

πn(Q/Z,β)∼= πn−1(Q/Z,Q/Z)∼=
⎧
⎨

⎩
Z/k, for n odd,

0, for n even.
(3.17)

(See [3, Theorem 2.6].) For πn(A, coker{ι,β}), we adopt the injective resolution ofQ/Z:

Q/Z
Δ

(Q/Z)k
ρ∗

(Q/Z)k
σ∗

(Q/Z)k
ρ∗ ···

I(Q/Z)k Q/Z I(Q/Z)k

(3.18)

where Δ= ε∗ is the diagonal map, and obtain that

πn
(
Q/Z, coker{ι,β})∼= πn

(
Q/Z,ΣQ/Z

)∼= πn
(
Q/Z,I(Q/Z)k

)

∼=
⎧
⎨

⎩
π
(
Q/Z,I(Q/Z)k

)
, for n even

π
(
I(Q/Z)k,I(Q/Z)k

)
, for n odd

= 0,
(3.19)

again because all the maps in HomΛ(Q/Z,I(Q/Z)k) and HomΛ(I(Q/Z)k,I(Q/Z)k) are
i-nullhomotopic.

Therefore, as one may expect, the classic fibration/cofibration does not hold for arbi-
trary maps in module theory. The same phenomena arise again even when we generalize
B1 and B2, respectively, to injective modules.
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Theorem 3.4. Let β : B1 → B2 be arbitrary. Then, for each A,
(i) if B1 is injective, then πn(A,β)∼= πn(A,B2)∼= πn(A, coker{ι,β});

(ii) if B2 is injective, then πn(A,β)∼= πn−1(A,B1).

Proof. The first halves of both parts of the theorem, namely, πn(A,β) ∼= πn(A,B2) when
B1 is injective and πn(A,β) ∼= πn−1(A,B1) when B2 is injective, come directly from the
(injective) homotopy exact sequence of the map β : B1 → B2, thus,

··· ∂
πn
(
A,B1

) β∗
πn
(
A,B2

) J
πn(A,β)

∂
πn−1

(
A,B1

) β∗
πn−1

(
A,B2

) J ···
(3.20)

To prove that πn(A,β)∼= πn(A, coker{ι,β}) when B1 is injective, one considers diagram
(2.11), but now CB1 = B1. Thus,

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ

ΣnA
ιn

σ ′

CΣnA

B1
{ι,β}

B1⊕B2
κ

coker{ι,β}

(3.21)

Since B1 is injective, the short exact sequence B1
{ι,β}

B1⊕B2
κ

coker{ι,β} splits.
Thus there exists a map ν : coker{ι,β} → B1 ⊕ B2 such that κ ◦ ν = 1coker{ι,β}. Applying
Theorem 2.5, we define χ : πn(A,β)→ πn(A, coker{ι,β}) by χ(σ ′)= [σ ′] and show that χ
is an isomorphism.

First, if σ ′ = 0 in πn(A,β), then there is θ : CΣnA→ B1 ⊕ B2 such that σ ′ = κ ◦ θ ◦
ιn, which also means that χ(σ ′) = [σ ′] = 0 in πn(A, coker{ι,β}). So χ is well defined. To
show that χ is monomorphic, suppose given σ ′ ∈ πn(A,β) such that χ(σ ′) = [σ ′] = 0,
then σ ′ = ω ◦ ιn for some ω : CΣnA→ coker{ι,β}. Thus, σ ′ = ω ◦ ιn = 1coker{ι,β} ◦ω ◦ ιn =
κ ◦ ν ◦ω ◦ ιn, which forces σ ′ = 0. Thus, χ is monomorphic. Finally, the fact that every
σ ′ : ΣnA→ coker{ι,β} yields a commutative diagram

Σn−1A
ιn−1

0

CΣn−1A
εn

νσ ′εn

ΣnA

σ ′

B1
{ι,β}

B1⊕B2
κ

coker{ι,β}

(3.22)

allows us to conclude that χ is epimorphic. �

Examining the connection between πn(A,β) and πn(A, coker{ι,β}), even for the rather
simple case that B2 is injective, we find that, for a map σ ′ : ΣnA→ coker{ι,β} to be re-
lated to an element in πn(A,β), σ ′ ought to be “reversible” in a diagram such as (2.11),
that is, σ ′ must guarantee the existence of a pair (ρ,σ), or equivalently, σ ′ is the in-
duced map of (ρ,σ). Conversely, for a pair (ρ,σ) : ιn−1 → {ι,β} to be related to an el-
ement in πn(A, coker{ι,β}), the reversible σ ′ ought to, simultaneously, factor through
not only ιn but also κ as (ρ,σ) is i-nullhomotopic. These lead precisely to our group
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RHomΛ(ΣnA, coker{ι,β})/κ∗ι∗n HomΛ(CΣnA,CB1⊕B2) in Theorem 2.5. One can see this
exact targeting through the following exemplification.

Theorem 3.5. Assume that β : B1 � B2 is epimorphic. If the inclusion map B1/kerβ↩
CB1/kerβ, where CB1 is an injective container of B1, induces a splitting short exact sequence,
namely, B1/kerβ↩CB1/kerβ � CB1/B1, then, for each A,

πn(A,β)∼= πn−1
(
A,B1

)⊕πn
(
A,B2

)
, n≥ 1. (3.23)

Proof. First, one can show that, when β : B1 � B2 is epimorphic, coker{ι,β} is isomorphic
to CB1/kerβ. In addition, since the short exact sequence B1/kerβ↩CB1/kerβ � CB1/B1

splits, CB1/kerβ ∼= CB1/B1⊕B1/kerβ ∼= CB1/B1⊕B2 = ΣB1⊕B2. Hence, diagram (2.11)
becomes

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ={σ1,σ2}

ΣnA
ιn

σ ′={σ ′1,σ ′2}

CΣnA

B1
{ι,β}

CB1⊕B2
κ

ΣB1⊕B2

(3.24)

where κ = {〈κ1,0〉,〈0,−1B2〉}, ι : B1↩CB1 is the inclusion of B1 into an injective con-
tainer CB1, κ1 is the quotient map to ΣB1, called the suspension of B1, and 1B2 is the
identity map on B2. In addition, as diagram (3.6) in Theorem 3.1, (3.24) is the natural
combination of the two commutative diagrams

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ1

ΣnA
ιn

σ ′1

CΣnA

B1
ι

CB1
κ1

ΣB1

(3.25)

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ2

ΣnA
ιn

σ ′2

CΣnA

B1
β

B2
−1B2

B2

(3.26)

Hereafter, the proof that φ : πn(A,β)→ πn−1(A,B1)⊕πn(A,B2) defined by φ([{σ ′1,σ ′2}])
= ([ρ],[σ ′2]) is an isomorphism is mostly like that given for Theorem 3.1, only one no-
tices that the argument for φ being epimorphic is quite subtle; suppose given ([ρ],[σ ′2])∈
πn−1(A,B1)⊕ πn(A,B2). First, we use the map ρ to assure the existence of a diagram
(3.25)—since CB1 is injective and ιn−1 is monomorphic, there is a map σ1 : CΣn−1A→
CB1 such that ιρ= σ1ιn−1. Thus, we have the induced map σ ′1 in the diagram

Σn−1A
ιn−1

ρ

CΣn−1A
εn

σ1

ΣnA

σ ′1

B1
ι

CB1
κ1

ΣB1

(3.27)
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Furthermore, the fact that the map β : B1 → B2 factors through CB1 as

B1
ι

β=ω◦ι

CB1 CB1/kerβ B1/kerβ
∼=

B2 (3.28)

leads to the existence of a commutative square

Σn−1A
ιn−1

ρ

Σn−1A

σ2=ωσ1

B1
β

B2

(3.29)

The combination of the two yields a commutative diagram, thus,

Σn−1A
ιn−1

ρ

CΣn−1A
εn

{σ1,σ2}

ΣnA

{σ ′1,θ}

B1
{ι,β}

CB1⊕B2
κ

ΣB1⊕B2

(3.30)

with {σ ′1,θ} being the induced map, where θ : ΣnA→ B2, and σ2 = −θ ◦ εn. Finally φ is
epimorphic, due to the existence of the diagram

Σn−1A
ιn−1

ρ

CΣn−1A
εn

{σ1,σ2+(θ−σ ′2)εn}

ΣnA

{σ ′1,σ ′2}

B1
{ι,β}

CB1⊕B2
κ

ΣB1⊕B2

(3.31)

which is commutative because {σ1,σ2 + (θ − σ ′2) ◦ εn} ◦ ιn−1 = {σ1 ◦ ιn−1,σ2 ◦ ιn−1} =
{σ1,σ2} ◦ ιn−1 = {ι,β} ◦ ρ and κ ◦ {σ1,σ2 + (θ− σ ′2) ◦ εn} = {κ1 ◦ σ1,−1B2 ◦ (σ2 + (θ− σ ′2) ◦
εn)} = {κ1 ◦ σ1,−1B2 ◦ (σ2 + θ ◦ εn− σ ′2 ◦ εn)} = {σ ′1 ◦ εn,σ ′2 ◦ εn)} = {σ ′1,σ ′2} ◦ εn. �

It appears that the (injective) relative homotopy groups πn(A,β) always have a close
connection with the (injective) homotopy groups πn(A, coker{ι,β}). Precisely speaking,
though πn(A,β) may not always be isomorphic to πn(A, coker{ι,β}), it is indeed isomor-
phic to RHomΛ(ΣnA, coker{ι,β})/κ∗ι∗n HomΛ(CΣnA,CB1 ⊕ B2), a group that proceeds
from πn(A, coker{ι,β}) and has a structure similar to πn(A, coker{ι,β}) and which we
tentatively call a strong (injective) homotopy group, Sπn(A, coker{ι,β}). Should a suitable,
general, definition become available, the concepts of cofibration in the injective homo-
topy theory of modules and, by duality, fibration in the projective homotopy theory of
modules will both be within reach.
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