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1. Introduction and main results

In this paper, we are concerned with the existence and gradient estimates for periodic
solutions of the evolution m-Laplacian equations with a nonlinear convection term and
with the Dirichlet boundary value condition

ut �div
{
��u�m�u

}
+ b(u) ��u= f (t)uα +h(x, t), in Ω�R1,

u(x, t)= 0, on ∂Ω�R1,

u(x, t+ω)= u(x, t), in Ω�R1,

(1.1)

where Ω 	 RN (N 
 1) is a bounded domain with smooth boundary ∂Ω, ω > 0, m > 1,
and b(u) is a nonlinear vector field such that �b(u)� � k�u�β, with some k > 0, 0 � β �
m� 1. f (t) and h(x, t) are ω-periodic (in t) functions.

Equation (1.1) is a class of degenerate parabolic equations and appears to be relevant
in the theory of non-Newtonian fluids perturbed by nonlinear terms and forced by rather
irregular period in time excitations, see [1, 2] for instance. The term b(u) ��u describes
an effect of convection with a velocity field b(u).

In the last two decades, periodic parabolic equations have been the subject of extensive
study (see [3–11]). In Particular, Nakao [7] considered the following equation:

ut �Δβ(u) +B(x, t,u)= f (x, t), (1.2)
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where B and f are periodic in t with common period ω > 0, β(u) satisfies β�(u) > 0 ex-
cept for u= 0 and B(x, t,u)u
�b0�u� with some constant b0 
 0. The existence and L�

estimates of periodic solutions were established.
When b(u)= 0 and f (t)uα replaced by g(x,u) with g(x,u)u� k0�u�β+1 + k1�u�, 0� β �

m+ 1, Nakao and Ohara [8] obtained the existence and ��u(t)�� estimate of periodic
solutions of (1.1).

For b(u) = 0 and h(x, t) = 0, applying the topological degree theory, Wang et al. [9]
discussed the existence of periodic solutions of (1.1) in the case of strongly nonlinear
sources (m+ 1 < α <m+ 1 + (m+ 2)/N).

The object of this paper is to prove the existence of periodic solutions in the case of
0� α <m+ 1 and to derive an estimates of ��u(t)�� for the problem (1.1). For the proof
of our result, we employ Moser’s technique as in [12] and make some devices as in [8] to
obtain the existence of periodic solutions. Leray-Shauder fixed point theorem instead of
approximate method used in [8] is applied to prove the existence of periodic solutions.
To derive estimates of �u(t), we must treat the terms b(u) ��u and f (t)uα at the same
time very carefully. To our best knowledge, this result is not found in others work.

Let � � �p and � � �m,p denote Lp = Lp(Ω) and Wm,p =Wm,p(Ω) norms, respectively,
1� p ��.

Due to the degeneracy of the equations considered, problem (1.1) has no classical
solutions in general, and thus we consider its weak solutions in the following sense.

Definition 1.1. Assume that h(x, t)  E = Cω(Q), the set of all functions in C(Ω�R1)
which are periodic in t with period ω, where Q =Ω� (0,ω). A function u is said to be a
periodic solution of problem (1.1) if

u Lm+2(0,ω;W1,m+2
0 (Ω)

)
�Cω(Q), (1.3)

and u satisfies
∫∫

Q

{
�u ϕt + ��u�m�u ��ϕ�B(u) ��ϕ� f (t)uαϕ�h(x, t)ϕ

}
dxdt = 0 (1.4)

for any ϕ C1
0(0,ω;C1

0(Ω)) with ϕ(x,0)= ϕ(x,ω), where B(u)= ∫ u0 b(s)ds is set.

We assume
(H1) b(u)= (b1(u),b2(u), . . . ,bN (u)) is an RN -valued function on R1, satisfying

∣
∣b(u)

∣
∣� k�u�β (1.5)

for some 0� β <m� 1 and k > 0, or β =m� 1, and k > 0 is sufficiently small.
(H2) h(x, t)  Cω(Q)� L�(0,ω;W1,�

0 (Ω)), h(x, t) > 0 for (x, t)  Ω�R1 and we set
M0 = supt �h(t)��, M1 = supt ��h(t)��.

(H3) f (t) L�(0,ω) is periodic in t with period ω. We also assume that 0� α <m+ 1.
(H4) ∂Ω is of C2 class and the mean curvature H(x) at x  ∂Ω is nonpositive with

respect to the outward normal.

Remark 1.2. (H4) is satisfied in particular ifΩ is convex. Without (H4), we cannot control
the boundary integral which appears in the estimation of ��u(t)��.
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Our main results of this paper read as follows.

Theorem 1.3. Under the assumptions (H1)–(H3), N > 1, problem (1.1) admits at least one
solution u(t), which satisfies

u(t) L�
(
0,ω;W1,m+2

0 (Ω)
)
�Cω(Q), ut  L2(Q). (1.6)

Theorem 1.4. Under the assumptions (H1)–(H4), the solution u(t) of problem (1.1) further
belongs to L�(0,ω;W1,�

0 (Ω)), and satisfies

sup
t

∥
∥�u(t)

∥
∥
�
� C1 <�, (1.7)

where C1 is a constant, depending on M0, M1, and α.

For the proof of theorems, we use the following lemmas.

Lemma 1.5 [12] (Gagliardo-Nirenberg). Let β 
 0, N > p 
 1, β+ 1� q, and 1� r � q �
(β+ 1)Np/(N � p), then for u such that �u�βuW1,p(Ω),

�u�q � C1/(β+1)�u�1�θ
r

∥
∥ � u �β u

∥
∥θ/(β+1)

1,p (1.8)

with θ = (β+ 1)(r�1 � q�1)/�N�1 � p�1 + (β+ 1)r�1�, where C is a constant independent
of q, r, β, and θ.

Lemma 1.6 [8]. Let y(t) C1(R1) be a nonnegative ω periodic function satisfying the dif-
ferential inequality

y�(t) +Ay1+α(t)� By(t) +C, t R1, (1.9)

with some α > 0, A > 0, B 
 0, and C 
 0. Then

y(t)�max
{

1,
(
A�1(B+C)

)1/α}
. (1.10)

The paper is organized as follows. Section 2 is devoted to the proof of the existence of
periodic solutions for problem (1.1) by using the Leray-Shauder fixed point theorem,
which is different from that adopted in [8, 9]. Subsequently, we present the proof of
Theorem 1.4 in Section 3.

2. The proof of Theorem 1.3

Our result will be proved by means of parabolic regularization. Namely, we consider the
regularized equations

ut �div
{(
��u�2 + ε

)m/2
�u
}

+ b(u) ��u= f (t)uα +h(x, t), (x, t)Q, (2.1)

where ε > 0. The desired solution u(t) of problem (1.1) will be obtained as a limit point
of the approximate solutions uε(t) of (2.1). To prove the existence of the approximate
solutions uε(t), we apply the Leray-Shauder fixed point theorem. For our purpose, we
need the following a priori estimate.
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Proposition 2.1. Let u0 be a periodic solution of the equation

ut �div
{(
��u�2 + ε

)m/2
�u
}

+ b(u) ��u= τ f (t)uα + τh(x, t), (x, t)Q, (2.2)

with τ  [0,1], and u0 satisfying the Dirichlet boundary value condition of (1.1). Then there
exists a constant C0 > 0 independent of τ and ε such that

∥
∥u0(t)

∥
∥
�
� C0. (2.3)

Proof. We only consider N >m+ 2, the other case can be treated similarly.
Multiplying (2.2) by �u�p�2u (p > 2), integrating by parts, and noticing that

∫

Ω
b(u) ��u�u�p�2udx =

∫

Ω

N∑

i=1

bi(u)�u�p�2u
∂u

∂xi
dx

=
N∑

i=1

∫

Ω

(∫ u

0
bi(s)�s�p�2sds

)

xi

dx

=
N∑

i=1

∫

∂Ω

(∫ u

0
bi(s)�s�p�2sds

)
cos
(

n,xi
)
ds

= 0,

(2.4)

we have

1
p

d

dt

∥
∥u(t)

∥
∥p
p+ε(p�1)

(
m+2
p+m

)m+2∥
∥�u(p+m)/(m+2)

∥
∥m+2
m+2 � C

(
f (t)�u�

p+α�1
p+α�1 +�h�p�u�

p�1
p
)
.

(2.5)

If 1� α <m+ 1, by Hölder’s inequality and Lemma 1.5, we have

�u�
p+α�1
p+α�1 =

∫

Ω
�u�θ1�u�θ2 dx � C�u�θ1

p �u�
θ2
q

� C�u�θ1
p

∥
∥�u(p+m)/(m+2)

∥
∥θ2(m+2)/(p+m)
m+2

�
ε

2M0
(p� 1)

(
m+ 2
p+m

)m+2∥
∥�u(p+m)/(m+2)

∥
∥m+2
m+2 +C

(
�u�θ1

p

)r/θ1 pσ ,

(2.6)

where we set q = (p + m)N/(N �m� 2), θ1 = p[q � (p + α� 1)]/(q � p), θ2 = q(α�
1)/(q� p), r < p, which imply θ = 1 in Gagliardo-Nirenberg inequality, and σ > 0 is a
constant independent of p.

If 0 < α < 1, by Hölder’s inequality and Young’s inequality, we obtain

�u�
p+α�1
p+α�1 =

∫

Ω
�u�αp�u�(1�α)(p�1)dx �

(∫

Ω
�u�p dx

)α(∫

Ω
�u�p�1dx

)1�α

� �u�
p
p +C�u�

p�1
p .

(2.7)
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If α= 0, then we use Hölder’s inequality to obtain

�u�
p+α�1
p+α�1 �

(∫

Ω
�u�pdx

)(p�1)/p(∫

Ω
dx
)1/p

�max
{

1,�Ω�1/2
}
�u�

p�1
p . (2.8)

It follows from (2.5)–(2.8) that

d

dt

∥
∥u(t)

∥
∥p
p +C1p

�m
∥
∥�u(p+m)/(m+2)

∥
∥m+2
m+2 � C

(
M0
)(
pσ+1

∥
∥u(t)

∥
∥p
p + 1

)
, (2.9)

where we set

p1 =m+ 2, pn = (m+ 2)pn�1�m, αn =
(
pn +m

)
θ�1
n � pn(>m),

θn = 1� pn�1p�1
n

1 +N�1� (m+ 2)�1
= N

[
(m+ 1)pn�m

]

pn
[
(m+ 1)N +m+ 2

] .
(2.10)

By using Lemma 1.5, we have

�u�pn � C�u�1�θn
pn�1

∥
∥�u(pn+m)/(m+2)

∥
∥θn(m+2)/(pn+m)
m+2 . (2.11)

Set p = pn in (2.9) and by (2.11), we have

d

dt

∥
∥u(t)

∥
∥pn
pn

+C1C
�(pn+m)θ�1

n p�mn
∥
∥u(t)

∥
∥(pn+m)(θn�1)/θn
pn�1

∥
∥u(t)

∥
∥(pn+m)/θn
pn

� C
(
M0
)(
pσ+1
n

∥
∥u(t)

∥
∥pn
pn

+ 1
)
.

(2.12)

Therefore,

d

dt

∥
∥u(t)

∥
∥
pn

+C1C
�(pn+m)θ�1

n p�m�1
n

∥
∥u(t)

∥
∥m�αn
pn�1

∥
∥u(t)

∥
∥αn+1
pn

� C
(
M0
)(
pσn
∥
∥u(t)

∥
∥
pn

+ 1
)
.

(2.13)

Let χn � supt �u(t)�pn , by Lemma 1.6, we obtain

χn �max
{

1,
(
C
(
M0
)
C(pn+m)θ�1

n pm+σ+1
n χαn�mn�1

)1/αn
� B1/αn

n

}
. (2.14)

We set without loss of generality that B1/αn
n > 1, which implies χn � B1/αn

n . It is easy to verify
that �χn� is bounded (see [7]), and

sup
t

∥
∥u(t)

∥
∥
�
� lim

n��
χn � C

(
M0
)
<�. (2.15)

�

To prove the convergence of uε(t), we need the following proposition.

Proposition 2.2. Under the assumptions (H1)–(H3), the solution uε(t) of (2.1) satisfies
∫ ω

0
��u�m+2

m+2dt � C
(
M0
)
, (2.16)

∫ ω

0

∥
∥ut(t)

∥
∥2

2dt � C
(
M0
)
, (2.17)

where C(M0) denotes a constant depending on M0 and independent of ε.
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Proof. Multiplying (2.1) by u and integrating, we obtain

∫ ω

0

∫

Ω
uut dxdt+

∫ ω

0

∫

Ω
��u�m+2dxdt+

∫ ω

0

∫

Ω
b(u) ��uudxdt

=
∫ ω

0

∫

Ω
f uα+1dxdt+

∫ ω

0

∫

Ω
hudxdt.

(2.18)

By the periodicity, Hölder’s inequality, and Poincare’s inequality, we have

∫ ω

0

∥
∥�u(t)

∥
∥m+2
m+2dt �

∫ ω

0

∥
∥ f (t)

∥
∥
p�
∥
∥u(t)

∥
∥α+1
m+2dt+

∫ ω

0

∥
∥h(t)

∥
∥
m+2

∥
∥u(t)

∥
∥m+1
m+2dt

�

(∫ ω

0

∥
∥ f (t)

∥
∥p

�

p� dt
)1/p�(∫ ω

0

∥
∥u(t)

∥
∥m+2
m+2dt

)(α+1)/(m+2)

+
(∫ ω

0

∥
∥h(t)

∥
∥m+2
m+2dt

)1/(m+2)(∫ ω

0

∥
∥u(t)

∥
∥m+2
m+2dt

)(m+1)/(m+2)

� C
(
M0
)
[(∫ ω

0

∥
∥�u(t)

∥
∥m+2
m+2dt

)(α+1)/(m+2)

+
(∫ ω

0

∥
∥�u(t)

∥
∥m+2
m+2dt

)(m+1)/(m+2)
]

,

(2.19)

in which p� = (m+ 2)(m+ 1�α)�1. Thus, we have

∫ ω

0
��u�m+2

m+2dt � C
(
M0
)
<�. (2.20)

In order to derive (2.17), we multiply (2.1) by ut and integrate over [o,ω]�Ω,

∫ ω

0

∥
∥ut(t)

∥
∥2

2dt+
∫ ω

0

∫

Ω
b(u) ��uut dxdt �

∫ ω

0

∫

Ω

∣
∣uth

∣
∣dxdt+

∫ ω

0
f (t)dt

∫

Ω
uαut dx.

(2.21)

Hence, by (H1), (2.16), and Young’s inequality, we have

∫ ω

0

∥
∥ut(t)

∥
∥2

2dt � C
(
M0
)
<�. (2.22)

�

Completion of the proof of Theorem 1.3. Now we apply the Leray-Schauder fixed point
theorem to show the existence of periodic solutions of problem (1.1). To do this, we
investigate the following regularized equation:

ut �div
{(
��u�2 + ε

)m/2
�u
}

+ b(u) ��u= g(x, t), x Ω, t > 0, (2.23)

where g  E = Cω(Q). By using Faedo-Galerkin method and Browder fixed pointed the-
orem, Crema and Boldrini [13] have proved that for any g  E, the regularized problem
has a solution u L�(0,ω;W1,m+2

0 (Ω)) and ut  L2(Q).
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We defined T : E� E by Tg = u, then the map T is continuous and compact.
In fact, by [14, Theorem 1.2 in page 42] and noticing the periodicity of u, we arrive at

∣
∣u
(
x1, t1

)
�u
(
x2, t2

)∣∣� γ�u��
(∣∣x1� x2

∣
∣+�u�

(p�2)/p
�

∣
∣t1� t2

∣
∣1/p)β

(2.24)

for every pair of points (x1, t1),(x2, t2)Q, where the positive constants γ, β depend only
on N , ε, m, �g��. Ascoli-Arezela theorem implies that T maps any bounded set of E into
a compact set of E.

Next, suppose that gk � g as k�� and denote uk = Tgk, then there exists a function
u E such that

uk(x, t)�� u(x, t) uniformly in Q, (2.25)

by taking some subsequence if necessary.
Noticing the fact that

∫

Ω
b(u) ��uudx = 0, (2.26)

we can prove that u= Tg by using the argument similar to [9].
Let Φ(v) = f (t)vα+ + h(x, t), by the conditions (H2)-(H3) and the estimate above, we

can see that T(τ,Φ(v)) is also the complete continuous map for τ  [0,1]. Proposition 2.1
shows that if u0 is a fixed point of T(τ,Φ(v)), then

∥
∥u0(t)

∥
∥
�
� C0 (2.27)

with C0 > 0 is a constant independent of τ, ε. Hence, applying the Leray-Schauder fixed
point theorem, we conclude that (2.1) admits a periodic solution uε.

Therefore, we can obtain a periodic solution �u(t)� of the problem (1.1) as a limit
point of �uε(t)� (see [8, 12]).

3. The proof of Theorem 1.4

In this section, we will derive the estimates of ��u(t)�� for an assumed smooth solution
of the problem and prove Theorem 1.4.

Proposition 3.1. Under the assumptions (H1)–(H4), the (smooth) periodic solution u(t)
of problem (1.1) satisfies

sup
t

∥
∥�u(t)

∥
∥
�
� C1 <�, (3.1)

where C1 is a constant only dependent on M0, M1, and α.
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Proof. Multiplying (2.1) by �div���u�p�2�u� (p > m+ 2), and integrating over Ω, we
have

1
p

d

dt

∥
∥�u(t)

∥
∥p
p +
∫

Ω
div
{(
��u�2 + ε

)m/2
�u
}

div
{
��u�p�2�u

}
dx

=
∫

Ω
b(u) ��udiv

{
��u�p�2�u

}
dx�

∫

Ω
f (t)uα div

{
��u�p�2�u

}
dx

�

∫

Ω
h(x, t)div

{
��u�p�2�u

}
dx.

(3.2)

Further, integrating by parts, we obtain (see [12])
∫

Ω
div
{(
��u�2 + ε

)m/2
�u
}

div
{
��u�p�2�u

}
dx




∫

Ω
��u�p+m�2

∣
∣D2u

∣
∣2
dx+

p� 2
4

∫

Ω
��u�p+m�4

∣
∣�
(
��u�2

)∣∣2
dx

�C(N � 1)
∫

∂Ω
��u�p+mH(x)ds.

(3.3)

It follows from (H1)–(H3) and Young’s inequality that
∫

Ω
b(u) ��udiv

{
��u�p�2�u

}
dx

�

∫

Ω
��u�p+m�2

∣
∣D2u

∣
∣2
dx+

∫

Ω
p2
∣
∣b(u)

∣
∣2
��u�p�mdx

�

∫

Ω
��u�p+m�2

∣
∣D2u

∣
∣2
dx+C0p

2(1 +
∥
∥�u(t)

∥
∥p
p

)
,

(3.4)

�

∫

Ω
f (t)uα div

{
��u�p�2�u

}
dx � C1

(
��u�

p�1
p +

∥
∥�u(t)

∥
∥p
p

)
, (3.5)

�

∫

Ω
h(x, t)div

{
��u�p�2�u

}
dx =

∫

Ω
�h ��u��u�p�2dx � CM1��u�

p�1
p . (3.6)

We have from (3.2)–(3.6) and (H4) that

1
p

d

dt

∥
∥�u(t)

∥
∥p
p +

C1

p

∥
∥��u�(p+m)/2

∥
∥2

1,2

� C1p
2(1 +

∥
∥�u(t)

∥
∥p
p

)
+C1��u�

p�1
p +

C1

p

∫

Ω
��u�p+mdx.

(3.7)

For the third term of the right-hand side of (3.7), by Gagliardo-Nirenberg inequality and
Young’s inequality, we have

��u�
p+m
p+m �

1
2

∥
∥��u�(p+m)/2

∥
∥2

1,2 +C��u�m+1
m+2��u�

p�1
p . (3.8)

Therefore, (3.7) can be rewritten as

d

dt

∥
∥�u(t)

∥
∥p
p +C1

∥
∥��u�(p+m)/2

∥
∥2

1,2 � C1p
3(1 +

∥
∥�u(t)

∥
∥p
p

)
+C1p��u�

p�1
p . (3.9)
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Then, setting

p1 =m, pn = 2pn�1�m, θn = 2N
(
1� pn�1p

�1
n

)
(N + 2)�1, n= 2,3, . . . , (3.10)

we have, by a variant of the Gagliardo-Nirenberg inequality, again

��u�pn � C2/(pn+m)��u�1�θn
pn�1

∥
∥��u�(pn+m)/2

∥
∥2θn/(pn+m)

1,2 . (3.11)

Therefore, from (3.9) and (3.11) (set p = pn),

d

dt

∥
∥�u(t)

∥
∥pn
pn

+C1C
�2/θn��u�

(pn+m)(θn�1)/θn
pn�1 ��u�

(pn+m)/θn
pn

� C1p
3
n

(
1 +
∥
∥�u(t)

∥
∥pn
pn

)
+C1pn��u�

pn�1
pn .

(3.12)

Applying Lemma 1.6, by the same argument as in Proposition 2.1, we can obtain (3.1).
�
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