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1. Introduction

In this paper, we are interested in the study of infinite linear systems represented by the
matrix equation AX = B, where A is an infinite matrix with infinitely many rows and
infinitely many columns, B and X are considered as column matrices and X is the un-
known. For many applications it is necessary to find an explicit solution of this system
whenever it exists. So, for a given matrix transformation A we need to know if the matrix
equation AX = B has a solution in a given space. Then, we are interested in the approx-
imation of this solution. Several methods can be used for this purpose; in this paper we
will consider the finite section method to construct a natural sequence of finite sequences
converging to a solution. We will also consider a new method of approximation which is
a direct consequence of the quasi-Newton method, where we construct a sequence that
converges fast to the solution.

The plan of this paper is organized as follows. In Section 2, we recall some well-known
results on matrix transformations. In Section 3, we deal with the solvability of an infinite
system represented by M(γ,a,η)X = B, where M(γ,a,η) is an infinite tridiagonal matrix,

B ∈ sα, s◦α, s(c)
α , lp(α), and 1≤ p <∞. Then in Section 4, we recall some recent results on
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the finite section method and construct a natural sequence of finite sequences converging
to a solution of an infinite linear system. Finally, in Section 5, we recall some results on
quasi-Newton methods, specially the symmetric rank-one method and apply it to solve
infinite linear systems. Then, a numerical example is given where we construct a sequence
that converges fast to the unique solution of the system.

2. Preliminaries and well-known results

Let A= (anm)n,m≥1 be an infinite matrix and consider the sequence X = (xn)n≥1. We de-
fine the product AX = (An(X))n≥1 with

An(X)=
∞∑

m=1

anmxm, (2.1)

whenever the series are convergent for all n≥ 1. Then, for a given sequence B = (bn)n≥1,
we will study the equation AX = B which is equivalent to the infinite linear system of
equations

∞∑

m=1

anmxm = bn, n= 1,2, . . . . (2.2)

Throughout Section 3 we use the convention that any term with a subscript less than
1 is equal to naught. Let s denote the set of all complex sequences. We write ϕ, c0, c,
and l∞ for the sets of finite, null, convergent, and bounded sequences, respectively. For
any given subsets �, � of s, we say that the operator represented by the infinite matrix
A= (anm)n,m≥1 maps � into � , denoted by A∈ (�,�) (cf. [1]), if

(i) the series defined by An(X) are convergent for all n≥ 1 and for all X ∈�;
(ii) AX ∈� for all X ∈�.

For any subset � of s, we write

A�= {Y ∈ s : Y =AX for some X ∈�}. (2.3)

Let �⊂ s be a Banach space, with norm ‖ · ‖�. By �(�) we denote the set of all bounded
linear operators, mapping � into itself. Thus, we have that A∈�(�) if and only if A : � 	→
� is a linear operator and

‖A‖∗�(�) = sup
X �=0

(‖AX‖�

‖X‖�

)
<∞. (2.4)

It is well known that �(�) is a Banach algebra with the norm ‖A‖∗�(�). A Banach space
�⊂ s is a BK space if the coordinate functionals Pn : X 	→ xn from � into R are continuous
for all n. A BK space � is said to have AK if every sequence X = (xk)k≥1 ∈� has a unique

representation X =∑∞
k=1 xke

(k), where e(k) denotes the sequence with e(k)
k = 1 and e(k)

j = 0
for j �= k. It is well known that if � has AK , then �(�)= (�,�) (cf. [2]). In the following
we will explicitly give some new properties of particular algebras.
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3. Some results from the theory of infinite matrices

In this section, we will give some properties of the equation AX = B for A ∈�(�) and

B ∈� with �∈ {sα,s◦α,s(c)
α , lp(α)} and 1≤ p <∞.

3.1. The Banach algebra �(lp(α)) with 1≤ p <∞. We write

U+ = {
α= (

αn
)
n≥1 ∈ s : αn > 0∀n}. (3.1)

Recall that lp, for p > 0, is the set of sequences X = (xn)n≥1 such that
∑∞

n=1 |xn|p <∞. Here
for any given α= (αn)n≥1 ∈U+ and p ≥ 1, we consider the set

lp(α)=
{
X ∈ s :

∞∑

n=1

(∣∣xn
∣∣

αn

)p

<∞
}
. (3.2)

For ξ ∈ s let Dξ be the diagonal matrix defined by [Dξ]nn = ξn. We then have Dαlp = lp(α).
It is easy to see that lp(α) is a Banach space with the norm

‖X‖lp(α) =
∥∥D1/αX

∥∥
lp
=
[ ∞∑

n=1

(∣∣xn
∣∣

αn

)p]1/p

. (3.3)

Since lp(α) has AK, we have �(lp(α)) = (lp(α), lp(α)) and �(lp(α)) is a Banach algebra
with identity (cf. [3]). So, we get

‖AX‖lp(α) ≤ ‖A‖∗�(lp(α))‖X‖lp(α) ∀X ∈ lp(α). (3.4)

We have lp = lp(e), where e = (1, . . . ,1, . . .) and

∥∥D1/αADα

∥∥∗
�(lp) = ‖A‖∗�(lp(α)) ∀A∈�

(
lp(α)

)
. (3.5)

So, we have A∈�(lp(α)) if and only if D1/αADα ∈�(lp). When α= (rn)n≥1, for a given
real r > 0, lp(α) is denoted by lp(r). When p =∞, we obtain the next results.

3.2. The Banach algebras Sα and �(�) for � = sα, s◦α, or s(c)
α . For α= (αn)n≥1 ∈ U+, we

will write

sα = l∞(α)=
{
X ∈ s :

xn
αn
=O(1)(n−→∞)

}
(3.6)

(cf. [3–7]). The set sα is a Banach space with the norm ‖X‖sα = supn≥1(|xn|/αn). The set

Sα =
{
A= (

anm
)
n,m≥1 : ‖A‖Sα = sup

n≥1

(
1
αn

∞∑

m=1

∣∣anm
∣∣αm

)
<∞

}
(3.7)

is a Banach algebra with identity normed by ‖A‖Sα . Recall that ifA∈(sα,sα), then ‖AX‖sα≤
‖A‖Sα‖X‖sα for all X ∈ sα. We have Sα = (sα,sα) and if we put B(sα)=�(sα)

⋂
(sα,sα), then

B(sα)= Sα. This means that Sα is a subalgebra of �(sα).
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As above when α = (rn)n≥1, r > 0, Sα and sα are denoted by Sr and sr . When r = 1,
s1 = l∞ is the set of all bounded sequences.

In the same way, we define the sets

s◦α =
{
X ∈ s :

xn
αn
−→ 0 (n−→∞)

}
,

s(c)
α =

{
X ∈ s :

xn
αn
−→ l (n−→∞) for some l

}
.

(3.8)

The sets s◦α and s(c)
α are Banach spaces with the norm ‖ · ‖sα (cf. [5]). As a direct conse-

quence of the previous results, the sets �(s◦α) = (s◦α,s◦α) and �(s(c)
α ) are Banach algebras

with the norm ‖A‖�(sα).

3.3. An application to infinite tridiagonal matrices. In this subsection, we consider in-
finite tridiagonal matrices. These matrices are used in many applications, let us cite for
instance the case of continued fractions (cf. [3]), or the finite differences method, (cf. [8]).
We deal with some properties of the matrix map M(γ,a,η) between particular sequence
spaces. Then, we will compute the inverse of the matrix M(γ,e,η) where γ and η are
constants. These results will be used in Example 5.8.

Let γ = (γn)n≥1, η = (ηn)n≥1, a= (an)n≥1 be sequences with an �= 0 for all n. Consider
the infinite tridiagonal matrix

M(γ,a,η)=

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 η1

γ2 a2 η2 O
· · ·

O γn an ηn
· ·

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.9)

and put

Γα =
{
A= (

anm
)
n,m≥1 ∈ Sα : ‖I −A‖Sα < 1

}
, (3.10)

for α= (rn)n≥1, Γα is denoted by Γr . Since Sα is a Banach algebra, we immediately see that
A ∈ Γα implies A is invertible and A−1 ∈ Sα. Using the results given in Sections 3.1 and
3.2, we deduce the following proposition.

Proposition 3.1 (see [7, Proposition 17, page 55]). Assume that D1/aM(γ,a,η)∈ Γα, that
is,

sup
n

[
1
an

(∣∣γn
∣∣αn−1

αn
+
∣∣ηn

∣∣αn+1

αn

)]
< 1. (3.11)

Then,
(i) (a) M(γ,a,η)∈ (sα,s|a|α),

(b) M(γ,a,η) is invertible and M(γ,a,η)−1 ∈ (s|a|α,sα),
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(c) for any B ∈ s|a|α, the equation M(γ,a,η)X = B has a unique solution in sα
given by

X∗ =M(γ,a,η)−1B, (3.12)

(ii) (a) M(γ,a,η)∈ (s◦α,s◦|a|α),
(b) M(γ,a,η) is invertible and M(γ,a,η)−1 ∈ (s◦|a|α,s◦α),
(c) for any B ∈ s◦|a|α, the equation M(γ,a,η)X = B has a unique solution in s◦α

given by (3.12),
(iii) if

1
an

(
γn

αn−1

αn
+ηn

αn+1

αn

)
−→ l �= 0 (n−→∞), (3.13)

then
(a) M(γ,a,η)∈ (s(c)

α ,s(c)
|a|α),

(b) M(γ,a,η) is invertible and M(γ,a,η)−1 ∈ (s(c)
|a|α,s(c)

α ),

(c) for any B ∈ s(c)
|a|α, the equation M(γ,a,η)X = B has a unique solution in s(c)

α

given by (3.12).
(iv) Let p ≥ 1 be a real. If K̃p,α = K1 +K2 < 1 with

K1 = sup
n

(∣∣∣∣
γn
an

∣∣∣∣
αn−1

αn

)
, K2 = sup

n

(∣∣∣∣
ηn
an

∣∣∣∣
αn+1

αn

)
, (3.14)

then
(a) M(γ,a,η)∈ (lp(α), lp(|a|α)),
(b) M(γ,a,η) is invertible and M(γ,a,η)−1 ∈ (lp(|a|α), lp(α)),
(c) for any B ∈ lp(|a|α), the equation M(γ,a,η)X = B has a unique solution in

lp(α) given by (3.12).

We deduce the next corollary.

Corollary 3.2. If K̃1,α < 1, then M(γ,a,η) is bijective from l1(α) to l1(|a|α) and bijective
from sα to s|a|α.

Proof. First, taking p = 1 in Proposition 3.1(iv), we deduce that M(γ,a,η) is bijective
from l1(α) to l1(|a|α). Then, we get from [7]

∥∥I −D1/aM(γ,a,η)
∥∥
Sα
≤ K̃1,α < 1, (3.15)

and we conclude that M(γ,a,η) is bijective from sα to s|a|α. �

Remark 3.3. Note that in the case when p = 1, the condition

∥∥I − [
D1/aM(γ,a,η)

]t∥∥
Sα
= sup

n

(∣∣∣∣
γn+1

an+1

∣∣∣∣
αn+1

αn
+
∣∣∣∣
ηn−1

an−1

∣∣∣∣
αn−1

αn

)
< 1 (3.16)

also implies that M(γ,a,η) is bijective from l1(α) to l1(|a|α).
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When a = e, γn = γ, and ηn = η, for all n the matrix M(γ,e,η) is denoted by M(γ,η).
Recall the following result where we explicitly write the inverse of M(γ,η).

Proposition 3.4 (see [7, Proposition 20, page 57]). Let γ, η be reals with 0< γ+ η<1.
Then,

(i) M(γ,η) : X 	→M(γ,η)X is bijective from � into itself, for �∈ {s1,c0,c, lp}, p ≥ 1.
(ii) (a) Let � be one of the sets s1, c0, c, or lp(α) and put

u=
(

1−√
1− 4γη

)

2γ
, v =

(
1−√

1− 4γη
)

2η
. (3.17)

Then, for any given B ∈�, the equation M(γ,η)X = B has a unique solution
X∗ = (x∗n )n≥1 in � given by

x∗n =
(
uv+ 1
uv− 1

)
(−1)nvn

∞∑

m=1

[
1− (uv)−l

]
(−1)mumbm ∀n, (3.18)

with l =min(n,m).
(b) The inverse [M(γ,η)]−1 = (a′nm)n,m≥1 is given by

a′nm =
(
uv+ 1
uv− 1

)
(−1)n+mvn−m

[
(uv)l − 1

] ∀n,m≥ 1, l =min(n,m). (3.19)

Until now we have given results on the solvability of a class of systems. Since the solu-
tion of the matrix equation can have a complicated expression, we need to approximate
this one. So, in the next sections, we will explicitly deal with several methods of approxi-
mation.

4. First methods of approximation of a solution of an infinite linear system

In this section, we give useful methods to approximate a solution of an infinite linear
system. So, we give some new conditions on A to obtain the convergence of a sequence of
finite sequences to the solution of an infinite linear system.

4.1. The finite section method. In the following, we assume that A∈ Sα is a matrix with
nonzero elements on its main diagonal. For any integer k, let A′k = (ηnm)n,m≥1 be the
infinite matrix defined by

ηnm =
⎧
⎨
⎩
anm if n,m≤ k,

0 otherwise;
(4.1)
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Bk is the matrix obtained from B in the same way. [A]k denotes the finite matrix
(anm)n,m≤k and [B]k = (bn)n≤k. When [A]k is invertible, we put

Â′k =
(

[A]−1
k

O

)
. (4.2)

Note that A′kÂ′k = Â′kA′k = I′k.
The replacement of the equation AX = B by [A]k[Y]k = [B]k, where [Y]k is the un-

known of the last equation, is called the finite section method. This principle has been
used for Toeplitz matrices of the form

A=

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 a−1 · · ·
a1 a0 a−1 · ·
a2 a1 a0 · ·
· · · · ·
· · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.3)

(an)−∞<n<+∞ is a given sequence. Note that the matrices used here need not be Toeplitz
matrices.

On the other hand, the invertibility of each matrix [A]k does not imply the invertibility
of A (cf. [6, Example 11, page 137]). We see that we must give additional conditions on
A, so that the sequence

Xk = Â′kBk (4.4)

converges to a limit in a given space as k tends to infinity. Note that this problem was
studied in the case when A is a Toeplitz matrix mapping l2 to l2 and was connected to the
notion of stability (cf. [9]). Recall that the sequence of matrices ([A]k)k≥1 is stable if each
matrix [A]k is invertible for all sufficiently large k, for k ≥ k0 say, and for a suitably chosen
norm ‖ · ‖, we have

sup
k≥k0

(∥∥[A]−1
k

∥∥) <∞. (4.5)

Here, we are interested in the case when A∈ (sα,sα) and we will see that the condition of
stability is given by Definition 4.1(i).

4.1.1. First method of approximation of a solution of an infinite linear system. We first need
a definition.

Definition 4.1. Let α= (αn)n≥1 ∈U+ be a decreasing sequence with

αn ≤ 1 ∀n. (4.6)

An infinite matrix A∈ Sα is called α-invertible if the following conditions are satisfied.
(i) The matrix [A]k is invertible for every k and putting [A]−1

k = (a′nm(k))n,m≤k, we
have

τk = sup
n,m≤k

∣∣a′nm(k)
∣∣=O(1) (k −→∞). (4.7)
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(ii)

q =
(

sup
n≥k

( k−1∑

m=1

∣∣anm
∣∣

αn

))

k≥2

∈ l1. (4.8)

When α= (rn)n≥1, with r ∈]0,1], we say that A is r-invertible. We can state the follow-
ing result.

Theorem 4.2 (see [6, Theorem 13, page 138], [4, Theorem 4, page 95]). Let A be α-
invertible. For every B ∈ ϕ, there is a solution X∗ ∈ sα of the equation AX = B such that

lim
k→∞

∥∥Xk −X∗
∥∥
sα
= 0, (4.9)

that is Xk → X∗ (k→∞) in sα.

As a direct consequence of Theorem 4.2, we obtain the next example.

Example 4.3 (cf. [4, Example 7, page 98]). Let A= (σ |m−n|m)n,m≥1 with σ ∈]0,1/3[. First,
we see that

σ |m−n|m = (
σ |m−n|

)m ≤ σ |m−n| ∀m,n. (4.10)

Then,

∑

m≥1,m�=n
σ |m−n|m≤

n−1∑

i=1

σi+
∞∑

i=1

σi ≤ 2σ
1− σ

, ‖I −A‖S1= sup
n

(
∑

m≥1,m�=n
σ |m−n|m

)
≤ 2σ

1− σ
.

(4.11)

So, A ∈ Γ1 for 0 < σ < 1/3. We deduce (cf. [4, Proposition 5, page 97, Corollary 6, page
98], that the matrix [A]k is invertible for each k, that

τk ≤ 1
1−‖I −A‖Su

∀k and for every given u≥ 1 (4.12)

and that Definition 4.1(i) holds. Then, we get for α= e in Theorem 4.2

qk = sup
n≥k

( k−1∑

m=1

σ |m−n|m
)
≤

k−1∑

m=1

σ |m−k|m ∀k, (4.13)

and since σ |k−m|m = σ (k−m)m ≤ σk−1 for m= 1,2, . . . ,k− 1, we get

qk ≤
k−1∑

m=1

σ (k−m)m ≤ (k− 1)σk−1 ∀k. (4.14)

Then q ∈ l1, condition (ii) in Definition 4.1 holds, and A is 1-invertible. So, Xk = Â′kBk →
X∗(k→∞) in sα. Note that this matrix is of Poòlya type (cf. [4, 10]), which proves that
this system has infinitely many solutions. Here, we have shown that the unique bounded
solution X∗ of AX = B, (B ∈ ϕ), can be approximated by the sequence Xk.



Boubakeur Benahmed et al. 9

Remark 4.4. The results in the previous example also hold for 1/2 < σ < 2/3. Indeed, we
have

∑

m≥1,m�=n
σ |m−n|m ≤−1 +

∞∑

m=1

σm = −1 + 2σ
1− σ

, (4.15)

and ‖I −A‖S1 ≤ (−1 + 2σ)/(1− σ) < 1 for 1/2 < σ < 2/3.

4.1.2. Second method of approximation of a solution of an infinite system. When we sup-
pose that all the diagonal elements are equal to 1, we can give a similar result, where the
solution

X∗ =
∞∑

n=0

(I −A)nB (4.16)

of the equation AX = B can be approximated by the sequence

X ′k =
(
A∗k

)−1
B =

∞∑

n=0

(
I −A∗k

)n
B, (4.17)

with

A∗k =

⎛
⎜⎜⎜⎝

[A]k
1 0

0 1
·

⎞
⎟⎟⎟⎠ . (4.18)

The advantage of this method is that it yields an upper bound for ‖X ′k −X∗‖sr . Note that
for any given B ∈ ϕ, we have X ′k = Xk for all k. Now let r > 0 and put

γk = sup
n≤k

(
1
rn

∞∑

m=k+1

∣∣anm
∣∣rm

)
, γ′k = sup

n≥k+1

(
1
rn

∞∑

m=1,m�=n

∣∣anm
∣∣rm

)
. (4.19)

Then, we can state the following result based on the fact that ‖A−A∗k ‖Sr = sup(γk,γ′k).

Proposition 4.5 (cf. [6, Proposition 14, page 140], [4, Proposition 9, page 99]). Assume
that A∈ Γr and (γk)k≥1, (γ′k)k≥1 ∈ c0. Then, X ′k → X∗(k→∞) in sr for all B ∈ sr and

∥∥X ′k −X∗
∥∥
sr
≤ sup

(
γk,γ′k

) ‖B‖sr
(1− ρ)2

∀k, (4.20)

where ρ = ‖I −A‖Sr .
Example 4.6. Proposition 4.5 can be applied to the matrix A= (σ |m−n|m)n,m≥1, defined in
Example 4.3 with 0 < σ < 1/3. As we have just seen, since A ∈ Γ1, we will take r = 1. We
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get for every k, putting κk = σk/(1− σk),

γk ≤ sup
n≤k

( ∞∑

i=1

σ (k+1)(k+i−n)

)
≤ κk+1,

γ′k ≤ sup
n≥k+1

(
(n− 1)σn−1 +

σn+1

1− σn+1

)
≤ kσk + κk+2.

(4.21)

Since we have (κk)k≥1, (kσk)k≥1, we also have (γk)k≥1, (γ′k)k≥1 ∈ c0.
Then, there is an integer N , such that

kσk + κk+2−κk+1 = kσk
[

1 +
σ2

k
(
1− σk+2

) − σ

k
(
1− σk+1

)
]
> 0 (4.22)

for all k ≥ N . Then using Proposition 4.5 and the inequality ‖I −A‖S1 ≤ 2σ/(1− σ), we
conclude that

∥∥X ′k −X∗
∥∥
s1
≤ (

kσk + κk+2
)( 1− σ

1− 3σ

)2

‖B‖s1 ∀k ≥N. (4.23)

Remark 4.7. We note that an r-invertible matrix does not necessarily satisfy the condi-
tions of Proposition 4.5. Indeed, take a real ρ, 0 < ρ < 1 and put

A=

⎛
⎜⎜⎜⎝

1 ρ
1 ρ 0

0 · ·
·

⎞
⎟⎟⎟⎠ . (4.24)

It can easily be seen that A is 1-invertible, but γk = ρ does not tend to 0. This shows that
the first condition of the previous proposition is not satisfied.

In the following, we will deal with another method of approximation where we con-
struct a sequence that converges fast to a solution of an infinite linear system.

5. Quasi-Newton methods

5.1. Well-known results. Quasi-Newton methods play an important role in numerically
solving unconstrained optimization problems, systems of linear and nonlinear equations
in Euclidean spaces.

Let � be a Hilbert space with inner product 〈·,·〉. We use the norm

‖X‖ =
√
〈X ,X〉 (5.1)

induced by the inner product.
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In this section, we are interested in the solvability by quasi-Newton methods, of systems
of linear equations in the infinite Hilbert space �. These systems can be written in the form

F(X)= AX −B = 0, (5.2)

where A∈�(�) and B, X ∈�.
Since systems of linear equations can be regarded as special cases of systems of non-

linear equations, we will describe quasi-Newton methods in the general case of systems of
nonlinear equations represented by

F(X)= 0, (5.3)

where F : � 	→� is a differentiable function. We make the following classical assumptions.

Assumption A. (i) (5.3) has a solution X∗.
(ii) The derivative F′ exists and is Lipschitz continuous in a neighborhood V of X∗.
(iii) The operator F′(X∗) has a bounded inverse and [F′(X∗)]−1 ∈�(�).

We are led to give an explicit algorithm.

5.1.1. The iterative schemes for quasi-Newton methods. Every quasi-Newton method is an
iterative scheme which generates a sequence (Xk)k≥1 in ℵ approximating X∗ and a sequence
(Hk)k≥1 in �(�) approximating [F′(X∗)]−1 by means of the formulas

Xk+1 = Xk −HkF
(
Xk

)
, k = 1,2, . . . , (5.4)

Hk+1 =Hk +Ek, k = 1,2, . . . , (5.5)

where Ek ∈ �(�) is a correction term depending on Xk, Xk+1, and Hk. The algorithm
terminates when ‖F(Xk)‖ < ε for given small ε > 0.

A quasi-Newton method is defined by formula (5.5) to compute Hk+1.

5.1.2. The (SR1) method. Here, we need to define the outer product X ⊗Y of two vectors
X and Y (cf. [11]), which is a rank-one operator in �(�), such that

(X ⊗Y)Z = 〈Y ,Z〉X ∀Z ∈ ℵ. (5.6)

The notation X ⊗ Y generalizes the classical outer product XYT used in finite dimen-
sional spaces.

In the remainder of the paper, we will use the symmetric rank-one (SR1) formula given
by

Hk+1 =Hk +
1〈

Sk −HkYk,Yk
〉
(
Sk −HkYk

)⊗ (
Sk −HkYk

)
(5.7)

with

Sk = Xk+1−Xk, Yk = F
(
Xk+1

)−F
(
Xk

)
, k = 1,2, . . . . (5.8)
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Note that the (SR1) method was first published by Broyden (1967) in the finite-dimensi-
onal case (cf. [12]). Many authors have given a generalization of quasi-Newton methods
to infinite Hilbert spaces (cf., e.g., Horwitz-Sarachik [13] and Sachs [14]).

In the next section, we recall some convergence results for quasi-Newton methods in
infinite-dimensional spaces.

5.2. Convergence results. First, we need some definitions on convergence rates. Let
(Xk)k≥1 be a sequence in � generated by the quasi-Newton method defined by (5.4) and
(5.5).

Definition 5.1. (i) A sequence (Xk)k≥1 is said to be locally convergent to X∗, if there are
ε,δ > 0 such that whenever X1 and H1 satisfy

∥∥X1−X∗
∥∥ < ε,

∥∥H1−F′
(
X∗

)∥∥ < δ, (5.9)

then (Xk)k≥1 converges to X∗.
(ii) If for each X1, H1, the sequence (Xk)k≥1 is convergent to X∗, we say that the se-

quence (Xk)k≥1 is globally convergent to X∗.

Note that global convergence implies local convergence, but the converse is false.

Definition 5.2 (see [11]). Let (Xk)k≥1 be a sequence converging to X∗.
(i) The convergence rate is called linear if there are γ ∈ (0,1) and k0 ∈N such that

∥∥Xk+1−X∗
∥∥≤ γ

∥∥Xk −X∗
∥∥ ∀k ≥ k0, (5.10)

that is

lim
k→∞

∥∥Xk+1−X∗
∥∥

∥∥Xk −X∗
∥∥ = γ. (5.11)

(ii) The convergence rate is called superlinear if

lim
k→∞

∥∥Xk+1−X∗
∥∥

∥∥Xk −X∗
∥∥ = 0. (5.12)

Here, superlinear convergence implies linear convergence.
Now, we consider a result on local convergence that can be used for the (SR1) method

and can be applied to other quasi-Newton methods. We put

σk =max
{∥∥Xk+1−X∗

∥∥,
∥∥Xk −X∗

∥∥}. (5.13)

Theorem 5.3 (see [15, Lemma 2.2, pages 4–7]). Suppose that F satisfies Assumption A. If
there are α1,α2 > 0 such that

∥∥Hk+1−
[
F′
(
X∗

)]−1∥∥≤ (
1 +α1σk

)∥∥Hk −
[
F′
(
X∗

)]−1∥∥+α2σk ∀k, (5.14)

then the sequence (Xk)k≥1 defined by a quasi-Newton method is well defined and converges
locally and linearly to X∗.

Furthermore, H−1
k exists for all k and (‖Hk‖)k≥1, (‖H−1

k ‖)k≥1 ∈ l∞.



Boubakeur Benahmed et al. 13

To obtain superlinear convergence, we need the additional condition of compactness
of the operator

E1 =H1−
[
F′
(
X∗

)]−1
. (5.15)

More precisely, we state the next result which is a direct consequence of [16].

Theorem 5.4. Assume that Assumption A and identity (5.14) hold. If E1 is compact, then
the sequence (Xk)k≥1 generated by any quasi-Newton method is superlinearly convergent to
X∗.

Remark 5.5. The compactness assumption is trivially satisfied in the finite-dimensional
case but is necessary to have superlinear convergence in the infinite-dimensional case. In
several quasi-Newton methods, examples were given where we only have linear conver-
gence for a noncompact operator E1 (cf. [16]).

In the remainder of this paper, we will consider the special case of systems of linear
equations. As we have seen, they are represented by (5.2) with A ∈�(�) and B,X ∈ �
and we will assume that A is nonsingular. Since it can easily be proved that the operators
(Hk)k≥1 generated by the (SR1) method satisfy (5.14), by Theorem 5.3 we have local and
linear convergence for this method. More precisely, we can state the following result.

Corollary 5.6. Let A ∈�(�) be a nonsingular operator. Then the sequence (Xk)k≥1 ob-
tained by the (SR1) method defined by (5.4), (5.7), and (5.8) converges locally and lin-
early to X∗. The convergence is superlinear under the additional condition of compactness of
E1 =H1−A−1.

Remark 5.7. Let B1,A∈�(�) be nonsingular. Since

H1−A−1 =−H1
(

B1−A
)
A−1 (5.16)

is the product of a compact operator with bounded operators, we deduce that if D1 =
B1−A is compact, so is the E1 =H1−A−1 = B−1

1 −A−1.

5.3. An application to infinite linear systems. Quasi-Newton methods have been ap-
plied to several problems in infinite-dimensional Hilbert spaces such as to approximate
the solutions of nonlinear integral equations, elliptic boundary value problems, uncon-
strained optimal control problems (cf. [17–19]), identification of a parabolic system, par-
abolic inverse problem (cf. [15, 20]), and so forth but it seems that the quasi-Newton
methods have never been applied directly to solving infinite linear systems.

In the special case of a Hilbert space �, an infinite linear system can be represented
by (5.2) where we assume A∈�(�), B ∈� are given and A is invertible in �(�). So for
any B ∈ �, the equation AX = B has a unique solution given by X∗ = A−1B. Note that
the computation of A−1 is very difficult in many cases, so it is natural to use an iterative
method to obtain an approximation of the solution of this equation. In the next example,
we construct a sequence which is obtained by a quasi-Newton method and converges to
the solution X∗ given in Proposition 3.4 in the particular case when A = 3M(γ,η) and
γ = η = 1/3.
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Example 5.8. Take �= l2. Then, we have

〈X ,Y〉 =
∞∑

n=1

xnyn, ‖X‖ =
( ∞∑

n=1

x2
n

)1/2

(5.17)

for all X = (xn)n≥1, Y = (yn)n≥1 ∈ l2.
We consider B = e(1) and

A= 3M
(

1
3

,
1
3

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 1 0
1 3 1 0 0
0 1 3 1 0
0 0 1 3 1 0

· · ·
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.18)

As we have seen in Proposition 3.1, the matrix (1/3)A=M(1/3,1/3), considered as oper-
ator from l2 into itself is bijective and the unique solution of the equation M(1/3,1/3)X =
(1/3)B is determined by Proposition 3.4(ii)(a). The approximation methods considered
in Section 4 cannot be applied. Indeed, since qk = 1/3, the matrix M(1/3,1/3) is not α-
invertible and since γk = r/3, the hypothesis of Proposition 4.5 are not satisfied. Here
using the quasi-Newton method, we will construct a sequence (Xk)k≥1 tending to this
solution. We will use the (SR1) method defined by (5.4), (5.7), and (5.8). Note that the
outer product is defined in (5.7) by

[
(X ⊗Y)Z

]
n =

[〈Y ,Z〉X]n = xn

∞∑

m=1

ymzm ∀n. (5.19)

By Corollary 5.6, the sequence (Xk)k≥1 converges locally and linearly to the unique solution
X∗.

To start the algorithm, we take X1 = 0 (the zero vector in l2) and H1 = I (the iden-
tity operator in �(l2)). Since B = e(1), we see that for each k, the infinite matrix Hk =
(hknm)n,m≥1 is defined by hknn = 1 for n > k + 1, and hknm = 0 for n,m > k + 1 and n �=m.
So, we can do the calculations considering Hk as a finite matrix of order k + 1. We have
a similar result for Xk. Here, the calculations are made on Matlab with finite matrices
the size of which increases by one in each iteration. For the convenience of the reader we
explicitly give the algorithm as follows:

X1 = [0,0,0, . . .]T −→ X2 = [1,0,0, . . .]T −→ X3 = [0.4285,−0.2857,0, . . .]T −→ ··· −→
X6 = [0.3820,−0.1461,0.0563,−0.0230,0.0129,0, . . .]T −→ ··· ,

(5.20)
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and for Hk we have

H1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

· O
·
·

O 1
·
·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−→H2=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4286 −0.2857
−0.2857 0.8571

1 O
·
·

O 1
·
·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−→H3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3872 −0.1614 0.0967
−0.1614 0.4840 −0.2902
0.0967 −0.2902 0.7743 O

1
·

O ·
1

·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.21)

and so forth. More precisely, we obtain the following. For k = 1, we have X1,B1 ∈R2 and
H1,A1 ∈M2 such that

X1 =
[

0
0

]
, H1 =

[
1 0
0 1

]
, A1 =

[
3 1
1 3

]
, B1 =

[
1
0

]
. (5.22)

Using Matlab, identity (5.4) gives X2 and identities (5.7) and (5.8) yield H2 with

X2 =
[

1
0

]
, H2 =

[
0.4286 −0.2857
−0.2857 0.8571

]
. (5.23)

For k = 2, it is natural to put

X2 =
⎡
⎢⎣

1
0
0

⎤
⎥⎦ , H2 =

⎡
⎢⎣

0.4286 −0.2857 0
−0.2857 0.8571 0

0 0 1

⎤
⎥⎦ , (5.24)

and to consider A2 ∈M3 and B2 ∈R3 as follows:

A2 =
⎡
⎢⎣

3 1 0
1 3 1
0 1 3

⎤
⎥⎦ , B2 =

⎡
⎢⎣

1
0
0

⎤
⎥⎦ . (5.25)

Again, by identities (5.4), (5.7), and (5.8), we obtain

X3 =
⎡
⎢⎣

0.4285
−0.2857

0

⎤
⎥⎦ , H3 =

⎡
⎢⎣

0.3872 −0.1614 0.0967
−0.1614 0.4840 −0.2902
0.0967 −0.2902 0.7743

⎤
⎥⎦ . (5.26)
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As above, we write for k = 2

X3 =

⎡
⎢⎢⎢⎣

0.4285
−0.2857

0
0

⎤
⎥⎥⎥⎦ , H3 =

⎡
⎢⎢⎢⎣

0.3872 −0.1614 0.0967 0
−0.1614 0.4840 −0.2902 0
0.0967 −0.2902 0.7743 0

0 0 0 1

⎤
⎥⎥⎥⎦ , (5.27)

and consider

A3 =

⎡
⎢⎢⎢⎣

3 1 0 0
1 3 1 0
0 1 3 1
0 0 1 3

⎤
⎥⎥⎥⎦ , B3 =

⎡
⎢⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎥⎦ , (5.28)

and so forth. For each step, we must verify the condition ‖F(Xk)‖ < ε. If we take ε = 10−3,
we then obtain for k = 7 the following:

X7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3820
−0.1459
0.0558
−0.0215
0.0088
−0.0049

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3828 −0.1465 0.0565 −0.0223 0.0091 −0.0034 0.0001
−0.1465 0.4387 −0.1688 0.0662 −0.0274 0.0133 0.0017
0.0565 −0.1688 0.4487 −0.1750 0.0736 −0.0425 −0.0091
−0.0223 0.0662 −0.1750 0.4572 −0.1944 0.1234 0.0316
0.0091 −0.0274 0.0736 −0.1944 0.5108 −0.3393 −0.0932
−0.0035 0.0133 −0.0425 0.1234 −0.3393 −0.9092 0.2575
0.0001 0.0017 −0.0091 0.0316 −0.0932 0.2575 1.3096

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.29)

with ‖F(X7)‖2 = 0.00005885. We conclude that the vector

X̃7 = (0.3820,−0.1459,0.0558,−0.0215,0.0088,−0.0049,0, . . .) (5.30)

is a good approximation of the unique solution of AX = B and of the solution explicitly
given in Proposition 3.4.
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