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1. Introduction

Let p be prime and q = pm. A polynomial is a permutation polynomial (PP) of Fq if it
induces a bijective map from Fq to Fq. In recent years, there has been a lot of interests
in studying permutation polynomials, partly due to their applications in coding theory,
combinatorics, and cryptography. For more background material on permutation poly-
nomials we refer to [1, Chapter 7]. For a detailed survey of open questions and recent
results see [2–4].

In general, it is a challenging task to characterize permutation polynomials. In fact
there are only a few classes of permutation polynomials that are known. Many examples
of permutation polynomials can be constructed as subclasses of polynomials of the form
xr f (x(q−1)/l), where r ≥ 1, l ≥ 1 and l | (q− 1). More precisely, we observe that any poly-
nomial h(x)∈ Fq[x] can be written as a(xr f (x(q−1)/l)) + b, for some r ≥ 1 and l | (q− 1).
To see this, without loss of generality, we can write

h(x)= a
(
xn + an−i1x

n−i1 + ··· + an−ik x
n−ik)+ b, (1.1)

where a,an−i j �= 0, j = 1, . . . ,k. Here we suppose that j ≥ 1 and n− ik = r. Then h(x) =
a(xr f (x(q−1)/l)) + b, where f (x)= xe0 + an−i1xe1 + ··· + an−ik−1x

ek−1 + ar ,
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l = q− 1
gcd

(
n− r,n− r− i1, . . . ,n− r− ik−1,q− 1

) , (1.2)

and gcd(e0,e1, . . . ,ek−1, l)= 1.
Due to the importance of the polynomials of the form xr f (x(q−1)/l), it is interesting

to give criteria for PPs of this type. One such criterion was given by Wan and Lidl [5,
Theorem 1.2].

Theorem 1.1 (Wan-Lidl). Let g be a primitive element of Fq and let ζ = g(q−1)/l be a prim-
itive l-th root of unity in Fq. Then the polynomial P(x)= xr f (x(q−1)/l) is a PP of Fq if and
only if

(i) (r, (q− 1)/l)= 1,
(ii) f (ζt) �= 0, for each t = 0, . . . , l− 1,

(iii) for all 0≤ i < j < l,

Indg

(
f
(
ζi
)

f
(
ζ j
)

)

�≡ r( j− i)(mod l), (1.3)

where Indg( f (ζi)/ f (ζ j)) is the residue class b modulo q− 1 such that f (ζi)/ f (ζ j)=
gb.

In this paper, we give another general criterion (Theorem 2.2) for PPs of the form
P(x) = xr f (x(q−1)/l). It turns out that by employing our criterion we can give a uni-
fied treatment of several classes of permutation polynomials. Along the way, by apply-
ing our theorem, we construct some new classes of permutation polynomials, and give
simplified proofs for some known classes of permutation polynomials. They include the
class of polynomials of the form P(x) = xr f (x(q−1)/2) (Corollary 2.4), the class of poly-

nomials of the form P(x) = xr f (x(q−1)/l) such that f (ζ)(q−1)/l = 1 for all l-th roots of
unity ζ (Theorem 3.1), and the class of polynomials of the form P(x)= xr f (x(q−1)/l) with
f (x)= 1 + x+ ··· + xk, where r ≥ 1 and k ≥ 0 (Theorem 4.4).

The structure of the paper is as follows. In Section 2, we prove our new criterion. Then
we describe some applications of this criterion in Sections 3 and 4.

2. A general criterion

Lemma 2.1. Let l | q− 1 and μl be the set of all distinct l-th roots of unity in Fq. Let ξ0,ξ1, . . . ,
ξl−1 be some l-th roots of unity. Then

{
ξ0,ξ1, . . . ,ξl−1

}= μl ⇐⇒
l−1∑

t=0

ξct = 0, for c = 1, . . . , l− 1. (2.1)

Proof. First note that for an l-th root of unity ξ, we have

1 + ξ + ··· + ξl−1 =
⎧
⎨

⎩
0 if ξ �= 1,

l if ξ = 1.
(2.2)



A. Akbary and Q. Wang 3

Now for t = 0, . . . , l− 1, let

ht(x)=
l−1∑

j=0

ξ
l− j
t x j . (2.3)

We have

ht(ξ j)=
⎧
⎨

⎩
0 if t �= j,

l if t = j.
(2.4)

Let

h(x)=
l−1∑

t=0

ht(x)= l+
l−1∑

j=1

(l−1∑

t=0

ξ
l− j
t

)

x j . (2.5)

We consider h as a function from μl to Fq. Since the degree of h(x) is less than or equal to
l− 1, it is clear that ξ0,ξ1, . . . ,ξl−1 are all distinct if and only if h(x) = l. This implies the
result. �

Using Lemma 2.1, we obtain the following general criterion.

Theorem 2.2. Let q− 1= ls for some positive integers l and s. Let ζ be a primitive l-th root
of unity in Fq and f (x) be a polynomial over Fq. Then the polynomial P(x)= xr f (xs) is a
PP of Fq if and only if

(i) (r,s)= 1,
(ii) f (ζt) �= 0, for each t = 0, . . . , l− 1,

(iii)
∑ l−1

t=0ζ
crt f (ζt)

cs = 0 for each c = 1, . . . , l− 1.

Proof. If P(x) = xr f (xs) is a PP, then for a primitive l-th root of unity ζ , f (ζi) �= 0 for
i = 0, . . . , l− 1. Moreover, (r,s) = 1. This is true, since otherwise (r,s) = e > 1. Let ω be a
primitive e-th root of unity. Then P(1)= P(ω), and P(x) is not a PP.

So suppose that conditions (i) and (ii) are satisfied. Let g be a primitive element of
Fq. We know that P(x) is a PP if and only if P(gk) for k = 1, . . . ,q− 1 are all distinct. Let
k = ld+ t where 0≤ t < l. Then

P
(
gk
)= gl(dr)gtr f

(
gts
)= gl(dr)gat , (2.6)

where gat = gtr f (gts). Here at is well-defined mod q− 1. Now since (r,s)= 1, then dr for
0≤ d < s form a complete set of residues mod s. So P(gk)’s are distinct if and only if at’s
form a complete set of residues mod l. However, {a0, . . . ,al−1} forms a complete set of
residues mod l if and only if the mapping φ : a→as from {ga0 , . . . ,gal−1} to μl is surjective.
By Lemma 2.1 this is true if and only if

l−1∑

t=0

gcsat = 0, (2.7)

for c = 1, . . . , l− 1. Hence we are done. �
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Combining Wan-Lidl theorem (see Section 1) with our Theorem 2.2, we obtain the
following equivalent conditions.

Corollary 2.3. Let q− 1= ls, let (r,s)= 1, let ζ be a primitive l-th root of unity in Fq, and
let f (x) be a polynomial over Fq such that none of ζt, t = 0, . . . , l− 1, is a zero of f (x). Then
the following are equivalent:

(i)
∑ l−1

t=0ζ
crt f (ζt)

cs = 0 for each c = 1, . . . , l− 1;
(ii) for all 0≤ i < j < l, Indg( f (ζi)/ f (ζ j)) �≡ r( j− i)(mod l), where Indg( f (ζi)/ f (ζ j))

is the residue class b modulo q− 1 such that f (ζi)/ f (ζ j) = gb, where g is a fixed
primitive element of Fq.

In [6], Niederreiter and Robinson proved that for odd q, the binomial x(q+1)/2 + ax is a
PP if and only if η(a2− 1)= 1. Here η is the quadratic character of Fq with the standard
convention η(0)= 0. Next corollary gives a generalization of this theorem.

Corollary 2.4. For odd q, the polynomial P(x)= xr f (x(q−1)/2) is a PP of Fq if and only if
(r, (q− 1)/2)= 1 and η( f (−1) f (1))= (−1)r+1.

Proof. In Theorem 2.2, let l = 2. Then the result is evident since

f (1)(q−1)/2 + (−1)r f (−1)(q−1)/2 = 0⇐⇒ η
(
f (1) f (−1)

)= (−1)r+1. (2.8)

�

A version of the previous corollary is due to Wan, see [7, Theorem 4.1].

3. First application

The following is a consequence of our general criterion.

Theorem 3.1. Let q− 1= ls. Assume that f (ζt)
s = 1 for any t = 0, . . . , l− 1. Then P(x)=

xr f (xs) is a permutation polynomial of Fq if and only if (r,q− 1)= 1.

Proof. We have

l−1∑

t=0

ζcrt f
(
ζt
)cs =

l−1∑

t=0

ζcrt. (3.1)

This is zero if and only if (l,r)= 1. �

Next we show that how the above theorem can result in a unified and simplified treat-
ment of some known classes of PPs. As a special case of Theorem 3.1, we have the follow-
ing result of Wan and Lidl (see [5, Corollary 1.4]). The sufficiency part is a classical result
of Rogers and Dickson [8, Theorem 85].

Corollary 3.2. Let l | q− 1 and g(x) be any polynomial over Fq. Then P(x)= xrg(xs)l is a
permutation polynomial of Fq if and only if (r,q− 1)= 1 and g(ζt) �= 0 for all 0≤ t ≤ l− 1.

Proof. This is true since if we set f (x)= g(x)l, then we have f (ζt)
s = g(ζt)

ls = g(ζt)
q−1 =

1. The result follows from Theorem 3.1. �
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We next consider a class of PPs with coefficients in some appropriate subfield which
has been studied in [9]. Special cases of Corollary 3.3 has also been considered in [10, 11].

Corollary 3.3 (Laigle-Chapuy). Let p be a prime, let l be a positive integer, and let v be the
order of p in Z/lZ. For any positive integer n, take q = pm = plvn and ls= q− 1. Assume f (x)
is a polynomial in Fpvn[x]. Then the polynomial P(x)= xr f (xs) is a permutation polynomial
of Fq if and only if (r,q− 1)= 1 and f (ζt) �= 0 for all 0≤ t ≤ l− 1.

Proof. This is clear from Theorem 3.1, since we have

f
(
ζt
)(q−1)/l = f

(
ζt
)(pvln−1)/l = f

(
ζt
)(pvn−1)/l((pvn)l−1+(pvn)l−2+···+1)

=
( l−1∏

i=0

f
(
ζt
)pvni

)(pvn−1)/l

= ( f (ζt)l)(pvn−1)/l = 1.
(3.2)

�

Note. Laigle-Chapuy has proved the previous corollary under the stronger assumption
that (r,q− 1)= 1 [9, Theorem 3.1]. Our proof shows that under the conditions of Corol-
lary 3.3 if P(x) is a PP, then (r,q− 1)= 1.

4. Second application

In this section, we give another application of our main criterion and construct some new
classes of PPs.

Theorem 4.1. Let q− 1= ls, and suppose that Fq (algebraic closure of Fq) contains a prim-
itive jl-th root of unity η. Assume that (η−ut f (ηjt))

s = 1 for any t = 0, . . . , l− 1 and a fixed
u. Moreover, assume that j | us. Then P(x)= xr f (xs) is a permutation polynomial of Fq if
and only if

(i) (r,s)= 1,
(ii) (r +us/ j, l)= 1.

Proof. From Theorem 2.2, we need to show that condition (ii) is equivalent to
∑ l−1

t=0ζ
crt f (ζt)

cs = 0 for c = 1, . . . , l− 1. We have

l−1∑

t=0

ζcrt f
(
ζt
)cs =

l−1∑

t=0

ηjcrt f
(
ηjt
)cs =

l−1∑

t=0

ηjcrt
(
ηut
)cs =

l−1∑

t=0

ζc(r+us/ j)t, (4.1)

which is zero if and only if l � c(r +us/ j) for each c with 1≤ c ≤ l− 1. This is equivalent to
(r +us/ j, l)= 1. �

From now on, we consider P(x) = xr f (xs) such that f (x) = 1 + x + ··· + xk, where
r ≥ 1, k ≥ 0 and q− 1= ls for some positive integer l. We first prove two lemmas.

Lemma 4.2. Let p be an odd prime, q− 1= ls. Let f (x)= 1 + x+ ··· + xk. Then f (ζt) �= 0
for any t = 0, . . . , l− 1 if and only if (lp,k+ 1)= 1.

Proof. f (ζ0)= k+ 1 �= 0 is equivalent to (p,k+ 1)= 1. Moreover, f (ζt) �= 0 for all 1≤ t ≤
l− 1 is equivalent to (l,k+ 1)= 1. �
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Lemma 4.3. Let p be an odd prime, q− 1= ls, and α any nonzero element of Fp. Then
(i) if p ≡ − 1(mod l), and l > 1 is odd, αs = 1 in Fp.

(ii) if p ≡ − 1(mod l), l = 2l1, where l1 > 1 is odd, αs = 1 in Fp.

Proof. (i) See [10, Lemma 4.1].
(ii) Since d = (p− 1, l1) = 1, α(p−1)/d = αp−1 = 1 in Fp, and α is the l1-th power of an

element β of Fp [1, Exercise 2.14], that is, α= βl1 . Since p ≡ − 1(mod l) and l | q− 1, we

have 2 |m and thus p− 1 | (q− 1)/2. Therefore, αs = (βl1 )s = β(q−1)/2 = 1 in Fp. �

Using Theorem 4.1 we can also obtain the following result which extends [11, Theo-
rem 5.2].

Theorem 4.4. Let p be an odd prime, q− 1= ls. Assume that either (1) l > 1 is odd or (2)
l = 2l1, where l1 > 1 is odd. If p ≡ − 1(mod 2l), then the polynomial P(x) = xr(1 + xs +
··· + xks) is a permutation polynomial of Fq if and only if (r,s) = 1, (lp,k + 1) = 1 and
(r + ks/2, l)= 1.

Proof. For u= k and j = 2, let

A= η−ut f
(
ηjt
)= η(k+1)t −η−(k+1)t

ηt −η−t
. (4.2)

Since 2l | p+ 1, we have

Ap = ((ηt)k +
(
ηt
)k−1(

η−t
)

+ ··· +
(
ηt
)(
η−t

)k−1
+
(
η−t

)k)p

= (ηpt
)k

+
(
ηpt
)k−1(

η−pt
)

+ ··· +
(
ηpt
)(
η−pt

)k−1
+
(
η−pt

)k

= (η−t)k +
(
η−t

)k−1(
ηt
)

+ ··· +
(
η−t

)(
ηt
)k−1

+
(
ηt
)k

=A.

(4.3)

�

Therefore, A ∈ Fp. Then we have As = 1 by Lemma 4.3. Using Theorem 4.1, we con-
clude our result.

Note. Note that in the case that both p and l are odd, p ≡ − 1(mod 2l) is equivalent to
p ≡ − 1(mod l).
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