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Let R be a ring. Let o be an automorphism of R. We define a ¢-divided ring and prove
the following. (1) Let R be a commutative pseudovaluation ring such that x ¢ P for any
P e Spec(R[x,0]) . Then R[x,0] is also a pseudovaluation ring. (2) Let R be a o-divided
ring such that x ¢ P for any P € Spec(R[x,0]). Then R[x,0] is also a o-divided ring.
Let now R be a commutative Noetherian Q-algebra (Q is the field of rational numbers).
Let & be a derivation of R. Then we prove the following. (1) Let R be a commutative
pseudovaluation ring. Then R[x,d] is also a pseudovaluation ring. (2) Let R be a divided
ring. Then R[x, ] is also a divided ring.
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1. Introduction

All rings are associative with identity 1. Now let R be a ring. N(R) denotes the set of all
nilpotent elements of R. Z(R) denotes the centre of R. Q denotes the field of rational
numbers unless otherwise stated. We recall that as in Hedstrom and Houston [1], an
integral domain R with quotient field F, is called a pseudovaluation domain (PVD) if
each prime ideal P of R is strongly prime (ab € P, a € F, b € F implies that either a € P
or b € P). In Badawi et al. [2], the study of pseudovaluation domains was generalized to
arbitrary rings in the following way.

A prime ideal P of R is said to be strongly prime if aP and bR are comparable (under
inclusion) for all a4,b € R. A commutative ring R is said to be a pseudovaluation ring
(PVR) if each prime ideal P of R is strongly prime. We note that a commutative PVR is
quasilocal by Badawi et al. [2, Lemma 1(b)].

An integral domain is a PVR if and only if it is a PVD by Anderson [3, Proposition 3.1],
Anderson [4, Proposition 4.2], and Badawi [5, Proposition 3]. We recall that a prime ideal
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P of Ris said to be divided if it is comparable (under inclusion) to every ideal of R. A ring
R is called a divided ring if every prime ideal of R is divided. We denote the set of prime
ideals of R by Spec(R) and the set of strongly prime ideals of R by S - Spec(R).

In Badawi [6], another generalization of PVDs is given in the following way:

For a ring R with total quotient ring Q such that N(R) is a divided prime ideal of R,
let ¢ : Q — Ry(r) such that ¢(a/b) = a/b for every a € R and every b € R\Z(R). Then ¢
is a ring homomorphism from Q into Ry(r), and ¢ restricted to R is also a ring homo-
morphism from R into Ry(r) given by ¢(r) = r/1 for every r € R. Denote Ry by T. A
prime ideal P of ¢(R) is called a T-strongly prime ideal if xy € P, x € T, y € T implies
that either x € P or y € P. ¢(R) is said to be a T-pseudovaluation ring (T-PVR) if each
prime ideal of ¢(R) is T-strongly prime. A prime ideal S of R is called ¢-strongly prime
ideal if ¢(S) is a T-strongly prime ideal of ¢(R). If each prime ideal of R is ¢-strongly
prime, then R is called a ¢-pseudovaluation ring (¢-PVR).

Also recall from Badawi [7], a ring R is called a ¢-chained ring (¢-CR) if N(R) is a
divided prime ideal of R and for every a € T\¢(R), we have a~! € ¢(R). In Badawi [8,
Proposition 2.6], it is shown that if N(R) is a divided prime ideal of R, and P is a regular
¢-strongly prime ideal of R. Then the total quotient ring Q of R is ¢-CR.

This article concerns the study of skew polynomial rings over PVDs. Let R be a ring
and o be an automorphism of R. We denote the skew polynomial ring R[x,c] by S(R). If
I is an ideal of R such that I is o-stable; that is, 0(I) = I, then we denote I[x,c] by S(I).
We would like to mention that R[x, ] is the usual set of polynomials with coefficients in
R, thatis, {3} x'a;, a; € R} in which multiplication is subject to the relation ax = xo(a)
foralla e R.

Let R be a ring and ¢ be an automorphism of R. We denote the skew Laurent polyno-
mial ring R[x,x !, 0] by L(R). We would also like to mention that L(R) = {>."_, x'a;, a; €
R} in which multiplication is subject to the relation ax = xg(a) for alla € R. IfI is an ideal
of R such that o(I) = I, then we denote I[x,x~!,0] by L(I).

Let R be a ring and § be a derivation of R. We denote the differential operator ring
R[x,6] by D(R). If I is an ideal of R such that §(I) < I, then we denote I[x,8] by D(I).
We would like to mention that D(R) is the usual set of polynomials with coefficients in R,
thatis, {3} x'a;, a; € R} in which multiplication is subject to the relation ax = xa + 8(a)
foralla e R.

Ore-extensions including skew polynomial rings and differential operator rings have
been of interest to many authors. See [9-12].

We define a o-divided ring (o is an automorphism of R) in the following way.

Let R be a ring. We say that a prime ideal P of R is 0-divided if it is comparable (under
inclusion) to every o-stable ideal I of R. A ring R is called a o-divided ring if every prime
ideal of R is o-divided.

Let now R be a ring. Let ¢ be an automorphism of R. Then we prove the following.

(1) Let R be a commutative pseudovaluation ring such that x ¢ P for any P €
Spec(S(R)). Then R[x,0] is also a pseudovaluation ring.

(2) Let R be a o-divided ring such that x ¢ P for any P € Spec(S(R)). Then R[x, 0] is
also a o-divided ring.

These results are proved in Theorems 2.6 and 2.8, respectively.
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Let now R be a commutative Noetherian Q-algebra. Let § be a derivation of R. Then
we prove the following.
(1) Let R be a commutative pseudovaluation ring. Then R[x,d] is also a pseudoval-
uation ring.
(2) Let R be a divided ring. Then R[x,d] is also a divided ring.
These results are proved in Theorems 2.10 and 2.11, respectively.

2. Polynomial rings
We begin with the following known results.

LemMa 2.1. Let R be a ring. Let o be an automorphism of R.
(1) If P is a prime ideal of S(R) such that x & P, then P N R is a prime ideal of R and
o(PNR)=PNR.
(2) If Q is a prime ideal of R such that (Q) = Q, then S(Q) is a prime ideal of S(R)
and S(Q)NR=Q.

Proof. The proof follows on the same lines as in McConnell and Robson [13, 14, Lemma
10.6.4]. 0

LEmMa 2.2. Let R be a commutative Noetherian Q-algebra. Let § be a derivation of R. Then:
(1) If P is a prime ideal of D(R), then P N R is a prime ideal of R and (PN R) < PN R.
(2) If U is a prime ideal of R such that §(U) < U, then D(U) is a prime ideal of D(R)

and D(U)NR = U.

Proof. See Goodearl and Warfield [15, Theorem 2.22]. O

LemMA 2.3. Let R be a Noetherian ring. Let 0 be an automorphism of R. If I is a prime ideal
of R such that o(I) < I, then L(I) is an ideal of L(R) and if ] is an ideal of L(R), then ] N R
is an ideal of R and c(JNR) = J N R.

Proof. See Goodearl and Warfield [15, Example 2ZA]. O

Let R be a ring. Let a be an automorphism of R and p be an a-derivation of R, that is,
plab) = p(a)a(b) + ap(b), for a, b € R. Then Ore-extension R[x,a,p] is the usual set of
polynomials with coefficients in R, that is, {Z?:o x'a;, a; € R} in which multiplication is
subject to the relation ax = xa(a) +p(a) for alla € R.

TueoreM 2.4 (Hilbert Basis theorem). Let R be a right/left Noetherian ring. Let o and p be
as above. Then the ore-extension O(R) = R[x,a, p] is right/left Noetherian. Also R[x,x~!,a]
is right/left Noetherian.

Proof. See Goodearl and Warfield [15, Theorems 1.12 and 1.17]. O

ProrosITION 2.5. Let R be a ring. Let 0 be an automorphism of R and § be a o-derivation
of R. Then the following hold.
(1) For any strongly prime ideal P of R with §(P) < P and o(P) = P, O(P) = P[x,0,6]
is a strongly prime ideal of O(R).
(2) For any strongly prime ideal U of O(R), U N R is a strongly prime ideal of R.
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Proof. (1) Let P be a strongly prime ideal of R. Now let f(x) = >I' x'a; € O(R) and
g(x) = X7 ,x/bj € O(R) be such that f(x)g(x) € O(P). Suppose f(x) & O(P). We will
show that g(x) € O(P). We use induction on n and m. For n = m = 1, the verification
is easy. We check for n =2 and m = 1. Let f(x) = x>a+xb+ ¢ and g(x) = xu + v. Now
f(x)g(x) € O(P) with f(x) & O(P). The possibilities are a ¢ P or b & P or ¢ ¢ P or any
two out of these three do not belong to P or all of them do not belong to P. We verify case
by case.

Let a & P. Since x’0(a)u+ x*(8(a)u+o(b)u+av) + x(§(D)u+o(c)u+bv) + 5(c)u +
cv € O(P), we have o(a)u € P, and so u € P. Now §(a)u+o(b)u+av € P implies av € P,
and so v € P. Therefore, g(x) € O(P).

Let b ¢ P. Now o(a)u € P. Suppose u ¢ P, then o(a) € P and therefore a, §(a) € P.
Now &(a)u + a(b)u+ av € P implies that 6(b)u € P which in turn implies that b € P,
which is not the case. Therefore, we have u € P. Now §(b)u+ o (c)u+ bv € P implies that
bv € P and therefore v € P. Thus, we have g(x) € O(P).

Let ¢ ¢ P. Now o(a)u € P. Suppose u & P, then as above a, §(a) € P. Now &(a)u +
d(b)u+av € Pimplies that 6(b)u € P. Now u ¢ P implies that ¢(b) € P; thatis, b, §(b) €
P. Also §(b)u+o(c)u+bv € Pimplies o(c)u € P and therefore o(c) € P which is not the
case. Thus, we have u € P. Now §(c)u+cv € P implies cv € P, and so v € P. Therefore,
g(x) € O(P).

Now suppose that the result is true for k, n = k >2 and m = 1. We will prove for
n=k+1. Let f(x) = x g + xkag + - - - xa; + ag, and g(x) = xb; + by be such that
f(x)g(x) € O(P), but f(x) & O(P). We will show that g(x) € O(P). If a1 ¢ P, then
equating coefficients of xF2 we get 0(ak+1)b1 € P, which implies that b; € P. Now equat-
ing coefficients of x**1, we get o(ax)b; + ax+1by € P, which implies that axs1 by € P, and
therefore by € P. Hence g(x) € O(P).

Ifa; ¢ P, 0 < j <k, then using induction hypothesis, we get that g(x) € O(P). There-
fore, the statement is true for all #. Now using the same process, it can be easily seen that
the statement is true for all m also. We leave the details to the reader.

(2) Let U be a strongly prime ideal of O(R). Suppose a, b € R are such that ab € (U N
R) with a ¢ (U N R). This means that a ¢ U as a € R. Thus we have ab e (UNnR) € U,
with a € U. Therefore, we have b € U, and thus b € (U N R). O

THEOREM 2.6. Let R be a commutative PVR such that x & P for any P € Spec(S(R)). Then
S(R) is also a PVR.

Proof. Let ] € Spec(S(R)). Then by Lemma 2.1, ] "R € Spec(R) and 6(JNR) =] NR.
Now R is a commutative PVR, therefore ] N R € S - Spec(R). Now Proposition 2.5 implies
that S(J N R) € S - Spec(D(R)). Now it is easy to see that S(J N R) = J. Therefore, | €
S - Spec(D(R)). Hence, S(R) is a PVR. O

COROLLARY 2.7. Let R be a commutative Noetherian ring which is also a PVR and o(P) = P
for all P € Spec(R). Then L(R) is also a PVR.

Proof. Use Proposition 2.5 and Goodearl and Warfield [15, Example 2ZA]. O

THEOREM 2.8. Let R be a o-divided Noetherian ring such that x & P for any P € Spec(S(R)).
Then S(R) is also o-divided Noetherian.
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Proof. We note that o can be extended to an automorphism of S(R) such that o(x) = x.
Also S(R) is Noetherian by Theorem 2.4. Let J € Spec(S(R)) and 0 # K be a proper ideal
of S(R) such that ¢(K) = K. Now by McConnell and Robson [13, 14, Lemma 10.6.4],
J N R e Spec(R) and o(J N R) = (J N R). Also by McConnell and Robson [13, 14, Lemma
10.6.3], K nRisanideal of Rand 6(K N R) = (K N R). Now R is o-divided, therefore ] " R
and K N R are comparable under inclusion. Say (J N R) < (K N R). Therefore, S(J N R)
S(K N R). Thus J < K. Hence, S(R) is o-divided Noetherian. O

COROLLARY 2.9. Let R be a divided Noetherian ring and a(P) = P for all P € Spec(R). Then
L(R) is also divided.

Proof. Use Goodearl and Warfield [15, Example 2ZA]. O

THEOREM 2.10. Let R be a commutative Noetherian Q-algebra which is also a PVR. Then
D(R) is also a PVR.

Proof. Let J € Spec(D(R)). Then by Lemma 2.2, ] N R € Spec(R) and §(JnR) = J N R.
Now R is a PVR, therefore ] " R € S - Spec(R). Now Proposition 2.5 implies that D(J N
R) € S Spec(D(R)); but D(J N R) =] by Lemma 2.2. Therefore, ] € S - Spec(D(R)).
Hence D(R) is a PVR. |

THEOREM 2.11. Let R be a divided commutative Noetherian Q-algebra. Then D(R) is also
divided Noetherian.

Proof. D(R) is Noetherian by Theorem 2.4. Let ] € Spec(D(R)) and 0 # K be a proper
ideal of D(R). Now by Goodearl and Warfield [15, Theorem 2.22], ] " R € Spec(R) and
0(JNR) = (JNR). Also K N R is an ideal of R and §(K N R) = (K N R) by Goodearl and
Warfield [15, Lemma 2.18]. Now R is divided, therefore ] N R and K N R are comparable
under inclusion. Say (J N R) < (K N R). Therefore, D(J N R) € D(K N R). Thus, J < K.
Hence, D(R) is divided Noetherian. O

Question 1. Let R be a commutative PVR. Let ¢ be an automorphism of R and ¢ be a
o-derivation of R. Is O(R) = R[x,0,8] a PVR (even if R is Noetharian)?
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