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Let R be a ring. Let σ be an automorphism of R. We define a σ-divided ring and prove
the following. (1) Let R be a commutative pseudovaluation ring such that x �∈ P for any
P ∈ Spec(R[x,σ]) . Then R[x,σ] is also a pseudovaluation ring. (2) Let R be a σ-divided
ring such that x �∈ P for any P ∈ Spec(R[x,σ]). Then R[x,σ] is also a σ-divided ring.
Let now R be a commutative Noetherian Q-algebra (Q is the field of rational numbers).
Let δ be a derivation of R. Then we prove the following. (1) Let R be a commutative
pseudovaluation ring. Then R[x,δ] is also a pseudovaluation ring. (2) Let R be a divided
ring. Then R[x,δ] is also a divided ring.

Copyright © 2007 V. K. Bhat. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited.

1. Introduction

All rings are associative with identity 1. Now let R be a ring. N(R) denotes the set of all
nilpotent elements of R. Z(R) denotes the centre of R. Q denotes the field of rational
numbers unless otherwise stated. We recall that as in Hedstrom and Houston [1], an
integral domain R with quotient field F, is called a pseudovaluation domain (PVD) if
each prime ideal P of R is strongly prime (ab ∈ P, a∈ F, b ∈ F implies that either a∈ P
or b ∈ P). In Badawi et al. [2], the study of pseudovaluation domains was generalized to
arbitrary rings in the following way.

A prime ideal P of R is said to be strongly prime if aP and bR are comparable (under
inclusion) for all a,b ∈ R. A commutative ring R is said to be a pseudovaluation ring
(PVR) if each prime ideal P of R is strongly prime. We note that a commutative PVR is
quasilocal by Badawi et al. [2, Lemma 1(b)].

An integral domain is a PVR if and only if it is a PVD by Anderson [3, Proposition 3.1],
Anderson [4, Proposition 4.2], and Badawi [5, Proposition 3]. We recall that a prime ideal
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P of R is said to be divided if it is comparable (under inclusion) to every ideal of R. A ring
R is called a divided ring if every prime ideal of R is divided. We denote the set of prime
ideals of R by Spec(R) and the set of strongly prime ideals of R by S · Spec(R).

In Badawi [6], another generalization of PVDs is given in the following way:
For a ring R with total quotient ring Q such that N(R) is a divided prime ideal of R,

let φ : Q→ RN(R) such that φ(a/b) = a/b for every a ∈ R and every b ∈ R\Z(R). Then φ
is a ring homomorphism from Q into RN(R), and φ restricted to R is also a ring homo-
morphism from R into RN(R) given by φ(r) = r/1 for every r ∈ R. Denote RN(R) by T . A
prime ideal P of φ(R) is called a T-strongly prime ideal if xy ∈ P, x ∈ T , y ∈ T implies
that either x ∈ P or y ∈ P. φ(R) is said to be a T-pseudovaluation ring (T-PVR) if each
prime ideal of φ(R) is T-strongly prime. A prime ideal S of R is called φ-strongly prime
ideal if φ(S) is a T-strongly prime ideal of φ(R). If each prime ideal of R is φ-strongly
prime, then R is called a φ-pseudovaluation ring (φ-PVR).

Also recall from Badawi [7], a ring R is called a φ-chained ring (φ-CR) if N(R) is a
divided prime ideal of R and for every a ∈ T\φ(R), we have a−1 ∈ φ(R). In Badawi [8,
Proposition 2.6], it is shown that if N(R) is a divided prime ideal of R, and P is a regular
φ-strongly prime ideal of R. Then the total quotient ring Q of R is φ-CR.

This article concerns the study of skew polynomial rings over PVDs. Let R be a ring
and σ be an automorphism of R. We denote the skew polynomial ring R[x,σ] by S(R). If
I is an ideal of R such that I is σ-stable; that is, σ(I)= I , then we denote I[x,σ] by S(I).
We would like to mention that R[x,σ] is the usual set of polynomials with coefficients in
R, that is, {∑n

i=0 x
iai, ai ∈ R} in which multiplication is subject to the relation ax = xσ(a)

for all a∈ R.
Let R be a ring and σ be an automorphism of R. We denote the skew Laurent polyno-

mial ringR[x,x−1,σ] by L(R). We would also like to mention that L(R)= {∑n
i=−mxiai, ai ∈

R} in which multiplication is subject to the relation ax = xσ(a) for all a∈ R. If I is an ideal
of R such that σ(I)= I , then we denote I[x,x−1,σ] by L(I).

Let R be a ring and δ be a derivation of R. We denote the differential operator ring
R[x,δ] by D(R). If I is an ideal of R such that δ(I) ⊆ I , then we denote I[x,δ] by D(I).
We would like to mention that D(R) is the usual set of polynomials with coefficients in R,
that is, {∑n

i=0 x
iai, ai ∈ R} in which multiplication is subject to the relation ax = xa+ δ(a)

for all a∈ R.
Ore-extensions including skew polynomial rings and differential operator rings have

been of interest to many authors. See [9–12].
We define a σ-divided ring (σ is an automorphism of R) in the following way.
Let R be a ring. We say that a prime ideal P of R is σ-divided if it is comparable (under

inclusion) to every σ-stable ideal I of R. A ring R is called a σ-divided ring if every prime
ideal of R is σ-divided.

Let now R be a ring. Let σ be an automorphism of R. Then we prove the following.
(1) Let R be a commutative pseudovaluation ring such that x /∈ P for any P ∈

Spec(S(R)). Then R[x,σ] is also a pseudovaluation ring.
(2) Let R be a σ-divided ring such that x /∈ P for any P ∈ Spec(S(R)). Then R[x,σ] is

also a σ-divided ring.
These results are proved in Theorems 2.6 and 2.8, respectively.
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Let now R be a commutative Noetherian Q-algebra. Let δ be a derivation of R. Then
we prove the following.

(1) Let R be a commutative pseudovaluation ring. Then R[x,δ] is also a pseudoval-
uation ring.

(2) Let R be a divided ring. Then R[x,δ] is also a divided ring.
These results are proved in Theorems 2.10 and 2.11, respectively.

2. Polynomial rings

We begin with the following known results.

Lemma 2.1. Let R be a ring. Let σ be an automorphism of R.
(1) If P is a prime ideal of S(R) such that x /∈ P, then P∩R is a prime ideal of R and

σ(P∩R)= P∩R.
(2) If Q is a prime ideal of R such that σ(Q) = Q, then S(Q) is a prime ideal of S(R)

and S(Q)∩R=Q.

Proof. The proof follows on the same lines as in McConnell and Robson [13, 14, Lemma
10.6.4]. �

Lemma 2.2. Let R be a commutative Noetherian Q-algebra. Let δ be a derivation of R. Then:
(1) If P is a prime ideal of D(R), then P∩R is a prime ideal of R and δ(P∩R)⊆ P∩R.
(2) If U is a prime ideal of R such that δ(U)⊆U , then D(U) is a prime ideal of D(R)

and D(U)∩R=U .

Proof. See Goodearl and Warfield [15, Theorem 2.22]. �

Lemma 2.3. Let R be a Noetherian ring. Let σ be an automorphism of R. If I is a prime ideal
of R such that σ(I)⊆ I , then L(I) is an ideal of L(R) and if J is an ideal of L(R), then J ∩R
is an ideal of R and σ(J ∩R)⊆ J ∩R.

Proof. See Goodearl and Warfield [15, Example 2ZA]. �

Let R be a ring. Let α be an automorphism of R and ρ be an α-derivation of R, that is,
ρ(ab) = ρ(a)α(b) + aρ(b), for a, b ∈ R. Then Ore-extension R[x,α,ρ] is the usual set of
polynomials with coefficients in R, that is, {∑n

i=0 x
iai, ai ∈ R} in which multiplication is

subject to the relation ax = xα(a) + ρ(a) for all a∈ R.

Theorem 2.4 (Hilbert Basis theorem). Let R be a right/left Noetherian ring. Let α and ρ be
as above. Then the ore-extension O(R)= R[x,α,ρ] is right/left Noetherian. Also R[x,x−1,α]
is right/left Noetherian.

Proof. See Goodearl and Warfield [15, Theorems 1.12 and 1.17]. �

Proposition 2.5. Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation
of R. Then the following hold.

(1) For any strongly prime ideal P of R with δ(P)⊆ P and σ(P)= P, O(P)= P[x,σ ,δ]
is a strongly prime ideal of O(R).

(2) For any strongly prime ideal U of O(R), U ∩R is a strongly prime ideal of R.
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Proof. (1) Let P be a strongly prime ideal of R. Now let f (x) =∑n
i=0 x

iai ∈ O(R) and
g(x) =∑m

j=0 x
jbj ∈ O(R) be such that f (x)g(x) ∈ O(P). Suppose f (x) /∈ O(P). We will

show that g(x) ∈ O(P). We use induction on n and m. For n =m = 1, the verification
is easy. We check for n = 2 and m = 1. Let f (x) = x2a+ xb + c and g(x) = xu+ v. Now
f (x)g(x)∈ O(P) with f (x) /∈ O(P). The possibilities are a /∈ P or b /∈ P or c /∈ P or any
two out of these three do not belong to P or all of them do not belong to P. We verify case
by case.

Let a /∈ P. Since x3σ(a)u + x2(δ(a)u + σ(b)u + av) + x(δ(b)u + σ(c)u + bv) + δ(c)u +
cv ∈O(P), we have σ(a)u∈ P, and so u∈ P. Now δ(a)u+ σ(b)u+ av ∈ P implies av ∈ P,
and so v ∈ P. Therefore, g(x)∈O(P).

Let b /∈ P. Now σ(a)u ∈ P. Suppose u /∈ P, then σ(a) ∈ P and therefore a, δ(a) ∈ P.
Now δ(a)u + σ(b)u + av ∈ P implies that σ(b)u ∈ P which in turn implies that b ∈ P,
which is not the case. Therefore, we have u∈ P. Now δ(b)u+ σ(c)u+ bv ∈ P implies that
bv ∈ P and therefore v ∈ P. Thus, we have g(x)∈O(P).

Let c /∈ P. Now σ(a)u ∈ P. Suppose u /∈ P, then as above a, δ(a) ∈ P. Now δ(a)u +
σ(b)u+ av ∈ P implies that σ(b)u∈ P. Now u /∈ P implies that σ(b)∈ P; that is, b, δ(b)∈
P. Also δ(b)u+ σ(c)u+ bv ∈ P implies σ(c)u∈ P and therefore σ(c)∈ P which is not the
case. Thus, we have u ∈ P. Now δ(c)u+ cv ∈ P implies cv ∈ P, and so v ∈ P. Therefore,
g(x)∈O(P).

Now suppose that the result is true for k, n = k > 2 and m = 1. We will prove for
n = k + 1. Let f (x) = xk+1ak+1 + xkak + ···xa1 + a0, and g(x) = xb1 + b0 be such that
f (x)g(x) ∈ O(P), but f (x) /∈ O(P). We will show that g(x) ∈ O(P). If ak+1 /∈ P, then
equating coefficients of xk+2, we get σ(ak+1)b1 ∈ P, which implies that b1 ∈ P. Now equat-
ing coefficients of xk+1, we get σ(ak)b1 + ak+1b0 ∈ P, which implies that ak+1b0 ∈ P, and
therefore b0 ∈ P. Hence g(x)∈O(P).

If aj /∈ P, 0≤ j ≤ k, then using induction hypothesis, we get that g(x)∈O(P). There-
fore, the statement is true for all n. Now using the same process, it can be easily seen that
the statement is true for all m also. We leave the details to the reader.

(2) Let U be a strongly prime ideal of O(R). Suppose a, b ∈ R are such that ab ∈ (U ∩
R) with a /∈ (U ∩R). This means that a /∈ U as a ∈ R. Thus we have ab ∈ (U ∩R) ⊆ U ,
with a /∈U . Therefore, we have b∈U , and thus b∈ (U ∩R). �

Theorem 2.6. Let R be a commutative PVR such that x /∈ P for any P ∈ Spec(S(R)). Then
S(R) is also a PVR.

Proof. Let J ∈ Spec(S(R)). Then by Lemma 2.1, J ∩ R ∈ Spec(R) and σ(J ∩ R) = J ∩ R.
Now R is a commutative PVR, therefore J ∩R∈ S · Spec(R). Now Proposition 2.5 implies
that S(J ∩ R) ∈ S · Spec(D(R)). Now it is easy to see that S(J ∩ R) = J . Therefore, J ∈
S · Spec(D(R)). Hence, S(R) is a PVR. �

Corollary 2.7. Let R be a commutative Noetherian ring which is also a PVR and σ(P)= P
for all P ∈ Spec(R). Then L(R) is also a PVR.

Proof. Use Proposition 2.5 and Goodearl and Warfield [15, Example 2ZA]. �

Theorem 2.8. Let R be a σ-divided Noetherian ring such that x /∈ P for any P∈Spec(S(R)).
Then S(R) is also σ-divided Noetherian.
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Proof. We note that σ can be extended to an automorphism of S(R) such that σ(x) = x.
Also S(R) is Noetherian by Theorem 2.4. Let J ∈ Spec(S(R)) and 0 �= K be a proper ideal
of S(R) such that σ(K) = K . Now by McConnell and Robson [13, 14, Lemma 10.6.4],
J ∩R∈ Spec(R) and σ(J ∩R)= (J ∩R). Also by McConnell and Robson [13, 14, Lemma
10.6.3],K ∩R is an ideal ofR and σ(K ∩R)= (K ∩R). NowR is σ-divided, therefore J ∩R
and K ∩R are comparable under inclusion. Say (J ∩R)⊆ (K ∩R). Therefore, S(J ∩R)⊆
S(K ∩R). Thus J ⊆ K . Hence, S(R) is σ-divided Noetherian. �

Corollary 2.9. Let R be a divided Noetherian ring and σ(P)= P for all P ∈ Spec(R). Then
L(R) is also divided.

Proof. Use Goodearl and Warfield [15, Example 2ZA]. �

Theorem 2.10. Let R be a commutative Noetherian Q-algebra which is also a PVR. Then
D(R) is also a PVR.

Proof. Let J ∈ Spec(D(R)). Then by Lemma 2.2, J ∩ R ∈ Spec(R) and δ(J ∩ R) ⊆ J ∩ R.
Now R is a PVR, therefore J ∩R ∈ S · Spec(R). Now Proposition 2.5 implies that D(J ∩
R) ∈ S · Spec(D(R)); but D(J ∩ R) = J by Lemma 2.2. Therefore, J ∈ S · Spec(D(R)).
Hence D(R) is a PVR. �

Theorem 2.11. Let R be a divided commutative Noetherian Q-algebra. Then D(R) is also
divided Noetherian.

Proof. D(R) is Noetherian by Theorem 2.4. Let J ∈ Spec(D(R)) and 0 �= K be a proper
ideal of D(R). Now by Goodearl and Warfield [15, Theorem 2.22], J ∩R ∈ Spec(R) and
δ(J ∩R)⊆ (J ∩R). Also K ∩R is an ideal of R and δ(K ∩R)⊆ (K ∩R) by Goodearl and
Warfield [15, Lemma 2.18]. Now R is divided, therefore J ∩R and K ∩R are comparable
under inclusion. Say (J ∩ R) ⊆ (K ∩ R). Therefore, D(J ∩ R) ⊆ D(K ∩ R). Thus, J ⊆ K .
Hence, D(R) is divided Noetherian. �

Question 1. Let R be a commutative PVR. Let σ be an automorphism of R and δ be a
σ-derivation of R. Is O(R)= R[x,σ ,δ] a PVR (even if R is Noetharian)?
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