
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2007, Article ID 18915, 24 pages
doi:10.1155/2007/18915

Research Article
A Comparison of Deformations and Geometric Study of
Varieties of Associative Algebras

Abdenacer Makhlouf

Received 13 May 2005; Accepted 7 February 2007

Recommended by Howard E. Bell

The aim of this paper is to give an overview and to compare the different deformation
theories of algebraic structures. In each case we describe the corresponding notions of
degeneration and rigidity. We illustrate these notions by examples and give some general
properties. The last part of this work shows how these notions help in the study of vari-
eties of associative algebras. The first and popular deformation approach was introduced
by M. Gerstenhaber for rings and algebras using formal power series. A noncommutative
version was given by Pinczon and generalized by F. Nadaud. A more general approach
called global deformation follows from a general theory by Schlessinger and was devel-
oped by A. Fialowski in order to deform infinite-dimensional nilpotent Lie algebras. In
a nonstandard framework, M. Goze introduced the notion of perturbation for studying
the rigidity of finite-dimensional complex Lie algebras. All these approaches share the
common fact that we make an “extension” of the field. These theories may be applied to
any multilinear structure. In this paper, we will be dealing with the category of associative
algebras.

Copyright © 2007 Abdenacer Makhlouf. This is an open access article distributed under
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1. Introduction

Throughout this paper K will be an algebraically closed field, and � denotes an asso-
ciative K-algebra. Most examples will be finite dimensional, let V be the underlying n-
dimensional vector space of � over K and (e1, . . . ,en) be a basis of V . The bilinear map
μ denotes the multiplication of � on V , and e1 is the unit element. By linearity this can
be done by specifying the n3 structure constants Cki j ∈Kwhere μ(ei,ej)=

∑n
k=1C

k
i jek. The

associativity condition limits the sets of structure constants, Cki j , to a subvariety of Kn3
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which we denote by algn. It is generated by the polynomial relations

n∑

l=1

Cli jC
s
lk −CsilCljk = 0, C

j
1i = Cj

i1 = δ ji , 1≤ i, j,k,s≤ n. (1.1)

This variety is quadratic, nonregular, and in general nonreduced. The natural action of
the group GL(n,K) corresponds to the change of basis: two algebras μ1 and μ2 over V are
isomorphic if there exists f in GL(n,K) such that

∀X ,Y ∈V , μ2(X ,Y)= ( f ·μ1
)
(X ,Y)= f −1(μ1

(
f (X), f (Y)

))
. (1.2)

The orbit of an algebra � with multiplication μ0, denoted by ϑ(μ0), is the set of all its
isomorphic algebras. The deformation techniques are used to do the geometric study of
these varieties. The deformation attempts to understand which algebra we can get from
the original one by deforming. At the same time it gives more information about the
structure of the algebra, for example, we can try to see which properties are stable under
deformation.

The deformation of mathematical objects is one of the oldest techniques used by math-
ematicians. The different areas where the notion of deformation appears are geometry,
complex manifolds (Kodaira and Spencer 1958, Kuranishi 1962), algebraic manifolds
(Artin [1] and Schlessinger [2]), Lie algebras (Nijenhuis and Richardson [3]) and rings
and associative algebras (Gerstenhaber [4]). The dual notion of deformation (in some
sense) is the notion of degeneration which appears first in the physics literature (Segal
1951, Inonu and Wigner [5]). Degeneration is also called specialization or contraction.

The quantum mechanics and the theory of quantum groups had a large impact on the
theory of deformation. The theory of deformation quantization was introduced by Bayen
et al. [6–8] to describe the quantum mechanics as a deformation of classical mechanics.
To a given Poisson manifold a star-product is associated, which is a one parameter family
of associative algebras. On the other hand, the quantum groups are obtained by deform-
ing the Hopf structure of an algebra, in particular universal enveloping algebras. In [9],
we show the existence of associative deformation of a universal enveloping algebra using
the linear Poisson structure of the Lie algebra.

In the following, we will first recall the different notions of deformation. The most
frequently used one is the formal deformation introduced by Gerstenhaber for rings
and algebras [4, 10, 11], it uses a formal series and links the theory of deformation to
Hochschild cohomology. A noncommutative version, where the parameter no longer
commutes with the element of algebra, was introduced by Pinczon [12] and generalized
by Nadaud [13]. They describe the corresponding cohomology and show that the Weyl al-
gebra, which is rigid for formal deformation, is nonrigid in the noncommutative case. In
a nonstandard framework, Goze et al. introduced the notion of perturbation for study-
ing the rigidity of Lie algebras [14, 15], it was also used to describe the 6-dimensional
rigid associative algebras [16, 17]. The perturbation needs the concept of infinitely small
elements, these elements are obtained here in an algebraic way. We construct an exten-
sion of the set of real or complex numbers containing these elements. A more general
notion called global deformation was introduced by Fialowski, following Schlessinger,
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for Lie algebras [18]. All these approaches are compared in Section 2 and compared in
Section 3. Section 4 is devoted to universal and versal deformations. In Section 5, we de-
scribe the corresponding notions of degeneration with some general properties and ex-
amples. Section 6 is devoted to the study of rigidity of algebra in each framework. The
last section concerns the geometric study of the algebraic varieties algn using deforma-
tion tools.

In formal deformations the properties are described using Hochschild cohomology
groups. The global deformation seems to be the good framework to solve the problem of
universal or versal deformations, the deformations which generate the others. Neverthe-
less, the perturbation approach is sometimes more adapted to direct computation.

2. The world of deformations

2.1. Gerstenhaber’s formal deformation. Let � be an associative algebra over a fieldK,
V the underlying vector space, and μ0 the multiplication.

Let K[[t]] be the power series ring in one variable t and V[[t]] be the extension of V
by extending the coefficients domain from K to K[[t]]. Then V[[t]] is a K[[t]]-module
and V[[t]]= V⊗KK[[t]] when V is finite dimensional. Note that V is a submodule of
V[[t]]. We can obtain an extension of V with a structure of vector space by extending the
coefficients domain from K to K((t)), the field of formal Laurent series K[[t]].

Any bilinear map f : V ×V → V (in particular the multiplication in �) can be ex-
tended to a bilinear map from V[[t]]×V[[t]] to V[[t]].

Definition 2.1. Let μ0 be the multiplication of the associative algebra �. A deformation of
μ0 is a one parameter family μt in K[[t]]⊗V over the formal power series ring K[[t]] of
the form μt = μ0 + tμ1 + t2μ2 + ··· where μi ∈Hom(V ×V ,V) (bilinear maps) satisfying
the (formally) condition of associativity:

∀X ,Y ,Z ∈V , μt
(
μt(X ,Y),Z

)= μt
(
X ,μt(Y ,Z)

)
. (2.1)

We note that the deformation of � is aK-algebra structure on �[[t]] such that �[[t]]/
t�[[t]] is isomorphic to �.

The previous equation is equivalent to an infinite system of equations, and it is called
the deformation equation. The resolution of the deformation equation links deformation
theory to Hochschild cohomology. Let Cd(�,�) be the space of d-cochains, the space of
multilinear maps from V×d to V .

The coboundary operator δd, which we denote by δ if there is no ambiguity,

δd : Cd(�,�)−→ Cd+1(�,�), ϕ−→ δdϕ (2.2)

is defined for (x1, . . . ,xd+1)∈V×(d+1) by

δdϕ
(
x1, . . . ,xd+1

)= μ0
(
x1,ϕ

(
x2, . . . ,xd+1

))
+

d∑

i=1

(−1)iϕ
(
x1, . . . ,μ0

(
xi,xi+1

)
, . . . ,xd

)

+ (−1)d+1μ0
(
ϕ
(
x1, . . . ,xd

)
,xd+1

)
.

(2.3)
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The group of d-cocycles is Zd(�,�)= {ϕ∈ Cd(�,�) : δdϕ= 0}.
The group of d-coboundaries is

Bd(�,�)= {ϕ∈ Cd(�,�) : ϕ= δd−1 f , f ∈ Cd−1(�,�)
}
. (2.4)

The dth Hochschild cohomology group of the algebra � with coefficients in � is given
by

Hd(�,�)= Zd(�,�)
Bd(�,�)

. (2.5)

We define two maps ◦ and [·,·]G:

◦, [·,·]G : Cd(�,�)×Ce(�,�)−→ Cd+e−1(�,�) (2.6)

by

(ϕ◦ψ)
(
a1, . . . ,ad+e−1

)=
d−1∑

i=0

(−1)i(e−1)ϕ
(
a1, . . . ,ai,ψ

(
ai+1, . . . ,ai+e

)
, . . .
)
,

[ϕ,ψ]G = ϕ◦ψ− (−1)(e−1)(d−1)ψ ◦ϕ.
(2.7)

The space (C(�,�),◦) is a pre-Lie algebra (see [4, 10, 11] for the definition) and
(C(�,�)[·,·]G) is a graded Lie algebra (Lie superalgebra). The bracket [·,·]G is called
Gerstenhaber’s bracket. The square of [μ0,·]G vanishes and defines the 2-coboundary
operator. Up to a global sign, the multiplication μ0 of � is associative if [μ0,μ0]G = 0.

Now, we discuss the deformation equation in terms of cohomology. The deformation
equation may be written

k∑

i=0

μi ◦μk−i = 0, k = 0,1,2, . . . . (∗)

The first equation (k = 0) is the associativity condition for μ0. The second equation shows
that μ1 must be a 2-cocycle for Hochschild cohomology (μ1 ∈ Z2(�,�)).

More generally, suppose that μp is the first nonzero coefficient after μ0 in the defor-
mation μt. This μp is called the infinitesimal of μt and is a 2-cocycle of the Hochschild
cohomology of � with coefficients in itself.

The cocycle μp is called integrable if it is the first term, after μ0, of an associative deforma-
tion.

The integrability of μp implies an infinite sequence of relations which may be inter-
preted as the vanishing of the obstruction to the integration of μp.

For an arbitrary k > 1, the kth equation of the system (∗) may be written

δμk =
k−1∑

i=1

μi ◦μk−i. (2.8)

Suppose that the truncated deformation μt = μ0 + tμ1 + t2μ2 + ··· + tm−1μm−1 satisfies
the deformation equation. The truncated deformation is extended to a deformation of
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order m, that is, μt = μ0 + tμ1 + t2μ2 + ···+ tm−1μm−1 + tmμm, satisfying the deformation
equation if

δμm =
m−1∑

i=1

μi ◦μm−i. (2.9)

The right-hand side of this equation is called the obstruction to find μm extending the
deformation.

The obstruction is a Hochschild 3-cocycle. Then, if H3(�,�)= 0, it follows that all ob-
structions vanish and every μm ∈ Z2(�,�) is integrable.

Given two associative deformations μt and μ′t of μ0, we say that they are equivalent if
there is a formal isomorphism Ft which is a K[[t]]-linear map that may be written in the
form

Ft = id+ t f1 + t2 f2 + ··· , where fi ∈ EndK(V), (2.10)

such that μt = Ft ·μ′t defined by

μt(X ,Y)= F−1
t (μ′t

((
Ft(X),Ft(Y)

))) ∀X ,Y ∈V. (2.11)

A deformation μt of μ0 is called trivial if and only if μt is equivalent to μ0.

Proposition 2.2. Every nontrivial deformation μt of μ0 is equivalent to μt = μ0 + tpμ′p +
tp+1μ′p+1 + ··· where μ′p ∈ Z2(�,�) and μ′p /∈ B2(�,�).

Then we have this fundamental and well-known theorem.

Theorem 2.3. IfH2(�,�)= 0, then all formal deformations of � are equivalent to a trivial
deformation.

Remark 2.4. The notion of formal deformation is extended to coalgebras and bialgebras
in [19].

2.2. Noncommutative formal deformation. In the aforementioned formal deformation
the parameter commutes with the elements of original algebra. Motivated by some non-
classical deformation appearing in the quantization of Nambu mechanics, Pinczon intro-
duced a deformation called noncommutative deformation where the parameter no longer
commutes with the original algebra. He also developed the associated cohomology [12].

Let � be a K-vector space and let σ be an endomorphism of �. We give �[[t]] a
K[[t]]-bimodule structure defined for every ap ∈�,λq ∈K by

∑

p≥0

apt
p ·
∑

q≥0

λqt
q =

∑

p,q≥0

λqapt
p+q,

∑

q≥0

λqt
q ·
∑

p≥0

apt
p =

∑

p,q≥0

λqσ
q
(
ap
)
tp+q.

(2.12)
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Definition 2.5. A σ-deformation of an algebra � is aK-algebra structure on �[[t]] which
is compatible with the previous K[[t]]-bimodule structure and such that

�∼=�
[
[t]
]/(

�
[
[t]
]
t
)
. (2.13)

The previous deformations were generalized by Nadaud in [13] where he considered
deformations based on two commuting endomorphisms σ and τ. The K[[t]]-bimodule
structure on �[[t]] is defined for a ∈� by the formulas t · a = σ(a)t and a · t = τ(a)t,
(a · t being the right action of t on a).

The remarkable difference with commutative deformations is that the Weyl algebra of
differential operators with polynomial coefficients over R is rigid for commutative defor-
mations but has a nontrivial noncommutative deformation; it is given by the enveloping
algebra of the Lie superalgebra osp(1,2).

2.3. Global deformation. The approach follows from a general fact in Schlessinger’s
works [2] and was developed by Fialowski [20]. She applies it to construct deformations
of Lie subalgebras of the Witt algebra. We summarize the notion of global deformations
in the case of an associative algebra. Let B be a commutative unital algebra over a field K
of characteristic 0 and augmentation morphism ε : �→K (aK-algebra homomorphism,
ε(1B)= 1). We set mε = Ker(ε); mε is a maximal ideal of B. (A maximal ideal m of B such
that �/m∼=K defines naturally an augmentation.) We call (B,m) base of deformation.

Definition 2.6. A global deformation of base (B,m) of an algebra � with a multiplication
μ is a structure of B-algebra on the tensor product B

⊗
K� with a multiplication μB such

that ε⊗ id : B⊗�→K⊗� =� is an algebra homomorphism. That is, for all a,b ∈ B
and for all x, y ∈�,

(1) μB(a⊗ x,b⊗ y)= (ab⊗ id)μB(1⊗ x,1⊗ y) (B-linearity),
(2) the multiplication μB is associative,
(3) ε⊗ id(μB(1⊗ x,1⊗ y))= 1⊗μ(x, y).

Remark 2.7. Condition (1) shows that to describe a global deformation it is enough to
know the products μB(1⊗ x,1⊗ y), where x, y ∈�. The conditions (1) and (2) show
that the algebra is associative and the last condition insures the compatibility with the
augmentation. We deduce

μB(1⊗ x,1⊗ y)= 1⊗μ(x, y) +
∑

i

αi⊗ zi with αi ∈m, zi ∈�. (2.14)

2.3.1. Equivalence and push-out.
(a) A global deformation is called trivial if the structure of B-algebra on B

⊗
K�

satisfies μB(1⊗ x,1⊗ y)= 1⊗μ(x, y).
(b) Two deformations of an algebra with the same base are called equivalent (or

isomorphic) if there exists an algebra isomorphism between the two copies of
B
⊗

K�, compatible with ε⊗ id.
(c) A global deformation with base (B,m) is called local if B is a local K-algebra

with a unique maximal idealmB. If in addition m2
B = 0, the deformation is called

infinitesimal.
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(d) Let B′ be another commutative algebra over K with augmentation ε′ : B′ → K
and Φ : B→ B′ an algebra homomorphism such that Φ(1B)= 1B′ and ε′ ◦Φ= ε.
If a deformation μB with a base (B,Ker(ε)) of � is given, we call push-out μB′ =
Φ∗μB a deformation of � with a base (B′,Ker(ε′)) with the following algebra
structure on B′ ⊗�= (B′

⊗
BB)⊗�= B′⊗B(B⊗�):

μB′
(

a′1



B

(
a1⊗ x1

)
,a′2



B

(
a2⊗ x2

)
)

:= a′1a′2



B

μB
(
a1⊗ x1,a2⊗ x2

)
(2.15)

with a′1,a′2 ∈ B′, a1,a2 ∈ B, x1,x2 ∈�. The algebra B′ is viewed as a B-module
with the structure aa′ = a′Φ(a). Suppose that

μB(1⊗ x,1⊗ y)= 1⊗μ(x, y) +
∑

i

αi⊗ zi (2.16)

with αi ∈m, zi ∈�, then

μB′(1⊗ x,1⊗ y)= 1⊗μ(x, y) +
∑

i

Φ
(
αi
)⊗ zi. (2.17)

2.3.2. Coalgebra and Hopf algebra global deformation. The global deformation may be
extended to coalgebra structures, then to Hopf algebras. Let � be a coalgebra over K,
defined by the comultiplication Δ : �→ �⊗C. Let B be a commutative algebra over K
and let ε be an augmentation ε : B→K with m= Ker(ε) a maximal ideal.

A global deformation with base (B,m) of coalgebra C with a comultiplication Δ is
a structure of B-coalgebra on the tensor product B

⊗
K� with the comultiplication ΔB

such that ε⊗ id : B⊗�→K⊗�=� is a coalgebra homomorphism, that is, for all a∈ B
and for all x ∈�,

(1) ΔB(a⊗ x)= aΔB(1⊗ x),
(2) the comultiplication ΔB is coassociative,
(3) (ε⊗ id)⊗ (ε⊗ id)(ΔB(1⊗ x))= 1⊗Δ(x).

The comultiplication ΔB may be written for all x as

ΔB(1⊗ x)= 1⊗Δ(x) +
∑

i

αi⊗ zi⊗ z′i with αi ∈m, zi,z′i ∈�. (2.18)

2.3.3. Equivalence and push-out for coalgebras. Two global deformations of a coalgebra
with the same base are called equivalent (or isomorphic) if there exists a coalgebra iso-
morphism between the two copies of B

⊗
K�, compatible with ε⊗ id.

Let B′ be another commutative algebra over K as in Section 2.3.1. If ΔB is a global
deformation with a base (B,Ker(ε)) of a coalgebra �, we call push-out ΔB′ = Φ∗ΔB a
global deformation with a base (B′,Ker(ε′)) of � with the following coalgebra structure
on B′ ⊗�= (B′

⊗
BB)⊗�= B′⊗B(B⊗�):

ΔB′
(
a′ ⊗B a⊗ x := a′ ⊗B ΔB(a⊗ x)

)
(2.19)
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with a′ ∈ B′, a ∈ B, x ∈ �. The algebra B′ is viewed as a B-module with the structure
aa′ = a′Φ(a). Suppose that

ΔB(1⊗ x)= 1⊗Δ(x) +
∑

i

αi⊗ zi⊗ z′i (2.20)

with αi ∈m, zi ∈�, then

ΔB′(1⊗ x)= 1⊗Δ(x) +
∑

i

Φ
(
αi
)⊗ zi⊗ z′i . (2.21)

2.3.4. Hopf algebra global deformation. In a natural way, we can define Hopf algebra
global deformation from the algebra and coalgebra global deformation.

2.3.5. Valued global deformation. In [21], Goze and Remm considered the case where
the base algebra B is a commutative K-algebra equipped with a valuation such that the
residual field B/m is isomorphic to K, where m is the maximal ideal (recall that B is a
valuation ring of a field F if B is a local integral domain satisfying x ∈ F\B which implies
x−1 ∈m). Such deformations are called valued global deformations.

2.4. Perturbation theory. The perturbation theory over the field of complex numbers is
based on an enlargement of the field of real numbers with the same algebraic order prop-
erties asR. The nonstandard extensionR� ofR induces the existence of infinitesimal ele-
ment inC�, hence in (Cn)�. The “infinitely small number” and “unlimited number” have
a long historical tradition (Euclid, Eudoxe, Archimedes, . . . , Cavalieri, Galilei, . . . , Leibniz,
Newton). The infinitesimal methods were considered in heuristic and intuitive way until
1960 when Robinson gave a rigorous foundation to these methods [22]. He used meth-
ods of mathematical logic and constructed a nonstandard model for real numbers. How-
ever, there exist other frames for infinitesimal methods (see [23–25]). In order to study
the local properties of complex Lie algebras, Goze introduced in 1980 the notion of per-
turbation of algebraic structures (see [14]) in Nelson’s framework [23]. The description
given here is more algebraic, it is based on Robinson’s framework. First, we summarize
a description of the field of hyperreals and then we define the perturbation notion over
hypercomplex numbers.

2.4.1. Field of hyperreals and their properties. The construction of hyperreal numbers sys-
tem needs four axioms. They induce a triple (R,R�,�) where R is the real field, R� is
the hyperreal field, and� is a natural mapping.

Axiom 1. R is a complete ordered field.

Axiom 2. R� is a proper ordered field extension of R.

Axiom 3. For each real function f of n variables, there is a corresponding hyperreal func-
tion f � of n variables, called natural extension of f . The field operations of R� are the
natural extensions of the field operations of R.

Axiom 4. If two systems of formulae have exactly the same real solutions, they have exactly
the same hyperreal solutions.
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The following theorem shows that such extension exists.

Theorem 2.8. Let R be the ordered field of real numbers. There is an ordered field extension
R� of R and a mapping � from real functions to hyperreal functions such that Axioms 1–4
hold.

In the proof, the plan is to find an infinite set M of formulas ϕ(x) which describe all
properties of a positive infinitesimal x, and to built R� out of this set of formulas. See
[26, pages 23-24] for a complete proof.

Definition 2.9. (1) x ∈R� is called infinitely small or infinitesimal if |x| < r for all r ∈R+.
(2) x ∈R� is called limited if there exists r ∈R such that |x| < r.
(3) x ∈R� is called unlimited or infinitely large if |x| > r for all r ∈R.
(4) Two elements x and y of R� are called infinitely close (x � y) if x− y is infinitely

small.

Definition 2.10. Given a hyperreal number x ∈R�, we set the following:

halo(x)= {y ∈R�, x � y},
galaxy(x)= {y ∈R�, x− y is limited}.

In particular, halo(0) is the set of infinitely small elements of R� and galaxy(0) is the
set of limited hyperreal numbers which we denote by R�L .

Proposition 2.11. (1) R�L and halo(0) are subrings of R�.
(2) halo(0) is a maximal ideal in R�L .

Proof. (1) The first property is easy to prove. (2) Let η � 0 and a ∈ R, then there exists
t ∈R such that |a| < t and for all r ∈R, |η| < r/t, thus |aη| < r. Therefore, aη ∈R�L and
halo(0) is an ideal in R�L . Let us show that the ideal is maximal. We note that x ∈ R�
is unlimited, is equivalent to x−1 infinitely small. Assume that there exists an ideal I in
R�L containing halo(0) and let a ∈ I \ halo(0), we have a−1 ∈ R�L , thus 1 = aa−1 ∈ I , so
I ≡R�L . �

The following theorem shows that there is a ring homomorphism of R�L onto the field
of real numbers.

Theorem 2.12. Every x of R�L admits a unique x0 in R (called standard part of x and
denoted by st(x)) such that x � x0.

Proof. Let x ∈R�L , assume that there exist two real numbers r and s such that x � r and
x � s, this implies that r − s � 0. Since the unique infinitesimal real number is 0, then
r = s. To show the existence, set X = {s∈R : s < x}. Then X �= ∅ and X < r, where r is a
positive real number (−r < x < r). Let t be the smallest r, for all positive real r, we have
x ≤ t + r, then x− t ≤ r and t− r < x, it follows that −(x− t) ≤ r. Then x− t � 0, hence
x � t. �

We check easily that for x, y ∈ R�L , st(x + y) = st(x) + st(y), st(x− y) = st(x)− st(y),
and st(xy)= s(x)st(y). Also, for all r ∈R, st(r)= r.
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Remark 2.13. All these concepts and properties may be extended to hyperreal vectors of

R�
n
. An element v = (x1, . . . ,xn), where xi ∈R�, is called infinitely small if |v| =

√∑n
i=1 x

2
i

is an infinitely small hyperreal and called limited if |v| is limited. Two vectors of R�
n

are
infinitely close if their difference is infinitely small. The extension to complex numbers
and vectors is similar (C� =R�×R�).

2.4.2. Perturbation of associative algebras. We introduce here the perturbation notion of
an algebraic structure. Let V = Kn be a K-vector space (K = R or C) and let V� be a
vector space over K� (K� = R� or C�). Let � be an associative algebra of algn with a
multiplication μ0 over V .

Definition 2.14. A morphism μ in Hom((V�)×2,V�) is a perturbation of μ0 if

∀X1,X2 ∈V : μ
(
X1,X2

)� μ0
(
X1,X2

)
(2.22)

and μ satisfies the associativity condition over V . We write (μ� μ0).

Fixing a basis of V , the extension V� of V is a vector space which may be taken with
the same basis as V . Then μ is a perturbation of μ0 and is equivalent to say that the
difference between the structure constants, with respect to the same basis, of μ and μ0 is
an infinitesimal vector in (V�)n

3
.

Two perturbations μ and μ′ of μ0 are isomorphic if there is an invertible map f in
Hom(V�,V�) such that μ′ = f −1 ◦μ◦ ( f ⊗ f ).

The following decomposition of a perturbation follows from Goze’s decomposition
[14].

Theorem 2.15. Let � be an algebra in algn with a multiplication μ0 and let μ be a pertur-
bation of μ0. The following decomposition of μ holds:

μ= μ0 + ε1ϕ1 + ε1ε2ϕ2 + ···+ ε1 · ··· · εkϕk, (2.23)

where
(1) ε1, . . . ,εk are nonzero infinitesimals in K�,
(2) ϕ1, . . . ,ϕk are independent bilinear maps in Hom(V×2,V).

Remark 2.16. (1) The integer k is called the length of the perturbation. It satisfies k ≤ n3.
(2) The perturbation decomposition is generalized in the valued global deformation

case [21] by taking the εi in maximal ideal of a valuation ring.
(3) The associativity of μ is equivalent to a finite system of equation called the pertur-

bation equation. This equation is studied above by using Massey cohomology products.

2.4.3. Resolution of the perturbation equation. In the following we discuss the conditions
on ϕ1 such that it is a first term of a perturbation.

Let us consider a perturbation of length 2, μ = μ0 + ε1ϕ1 + ε1ε2ϕ2, the perturbation
equation is equivalent to

δϕ1 = 0,

ε1
[
ϕ1,ϕ1

]
G + 2ε1ε2

[
ϕ1,ϕ2

]
G + ε1ε

2
2

[
ϕ2,ϕ2

]
G + 2ε2δϕ2 = 0,

(2.24)

where [ϕi,ϕj]G is the trilinear map defined by Gerstenhaber’s bracket (see Section 2.1).
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It follows, as in the deformation equation, that ϕ1 is a cocycle of Z2(�,�). The second
equation has infinitesimal coefficients but the vectors

{[
ϕ1,ϕ1

]
G,
[
ϕ1,ϕ2]G,

[
ϕ2,ϕ2

]
G,δϕ2

}
(2.25)

are in Hom(V×3,V) and form a system of rank 1.

Proposition 2.17. Let μ be a perturbation of length k of the multiplication μ0. The rank
of the vectors {[ϕi,ϕj]G,δϕi}, i = 1, . . . ,k, and i ≤ j ≤ k is equal to the rank of the vectors
{[ϕi,ϕj]G}, i= 1, . . . ,k− 1, and i≤ j ≤ k− 1.

Proof. We consider a nontrivial linear form ω containing in its kernel {[ϕi,ϕj]G}, i =
1, . . . ,k− 1, and i ≤ j ≤ k− 1. We apply it to the perturbation equation then it follows
that all the vectors {[ϕi,ϕj]G,δϕi}, i= 1, . . . ,k, and i≤ j ≤ k are in the kernel of ω. �

The following theorem, which uses the previous proposition, characterizes the cocycle
which should be a first term of a perturbation, see [27] for the proof and [28] for the
Massey products.

Theorem 2.18. Let � be an algebra in algn with a multiplication μ0. A vector ϕ1 in Z2(�,�)
is the first term of a perturbation μ of μ0 (k being the length of μ) if and only if

(1) the Massey products [ϕ2
1],[ϕ3

1], . . . ,[ϕ
p
1 ] vanish until p = k2,

(2) the representative’s product in B3(�,�) forms a system of rank less than or equal to
k(k− 1)/2.

2.5. Generalized coalgebra perturbations. The perturbation notion can be generalized
to any algebraic structure on V . A morphism μ in Hom((V�)×p, (V�)×q) is a perturba-
tion of μ0 in Hom(V×p,V×q)(μ� μ0) if

∀X1, . . . ,Xp ∈V : μ
(
X1, . . . ,Xp

)� μ0
(
X1, . . . ,Xp

)
. (2.26)

In particular, if p = 1 and q = 2, we obtain the concept of coalgebra perturbation.

3. Comparison of the deformations

We show that the formal deformations and the perturbation are global deformations with
appropriate bases, and we show that over the field of complex numbers the perturbations
contain all the convergent deformations.

Global deformation and formal deformation. The following proposition gives the link be-
tween formal deformation and global deformation.

Proposition 3.1. Every formal deformation is a global deformation.
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Proof. Every formal deformation of an algebra �, in Gerstenhaber’s sense, is a global
deformation with a basis (B,m) where B=K[[t]] and m= tK[[t]]. �

Global deformation and perturbation. Let K� be a proper extension of K described in
Section 2.4, where K is the field R or C.

Proposition 3.2. Every perturbation of an algebra over K is a global deformation with a
base (K�L ,halo(0)).

Proof. The set B :=K�L is a local ring formed by the limited elements of K�. We define
the augmentation ε :K�L →K which associates to any x its standard part st(x). The kernel
of ε corresponds to halo(0), the set of infinitesimal elements of K�, which is a maximal
ideal in K�L . �

The multiplication μB of a global deformation with a base (K�L ,halo(0)) of an algebra
with a multiplication μ may be written, for all x, y ∈Kn,

μB(1⊗ x,1⊗ y)= 1⊗μ(x, y) +
∑

i

αi⊗ zi with αi ∈ halo(0)⊂K�, zi ∈Kn. (3.1)

This is equivalent to say that μB is a perturbation of μ.

Remark 3.3. The corresponding global deformations of perturbations are local but not
infinitesimal because halo(0)n �= 0.

Formal deformation and perturbation

Proposition 3.4. Let � be a C-algebra in algn with a multiplication μ0. Let μt be a conver-
gent deformation of μ0 and let α be an infinitesimal in C� then μα is a perturbation of μ0.

Proof. Since the deformation is convergent, then μα corresponds to a point of algn ⊂ Cn
3

which is infinitely close to the corresponding point of μ0. Then it determines a perturba-
tion of μ0. �

Remark 3.5. A perturbation should correspond to a formal deformation if one considers
the more general power series rings K[[t1, . . . , tr]].

4. Universal and versal deformations

Given an algebra, the problem is to find particular deformations which induce all the
others in the space of all deformations or in a fixed category of deformations. This prob-
lem is too hard in general but the global deformation seems more adapted to construct
universal or versal deformation. We say that the global deformation is universal if there
is uniqueness of the homomorphism between base algebras, otherwise we say that the
deformation is versal. This problem was considered in the case of Lie algebras for the cat-
egories of deformations over infinitesimal local algebras and complete local algebras (see
[18, 29, 30]). They show that if we consider the infinitesimal deformations, that is, the
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deformations over local algebras B such that m2
B = 0 where mB is the maximal ideal, then

there exists a universal deformation. If we consider the category of complete local rings,
then there does not exist a universal deformation but only versal deformation.

Formal global deformation. LetB be a complete local algebra overK, soB=←−limn→∞(B/mn)
(inductive limit), where m is the maximal ideal of B, and we assume that B/m∼=K.

Definition 4.1. A formal global deformation of � with base (B,m) is an algebra struc-

ture on the completed tensor product B
∧⊗

� =←−limn→∞((B/mn)
⊗

�) such that ε
∧⊗

id :

B
∧⊗

�→K⊗�=� is an algebra homomorphism.

Remark 4.2. (1) The formal global deformations of � with base (K[[t]], tK[[t]]) are the
same as the formal parameter deformations of Gerstenhaber.

(2) The perturbations are complete global deformations because

lim
n→∞K

�/(halo(0)
)n

(4.1)

is isomorphic to K� while K� is isomorphic to K as algebras.

We now assume that the algebra � satisfies dim(H2(�,�)) <∞. We consider B =
K⊕H2(�,�)dual. The following theorems due to Fialowski and Post [18, 29] show the
existence of universal infinitesimal deformation under the previous assumptions.

Theorem 4.3. There exists, in the category of infinitesimal global deformations, a univer-
sal infinitesimal deformation η� with base B equipped with the multiplication (α1,h1) ·
(α1,h1)= (α1α2,α1h2 +α2h1).

Let P be any finite-dimensional local algebra over K. The theorem means that for any
infinitesimal deformation of an algebra � defined by μP, there exists a unique homomor-
phism Φ :K⊕H2(�,�)dual→ P such that μP is equivalent to the push-out Φ∗η�.

Definition 4.4. A formal global deformation η of � parameterized by a complete local
algebra B is called versal if for any deformation λ of �, parameterized by a complete local
algebra (A,mA), there is a morphism f : B→A such that

(1) the push-out f∗η is equivalent to λ,
(2) if A satisfies m2

A = 0, then f is unique.

Theorem 4.5. Let � be an algebra.
(1) There exists a versal formal global deformation of �.
(2) The base of the versal formal deformation is formally embedded into H2(�,�) (it

can be described in H2(�,�) by a finite system of formal equations).

Examples. The Witt algebra is the infinite dimensional Lie algebra of polynomial vector
fields spanned by the fields ei = zi+1(d/dz) with i∈ Z. In [18], Fialowski constructed ver-
sal deformation of the Lie subalgebra L1 of Witt algebra (L1 is spanned by en, n > 0, while
the bracket is given by [en,em]= (m−n)en+m).
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The following three real deformations of the Lie algebra L1 are nontrivial and pairwise
nonisomorphic:

[
ei,ej

]1
t = ( j− i)(ei+ j + tei+ j−1

)
,

[
ei,ej

]2
t =

⎧
⎨

⎩

( j− i)ei+ j if i, j > 1,

( j− i)ei+ j + t je j if i= 1,

[
ei,ej

]3
t =

⎧
⎨

⎩

( j− i)ei+ j if i, j �= 2,

( j− i)ei+ j + t je j if i= 2.

(4.2)

Fialowski and Post, in [29], study the L2 case. A more general procedure using the
Harrison cohomology of the commutative algebra B is described by Fialowski and Fuchs
in [31].

Fialowski’s global deformation of L1 can be realized as a perturbation, the parameters
t1, t2, and t3 have to be different infinitesimals in C�.

5. Degenerations

The notion of degeneration is fundamental in the geometric study of algn and helps, in
general, to construct new algebras.

Definition 5.1. Let �0 and �1 be two n-dimensional algebras. The algebra �0 is a degen-
eration of �1 if �0 belongs to ϑ(�1), the Zariski closure of the orbit of �1.

In the following we define degenerations in different frameworks.

5.1. Global point of view. A characterization of global degeneration was given by
Grunewald and O’Halloran in [32].

Theorem 5.2. Let �0 and �1 be two n-dimensional associative algebras over K with the
multiplications μ0 and μ1. The algebra �0 is a global degeneration of �1 if and only if there
is a discrete valuation K-algebra B with residue field K whose quotient field � is finitely
generated overK of transcendence degree one (one parameter), and there is an n-dimensional
algebra μB over B such that μB⊗�∼= μ1⊗� and μB⊗K∼= μ0.

5.2. Formal point of view. Let t be a parameter in K, let { ft}t �=0 be a continuous family
of invertible linear maps on V over K, and let �1 = (V ,μ1) be an algebra over K. The
limit (in case it exists) of a sequence ft ·�1, �0 = limt→0 ft ·�1, is a formal degeneration
of �1 in the sense that �0 is in the Zariski closure of the set { ft ·�}t �=0.

The multiplication μ0 is given by

μ0 = lim
t→0

ft ·μ1 = lim
t→0

f −1
t ◦μ1 ◦ ft × ft. (5.1)

(1) The multiplication μt = f −1
t ◦μ1 ◦ ft × ft satisfies the associativity condition. Thus,

when t tends to 0 the condition remains satisfied.
(2) The linear map ft is invertible when t �= 0 and may be singular when t = 0. Then,

we may obtain a new algebra by degeneration.
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(3) The definition of formal degeneration may be extended naturally to the infinite
dimensional case.

(4) When K is the complex field, the multiplication given by the limit follows from
a limit of the structure constants, using the metric topology. In fact, ft · μ corresponds
to a change of basis when t �= 0. When t = 0, the limit gives eventually a new point in
algn ⊂Kn3

.
(5) If ft is defined by a power series, the images overV ×V of the multiplication of ft ·

� are in general in the Laurent power series ring V[[t, t−1]]. But when the degeneration
exists, it lies in the power series ring V[[t]].

Proposition 5.3. Every formal degeneration is a global degeneration.

The proof follows from Theorem 5.2 and the last remark.

5.3. Contraction. The notion of degeneration over the hypercomplex field is called con-
traction. It is defined by the following.

Definition 5.4. Let �0 and �1 be two algebras in algn with multiplications μ0 and μ1.
The algebra �0 is a contraction of �1 if there exists a perturbation μ of μ0 such that μ is
isomorphic to μ1.

The definition gives a characterization over the hypercomplex field that μ0 is in the
closure of the orbit of μ1 (for the usual topology of Cn

3
).

5.4. Examples. (1) The null algebra of algn is a degeneration of any algebra of algn.
In fact, the null algebra is given in a basis {e1, . . . ,en} (e1 being the unit element) by the
following nontrivial products μ0(e1,ei)= μ0(ei,e1)= ei, i= 1, . . . ,n.

Let μ1 be a multiplication of any algebra of algn, we have μ0 = limt→0 ft · μ1 with ft
given by the diagonal matrix (1, t, . . . , t).

For i �= 1, and j �= 1 we have

ft ·μ
(
ei,ej

)= f −1
t

(
μ
(
ft
(
ei
)
, ft
(
ej
)))= f −1

t

(
μ
(
tei, te j

))

= t2C1
i j e1 + t

∑

k>1

Cki jek −→ 0 (when t −→ 0). (5.2)

For i= 1, and j �= 1 we have

ft ·μ
(
e1,ej

)= f −1
t

(
μ
(
ft
(
e1
)
, ft
(
ej
)))= f −1

t

(
μ
(
e1, te j

))= f −1
t

(
te j
)= ej . (5.3)

This shows that every algebra of algn degenerates formally to a null algebra.
By taking the parameter t = α, α infinitesimal in the field of hypercomplex numbers,

we get that the null algebra is a contraction of any complex associative algebra in algn. In
fact, fα ·μ1 is a perturbation of μ0 and is isomorphic to μ1.

The same holds also in the global point of view: let B =K[t]〈t〉 be the polynomial ring
localized at the prime ideal 〈t〉 and let μB = tμ1 on the elements different from the unit
element and μB = μ1 elsewhere. Then μ1 is K(t)-isomorphic to μB via f −1

t and μB ⊗K=
μ0.
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(2) The classification of alg2 yields two isomorphism classes.
Let {e1,e2} be a basis of K2:

�1 : μ1
(
e1,ei

)= μ1
(
ei,e1

)= ei, i= 1,2; μ1
(
e2,e2

)= e2,

�0 : μ0
(
e1,ei

)= μ0
(
ei,e1

)= ei, i= 1,2; μ0
(
e2,e2

)= 0.
(5.4)

Consider the formal deformation μt of μ0 defined by

μt
(
e1,ei

)= μt
(
ei,e1

)= ei, i= 1,2; μt
(
e2,e2

)= te2. (5.5)

Then μt is isomorphic to μ1 through the change of basis given by the matrix ft = ( 1 0
0 t ),

μt = ft ·μ1.
We have μ0 = limt→0 ft ·μ1, thus μ0 is a degeneration of μ1. Since μ1 is isomorphic to μt,

it is a deformation of μ0. We can obtain the same result over the field of complex numbers
if we consider the parameter t infinitesimal in C�.

5.4.1. Graded algebras. In this section, we give a relation between a finite-dimensional
algebra and its associated graded algebra.

Theorem 5.5. Let � be an algebra over K and �0 ⊆�1 ⊆ ··· ⊆�n ⊆ ··· an algebra
filtration of �, �=⋃n≥0 �n. Then the graded algebra gr(�)=⊕n≥1 �n/�n−1 is a formal
degeneration of �.

Proof. Let �[[t]] be a power series ring in one variable t ∈ K over �, �[[t]] =�⊗
K[[t]]=⊕n≥0 �⊗ tn.

We denote by �t the Rees algebra associated to the filtered algebra �, �t =
∑

n≥0 �n⊗
tn. The Rees algebra �t is contained in the algebra �[[t]].

For every λ ∈ K, we set �(λ) =�t/((t− λ) ·�t). For λ = 0, �(0) =�t/(t ·�t). The
algebra �(0) corresponds to the graded algebra gr(�) and �(1) is isomorphic to �. In
fact, we suppose that the parameter t commutes with the elements of � then t ·�t =⊕

n≥0 �n ⊗ tn+1. It follows that �(0) = �t/(t ·�t) = (
∑

n�n ⊗ tn)/(
⊕

n�n ⊗ tn+1) =
⊕

n≥0 �n/�n−1 = gr(�). By using the linear map from �t to � where the image of an⊗ tn
is an, we have �(1) =�t/((t− 1) ·�t)∼=�.

If λ �= 0, the change of parameter t = λT shows that �(λ) is isomorphic to �(1). This
ends the proof that �(0) = gr(�) is a degeneration of �(1)

∼=�. �

5.5. Connection between degeneration and deformation. The following proposition
gives the link between degeneration and deformation.

Proposition 5.6. Let �0 and �1 be two algebras in algn. If �0 is a degeneration of �1,
then �1 is a deformation of �0.

In fact, let �0 = limt→0 ft ·�1 be a formal degeneration of � then �t = ft ·�1 is a
formal deformation of �0.

In the contraction sense such a property follows directly from the definition.
In the global point of view, we get also that every degeneration can be realized by a

global deformation. The base of the deformation is the completion of the discrete valua-
tion K-algebra (inductive limit of μn = μB ⊗B/mn+1

B ).
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Remark 5.7. The converse is, in general, false. The following example shows that there is
no duality in general between deformation and degeneration.

We consider, in alg4, the family �t = C{x, y}/〈x2, y2, yx− txy〉 where C{x, y} stands
for the free associative algebra with unity and generated by x and y.

Any two algebras �t and �s with t · s �= 1 are not isomorphic. They are isomorphic if
and only if t · s= 1.

Thus, �t is a deformation of �0 but the family �t is not isomorphic to one algebra
and cannot be written �t = ft ·�1.

We also have the following more geometric proposition.

Proposition 5.8. If an algebra �0 is in the boundary of the orbit of �1, then this degener-
ation defines a nontrivial deformation of �0.

With the contraction point of view, we can characterize the perturbation arising from
degeneration by the following.

Proposition 5.9. Let μ be a perturbation over hypercomplex numbers of an algebra of algn
with a multiplication μ1. Then μ arises from a contraction if there exists a multiplication μ0

with structure constants in C belonging to the orbit of μ.

In fact, if μ is a perturbation of μ0 and there exists an algebra with multiplication μ1

such that μ∈ ϑ(μ1) and μ� μ0, then, μ0 is a contraction of μ1. This shows that the orbit
of μ passes through a point of algn over C.

5.6. Infinitesimal degenerations. Let ft = v + tw be a family of endomorphisms where
v is a singular linear map and w is a regular linear map. The aim of this section is to
find necessary and sufficient conditions on v and w such that a degeneration of a given
algebra �= (V ,μ) exists. We can set w = id because ft = v+ tw = (v ◦w−1 + t)◦w which
is isomorphic to v ◦w−1 + t. Then without loss of generality we can consider the family
ft = ϕ+ t · id fromV intoV where ϕ is a singular map. The fitting lemma decomposes the
vector space V by ϕ under the form VR⊕VN where VR and VN are ϕ-invariant defined in
a canonical way such that ϕ is surjective on VR and nilpotent on VN . Let q be the smallest
integer such that ϕq(VN )= 0. The inverse of ft may be written

f −1
t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ−1
(
tϕ−1 + id

)−1
on VR,

1
t
·
q−1∑

i=0

(

− ϕ

t

)i
on VN.

(5.6)

The action of ft = ϕ+ t · id on μ is defined by

ft ·μ(x, y)= f −1
t

(
μ
(
ϕ(x),ϕ(y)

)
+ t
(
μ
(
ϕ(x), y

)
+μ
(
x,ϕ(y)

))
+ t2μ(x, y)

)
. (5.7)
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Since every element v of V decomposes in v = vR + vN , we set

A= μ(x, y)= AR +AN ,

B = μ(ϕ(x), y
)

+μ
(
x,ϕ(y)

)= BR +BN ,

C = μ(ϕ(x),ϕ(y)
)= CR +CN.

(5.8)

Then

ft ·μ(x, y)= ϕ−1(tϕ−1 + id
)−1(

t2AR + tBR +CR
)

+
1
t
·
q−1∑

i=0

(

− ϕ

t

)i(
t2AN + tBN +CN

)
.

(5.9)

If the parameter t goes to 0, then ϕ−1(tϕ−1 + id)−1(t2AR + tBR +CR) goes to ϕ−1(CR).

The term (1/t) ·∑q−1
i=0 (−ϕ/t)i(t2AN + tBN +CN ) is equivalent to

tAN +BN −ϕ
(
AN
)

+
(

id
t
− ϕ

t2
+ ···+ (−1)q−1ϕ

q−1

tq

)
(
ϕ2(AN

)−ϕ(BN
)

+CN
)
.

(5.10)

Its limit exists if and only if

ϕ2(AN
)−ϕ(BN

)
+CN = 0. (5.11)

Then we have the following.

Proposition 5.10. The degeneration of an algebra with a multiplication μ exists if and only
if the condition

ϕ2 ◦μN −ϕ◦μN ◦ (ϕ× id)−ϕ◦μN ◦ (id×ϕ) +μN ◦ (ϕ×ϕ)= 0, (5.12)

where μN (x, y)= (μ(x, y))N , holds. And it is defined by

μ0 = ϕ−1 ◦μR ◦ (ϕ×ϕ) +μN ◦ (ϕ× id) +μN ◦ (id×ϕ)−ϕ◦μN . (5.13)

Remark 5.11. Using a more algebraic definition of a degeneration, Fialowski and
O’Halloran [33] show that we have also a notion of universal degeneration and such
degeneration exists for every finite-dimensional Lie algebra. The definition and the result
holds naturally in the associative algebra case.

6. Rigidity

An algebra which has no nontrivial deformations is called rigid. In the finite-dimensional
case, this notion is related geometrically to open orbits in algn. The Zariski closure of open
orbit determines an irreducible component of algn.

Definition 6.1. An algebra � is called algebraically rigid if H2(�,�)= 0.
An algebra � is called formally rigid if every formal deformation of � is trivial.
An algebra � is called geometrically rigid if its orbit is Zariski open.
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We have the following equivalence due to Gerstenhaber and Schack [34].

Proposition 6.2. Let � be a finite-dimensional algebra over a field of characteristic 0. Then
formal rigidity of � is equivalent to geometric rigidity.

As seen in Theorem 2.3,H2(�,�)= 0 implies that every formal deformation is trivial,
then algebraic rigidity implies formal rigidity. But the converse is false. An example of
algebra which is formally rigid but not algebraically rigid, H2(�,�) �= 0, was given by
Gerstenhaber and Schack in positive characteristic and high dimension [34]. We do not
know such examples in characteristic 0. However, there are many rigid Lie algebras, in
characteristic 0, with a nontrivial second Chevalley-Eilenberg cohomology group.

Now, we give a sufficient condition for the formal rigidity of an algebra � using the
following map:

Sq :H2(�,�)−→H3(�,�), μ1 −→ Sq(μ1)= [μ1 ◦μ1
]
. (6.1)

Let μ1 ∈ Z2(�,�), μ1 is integrable if Sq(μ1) = 0. If we suppose that Sq is injective,
then Sq(μ1) = 0 implies that the cohomology class μ1 = 0. Then every integrable infini-
tesimal is equivalent to the trivial cohomology class. Therefore, every formal deformation
is trivial.

Proposition 6.3. If the map Sq is injective, then A is formally rigid.

We have the following definition for rigid complex algebra with the perturbation point
of view.

Definition 6.4. A complex algebra of algn with multiplication μ0 is infinitesimally rigid if
every perturbation μ of μ0 belongs to the orbit ϑ(μ0).

This definition characterizes the open sets over hypercomplex field (with metric topol-
ogy). Since open orbit (with metric topology) is Zariski open [35]. Then we have the
following.

Proposition 6.5. For finite dimensional complex algebras, infinitesimal rigidity is equiva-
lent to geometric rigidity, thus to formal rigidity.

In the global point of view we set the following two concepts of rigidity.

Definition 6.6. Let B be a commutative algebra over a field K and let m be a maximal
ideal of B. An algebra � is called (B,m)-rigid if every global deformation parameterized
by (B,m) is isomorphic to � (in the push-out sense).

An algebra is called globally rigid if for every commutative algebra B and a maximal
ideal m of B, it is (B,m)-rigid.

The global rigidity implies the formal rigidity but the converse is false. Fialowski and
Schlichenmaier show that over the complex field the Witt algebra, which is algebraically
and formally rigid, is not globally rigid. They use families of Krichever-Novikov-type
algebras [30].

Finally, we summarize the link between the different concepts of rigidity in the follow-
ing theorem.
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Theorem 6.7. Let � be a finite-dimensional algebra over a field K of characteristic zero.
Then

algebraic rigidity=⇒ formal rigidity

formal rigidity⇐⇒ geometric rigidity⇐⇒ (K[[t]], tK[[t]])-rigidity

global rigidity=⇒ formal rigidity.

(6.2)

In particular, if K= C,

infinitesimal rigidity⇐⇒ formal rigidity. (6.3)

Recall that semisimple algebras are algebraically rigid. They are classified by Wedder-
burn’s theorem. The classification of low-dimensional rigid algebras is known until n < 7,
see [17, 36, 37].

7. The algebraic varieties algn

A point in algn is defined by n3 parameters, which are the structure constants Cki j , satisfy-
ing a finite system of quadratic relations given by the associativity condition. The orbits
are in 1-1-correspondence with the isomorphism classes of n-dimensional algebras.

The stabilizer subgroup of � (stab(�) = { f ∈ GLn(K) : � = f ·�}) is Aut(�), the
automorphism group of �. The orbit ϑ(�) is identified with the homogeneous space
GLn(K)/Aut(�). Then

dimϑ(�)= n2−dimAut(�). (7.1)

The orbit ϑ(�) is provided, when K= C (a complex field), with the structure of a differ-
entiable manifold. In fact, ϑ(�) is the image through the action of the Lie group GLn(K)
of the point �, considered as a point of Hom(V ⊗V ,V). The Zariski tangent space to algn
at the point � corresponds to Z2(�,�) and the tangent space to the orbit corresponds
to B2(�,�).

The first approach to the study of varieties algn is to establish, for a fixed dimension,
classifications of the algebras up to isomorphisms. Some incomplete classifications were
known by mathematicians of the last centuries: R.S. Peirce (1870), E. Study (1890), G.
Voghera (1908), and B.G. Scorza (1938). In [36], Gabriel has defined the scheme algn and
gave the classification, up to isomorphisms, for n ≤ 4 and Mazzola, in [37], has studied
the case n = 5. The number of different isomorphism classes grows up very quickly, for
example, there are 19 classes in alg4 and 59 classes in alg5.

The second approach is to describe the irreducible components of a given algebraic
variety algn. This problem has already been proposed by Study and solved by Gabriel for
n ≤ 4 and Mazzola for n = 5. They used mainly the formal deformations and degenera-
tions. The rigid algebras have a special interest, an open orbit of a given algebra is dense
in the irreducible component in which it lies. Then, its Zariski closure determines an irre-
ducible component of algn, that is, all algebras in this irreducible component are degener-
ations of the rigid algebra and there is no algebra which degenerates to the rigid algebra.
Two nonisomorphic rigid algebras correspond to different irreducible components. So
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the number of rigid algebra classes gives a lower bound of the number of irreducible
components of algn. Note that not all irreducible components are Zariski closure of open
orbits.

Geometrically, �0 is a degeneration of �1 means that �0 and �1 belong to the same
irreducible component in algn.

The following statement gives an invariant which is stable under perturbations [17], it
was used to classify the 6-dimensional complex rigid associative algebras. Also it induces
an algorithm to compute the irreducible components.

Theorem 7.1. Let � be a C-algebra in algn with a multiplication μ0 and let X0 be an
idempotent of μ0. Then, for every perturbation μ of μ0, there exists an idempotent X such
that X � X0.

This has the following consequence: the number of linearly independent idempotents
does not decrease by perturbation.

Then, we deduce a procedure that finds the irreducible components by solving some
algebraic equations [38], this procedure finds all multiplication μ in algn with p idem-
potents, then the perturbations of each such μ’s are studied. From this it can be decided
whether μ belongs to a new irreducible component. By letting p run from n down to
1, one finds all irreducible components. A computer implementation enables to do the
calculations.

Let us give the known results in low dimensions:

dimension 2 3 4 5 6

irreducible components 1 2 5 10 > 21

rigid algebras 1 2 4 9 21.

The asymptotic number of parameters in the system defining the algebraic variety algn
is 4n3/27 +O(n8/3); see [39]. Any change of basis can reduce this number by at most
n2(= dim(GL(n,K))). The number of parameters for alg2 is 2 and for alg3 is 6. For large
n the number of irreducible components algn satisfies exp(n) < algn < exp(n4), see [37].

Another way to study the irreducible components is the notion of compatible defor-
mations introduced by Gerstenhaber and Giaquinto [40]. Two deformations �t and �s

of the same algebra � are compatible if they can be joined by a continuous family of
algebras. When � has finite dimension n, this means that �t and �s lie on a common
irreducible component of algn. They proved the following theorem.

Theorem 7.2. Let � be a finite dimensional algebra with multiplication μ0 and let �t

and �s be two deformations of � with multiplications αt = μ0 + tF1 + t2F2 + ··· and βs =
μ0 + sH1 + s2H2 + ··· .

If �t and �s are compatible, then the classes f and h of the cocycles F and H satisfy
[ f ,g]G = 0, that is, [F,H]G must be a coboundary.

The theorem gives a necessary condition for the compatibility of the deformations. It
can be used to show that two deformations of � lie on different irreducible components
of algn.
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