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A single-staged (SS) model and a staged progression (SP) model for HIV/AIDS with the
same variable contact rate over time were formulated. In both models, analytical expres-
sions for the HIV prevalence were obtained. A comparison of the two models was under-
taken. It is shown that prevalence projections from the SS model are lower than projec-
tions from the SP model up to and beyond the peak prevalence, although the SS model
prevalence may be higher than that of the SP model much later in the epidemic. A switch
from faster SP model prevalence changes to faster SS prevalence changes occurs beyond
the SP model peak prevalence. Hence using the SS model underestimates HIV prevalence
in the early stages of the epidemic but may overestimate prevalence in the declining HIV
prevalence phase. Our comparison suggests that the SP model provides better prevalence
projections than the SS model. Moreover, the extra parameters that would make the SP
model appear difficult to implement may not be sought from national survey data but
from existing HIV/AIDS literature.

Copyright © 2007 F. Baryarama and J. Y. T. Mugisha. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

The basis for most national HIV projections is usually a simple mathematical model often
based on a single-stage (SS) model to fit the observed prevalence patterns [1]. Yet, HIV-
dynamics are quite complex. The infectiousness of HIV infected individuals is known to
vary with stage of infection, being highly infectious in the first few weeks after becom-
ing infected, then having low infectivity for many years, and finally becoming gradually
more infectious as the immune system of those infected with HIV break downs [2–4].
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This trend of disease progression may imply that HIV/AIDS exhibits three basic infec-
tious stages. The infection rates for the first and third stages have been documented to
be several times higher than those for the second stage [5]. Models that account for such
stages are called staged progression (SP) models [6, 7]. The average period from the time
of acquiring HIV infection to developing full blown disease (AIDS) has been reported in
the range of 8–12 years [8].

SS and SP models have in general used constant parameter values [6, 4]. In partic-
ular, the behavio ral parameters that account for the contact rates and probabilities of
transmission per sexual act have been assumed constant for each stage of infection over
long-time periods. Variability of probability of transmission by stage of infection is how-
ever the defining property of a staged progression model, that is affected by behavioural
changes especially through condom use [9]. Our analyses have explored incorporating
behavioural changes through variable parameters for each stage of HIV infection. Be-
havioural change was accounted for by using a lower bounded function that allows for a
gradual reduction in behaviour change [10] and accurate description of the past trends
in these parameters.

Although both the SS and the SP models have been extensively studied, a comparison
of the two models has not been undertaken. Deviations between projected HIV preva-
lence using SS models and observed HIV prevalence have been noted. In Uganda, this
raised concern about the correctness of observed data around the peak of the HIV epi-
demic in the early 1990s [11, 12]. However, such deviations between observed data and
predicted prevalence from SS model may be due to the simplicity of the models used to
make the projections. Simple models are however preferred given that they have fewer
model parameters whose values can be established with greater precision. This is not the
case with complex models such as SP models that may require estimation of many param-
eters, some of which may not be available from routine national survey data. Moreover,
some countries may not have any reliable data to derive any parameters even for simple
models.

In this paper, we formulate an SS model with variable contact rate to cater for be-
havioural response at any time t, and an SP model that considers three stages of infec-
tiousness with a variable contact rate that is the same as that used in the SS model. We
compare the SS and the SP equations for the rates of change of HIV prevalence, and de-
rive implications for using the SS model to approximate the staged progression of HIV
dynamics. In particular, the accuracy of the SS model predictions is discussed in the con-
texts of an increasing HIV prevalence, around the peak HIV prevalence and a declining
HIV prevalence. Implications for high- and low-prevalence settings are also discussed.

2. The SS model

Consider an AIDS model in which susceptibles S(t) are recruited at a rate q of the total
sexually active adult population N(t). Let I(t) be the number of infectives in the pop-
ulation. The AIDS cases are assumed not sexually active so that N(t) = S(t) + I(t). Sus-
ceptibles are removed at a constant natural death rate μ, and through infection to join
the infective class at a variable rate of infection ω(t)I(t)/N(t) per susceptible. The form
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Table 2.1. Table of parameter values used for Figures 2.1 and 2.2.

Description of parameters Values used in SS model
Values used in
SP model

Unprotected contacts per year: c =
⎧
⎪⎨

⎪⎩

144, 0≤ t ≤ 8

36/(1− 0.75∗0.97(t−8)), t > 8

c1 = c2 = c3 = c

(high prevalence)

Unprotected contacts per year: c =
⎧
⎪⎨

⎪⎩

108, 0≤ t ≤ 8

27/(1− 0.75∗0.97(t−8)), t > 8

c1 = c2 = c3 = c

(low prevalence)

β2 = 0.00074,

Probability of transmission β = 0.0019 β1 = 50β2,

β3 = 5β2

ν1 = 8.7,

Rates of progression ν= 0.125 ν2 = 0.167,

ν3 = 0.5

Rates of recruitment into sexually
q = 0.032 q = 0.032

active adults assumed at 15th birth-day

= birth rate × survival to 15th birth-day

= 0.05× e−0.03×15

Initial HIV prevalence φ0 = 0.01 φ0 = 0.01

of ω(t) over time since the beginning of the epidemic is presented in Table 2.1. The in-
fectives are removed at a constant rate ν + μ, where ν is the rate of progression to AIDS.
The time t refers to the time elapsed since the beginning of the epidemic. We define q as
the recruitment of individuals into the susceptible population. HIV prevalence refers to
the fraction of infectives in the population excluding those with AIDS symptoms, that is,
prevalence = I(t)/N(t). These assumptions lead to the following system of equations:

dS

dt
= qN(t)−ω(t)

S(t)
N(t)

I(t)−μS(t), (2.1)

dI

dt
= ω(t)

S(t)
N(t)

I(t)− (ν +μ)I(t), (2.2)

dN

dt
= rN(t)− νI(t), (2.3)

where dN/dt = dS/dt + dI/dt and r = q− μ are the net growth rate of the adults in the
absence of the epidemic.

Let φss(t)= I(t)/N(t) be the HIV prevalence in the SS model. Then

dφss

dt
= N(dI/dt)− I(dN/dt)

N2
= 1
N

dI

dt
− I

N

1
N

dN

dt
. (2.4)
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Figure 2.1. Time trends in number of unprotected sexual contacts for high- and low-prevalence
settings used for model projections.
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Figure 2.2. Single stage (SS) and staged progression (SP) HIV prevalence projections for a high
prevalence setting,C0 = 44.

Using (2.2) and (2.3), we get

dφss

dt
= 1
N

[

ω(t)
SI

N
− (ν +μ)I

]

− I

N

1
N

[
rN(t)− νI

]
. (2.5)
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Substituting with S/N = 1− I/N and replacing I/N with φss give

dφss

dt
= ω(t)φss

(
1−φss

)− [ν +μ]φss− rφss + νφ2
ss. (2.6)

Rearranging and factorising, we get

dφss

dt
= φss

[
ω(t)− (ν + q)− (ω(t)− ν

)
φss

]
, (2.7)

which can be written as

dφss

dt
= φss

(
a(t)− b(t)φss

)
, (2.8)

where a(t)= ω(t)− (ν + q) and b(t)= ω(t)− ν.

3. The SP model

3.1. Model assumptions. The SP model presented uses three stages of HIV infection
prior to development of AIDS. The first stage which commences soon after infection,
lasting on average six weeks, is highly infectious. The second stage lasts for an average of
6 years. It is characterised by a long period of low infectivity. The third stage lasts for an
average of 2 years, is also highly infectious and has been explained to be a result of the
impaired immune system of the infected person. The ratio of infectiousness of these three
stages has been reported as 100 : 1 : 10 [2–4].

In the SP model, we assume that the frequency of sexual contacts between susceptibles
and infectives varies with the stage of HIV infection. We note that this assumption intro-
duces behavioural changes in response to time since infection. We also assume that the
frequency of sexual contacts varies with time since the beginning of the epidemic. Fur-
ther, we assume that the rate of progression from each stage i (i= 1,2,3) of HIV infection
to the next stage is constant over time.

3.2. Variables and parameters. Let S(t) be the number of susceptibles and let I1(t), I2(t),
and I3(t) be the number of infectives in the corresponding stages of HIV infection. We
describe the different changes in each of the epidemiological classes as follows.

(a) Susceptibles are recruited from young people on reaching the age of 15 (a = 15).
Of all the children born free of HIV/AIDS (t− a) units of time ago at a per capita birth
rate of λ, a proportion p = e−μ1a, are assumed to survive to age a = 15 and hence join
the adult sexually active age group, where μ1 is the mortality rate for persons aged be-
low 15 years. Susceptibles are removed through acquiring HIV infection or by natural
death μ. If infectives on average have ci (i= 1,2,3) sexual contacts, then a proportion of
these contacts are with the susceptible population. Assuming proportional mixing, the
proportion of contacts that are with susceptibles is equal to the prevalence of the suscep-
tible class in the population, S/N. Hence, ci(S/N) is the average number of sexual contacts
between infectives in stage i and the susceptible population. If the probability of trans-
mission per sexual act with infectives in stage i is βi then

∑3
i=1βiciIi/N is the number of

susceptibles infected per susceptible per unit time. Multiplying this number by S(t) gives
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the total number of susceptibles infected per unit time that move on to the first stage of
HIV infection.

(b) The infectives joining the first stage are removed through progression to stage two
at a rate ν1 and through a natural death rate μ. Infectives in stage two progress to stage
three at a rate ν2 (and die of natural death at a rate μ). Infectives in stage three progress
to the AIDS stage at a rate ν3.

The SP model is hence described by the following system of differential equations:

dS

dt
= pλN −

[
β1c1I1
N

+
β2c2I2
N

+
β3c3I3
N

]

S−μS, (3.1)

dI1
dt
=
[
β1c1I1
N

+
β2c2I2
N

+
β3c3I3
N

]

S− (ν1 +μ
)
I1, (3.2)

dI2
dt
= ν1I1−

(
ν2 +μ

)
I2, (3.3)

dI3
dt
= ν2I2−

(
ν3 +μ

)
I3, (3.4)

where N = S+
∑3

i=1 Ii and I = I1 + I2 + I3.

3.3. Model analysis. The prevalence equation for the SP model is obtained as follows.
Let φsp =

∑3
i=1 Ii/N , φi = Ii/N , then

dφsp

dt
=

3∑

i=1

(
N(dIi/dt)− Ii(dN/dt)

N2

)

=
3∑

i=1

(
1
N

dIi
dt
−φi

1
N

dN

dt

)

. (3.5)

From (3.2) to (3.4)

3∑

i=1

dIi
dt
= S

3∑

i=1
βici

Ii
N
− ν3I3−μ

3∑

i=1
Ii,

dN

dt
= rN − ν3I3, r = pλ−μ,

(3.6)

we have

dφsp

dt
= 1
N

(

S
3∑

i=1

βici
Ii
N
− ν3I3−μ

3∑

i=1
Ii−φ

(
rN − ν3I3

)
)

. (3.7)

Since S/N = 1−φsp, then

dφsp

dt
= (1−φsp

)
3∑

i=1

βiciφi− ν3φ3−μφsp−φsp

(
r− ν3φ3

)
. (3.8)
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If we let
∑3

i=1βic1φi = βcφsp, where βc are the weighted transmission and contact rates of
the three infectious stages, then after rearranging, we have

dφsp

dt
= (1−φsp

)
βcφsp− qφsp− ν3φ3

(
1−φsp

)
. (3.9)

4. Analytical comparison Of SS and SP models

In the special case where φ3 = kφsp, that is, the ratio of the prevalence of infectives in
the third stage of HIV infection to the total prevalence of infectives in stages 1 to 3 is a
constant, then the SP model reduces to

dφsp

dt
= φsp

(
βc− q− ν3k−

(
βc− ν3k

)
φsp

)
. (4.1)

In this special case, the prevalence equation of the SP model reduces to the prevalence
equation (2.8) of the SS model. However, the prevalence of infectives in stage three is not
likely to have a linear relationship with the total prevalence over an extended epidemic pe-
riod as required by φ3 = kφsp. This may mean that the SS model is a poor approximation
of the SP model in all conceivable cases.

In the general case, subtracting the SP prevalence equation (3.9) from the SS preva-
lence equation (2.8) gives the difference denoted by d as

d = φss

[
a(t)− b(t)φss

]− [(1−φsp

)
βcφsp− (r +μ)φsp− ν3φ3

(
1−φsp

)]
. (4.2)

Substituting for a(t), b(t), r and setting βc = ω(t) gives

d = φssω−φssν− qφss−ωφ2
ss + νφ2

ss−ωφsp +ωφ2
sp + qφsp + ν3φ3− ν3φ3φsp. (4.3)

Simplifying, we get

d = (φss−φsp

)[
ω
(
1− (φss +φsp

))− q]+ ν3φ3

(
1−φsp

)− νφss

(
1−φss

)
. (4.4)

As φss→0, φsp→0, the product terms in φss, φsp, φ3 vanish. This gives

d ≈ (φss−φsp

)
(ω− q) + ν3φ3− νφss. (4.5)

In particular, at the beginning of the epidemic, both the SS and SP models use the
same initial prevalence and noting that the prevalence of infectives in the third stage of
HIV infection is initially negligible (φ3 � 0), then from (4.5), d is negative. This implies
that φsp initially increase at a faster rate than φss. Towards the end of the epidemic, we
assume that most of the few remaining infectives are in stage three. Hence φss � φsp � φ3.
Denote this prevalence by φ f . Then again from (4.5), d ≈ (ν3− ν)φ f . But ν3 � ν. Hence
d is a positive quantity implying that the projected SS prevalence decreases at a faster rate
towards the end of the epidemic than the SP prevalence.

Since d < 0 at the beginning of the epidemic and d > 0 at the end of the epidemic, from
the intermediate value theorem, it follows that there exist a φss and a φsp such that d = 0.
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Let this correspond to an SP prevalence of φe and an SS prevalence of κφe, where κ is a
constant. Then.

d = φe(κ− 1)
(
ω
(
1−φe(κ+ 1)

)− q)+ ν3φ3

(
1−φe

)− νκφe
(
1− κφe

)
. (4.6)

At equilibrium, (4.5) gives φ3 = νφe/ν3, hence

d = φe(κ− 1)
(
ω
(
1−φe(κ+ 1)

)− q)+ νφe
(
1−φe

)− νκφe
(
1− κφe

)
. (4.7)

Setting d = 0 and solving for φe give

φe =
ν + q−ω

(κ+ 1)(ν +ω)
(4.8)

provided ω < ν + q.
This means that the switch from faster changes in SP prevalence (to faster changes in SS

prevalence) can only happen when the parameter ω has reduced to values less than ν + q.
Note that ν + q is the net removal due to development of AIDS symptoms (ν) plus the
removal effect resulting from recruitment of HIV negative persons reaching 15 years of
age. Hence we deduce that the switch is more likely to happen after the peak prevalence
since from (2.8) the maximum SS prevalence of 1 + q/(ν−ω) occurs when ω > ν. This
occurs before ω was reduced to less than ν + q that is required to reach φe. Hence φe
is obtained after reaching the peak SP prevalence. Moreover model simulations indicate
that the peak prevalences for the SP and SS models occur about the same time as shown
in Figures 2.2, 4.1 except when an inflated probability of transmission is used in the SS
model.

It can be noted that φe decreases with the increasing k (since κ is a particular case of
k). In the situation where 0 < k < 1 implying that the SS prevalence is less than the SP
prevalence, which we have shown that it is the most likely scenario. This may imply that
when the SS and SP prevalences are close to each other (as k→1), the equilibrium point
corresponding to d = 0 is attained earlier. In addition, a sensitivity analysis indicates that
φe is higher for lower values ofω. This may suggest that a faster reduction in the parameter
ω may produce a much greater discrepancy between the prevalences from the SS and SP
models projections.

5. Simulations

Table 2.1 shows parameter values that were used in model simulations. The frequency of
sexual contact c was assumed constant for the first eight years and later assumed to de-
crease according to the lower-bounded function. For high-prevalence settings, these con-
tacts decrease from 144 in the eighth year to approach a lower bound of 36 contacts per
year as t→∞. This fits available data that suggests that c was initially 144 in the early 1980s
[13] but decreased to 107 by the mid 1990s [14] in some communities in Uganda. For the
low-prevalence setting, unprotected sexual contacts decrease from 108 in the eighth year
to approach a lower bound of 27 contacts per year as t→∞. The probabilities of infection
per sexual contact for the SP model were chosen to give an SP peak prevalence of 16%
(older than 15 years) as observed in antinatal clinic data in Uganda [15]. The equilibrium
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Figure 4.1. Single-stage (SS) and staged progression (SP) HIV prevalence projections for a low-
prevalence setting, C0 = 108.

SS probability of transmission of 0.019 was derived from the SP probabilities at the equi-
librium prevalence level which is equal to (β1/ν1 +β2/ν2 +β3/ν3)/(1/ν1 + 1/ν2 + 1/ν3). The
elevated SS probability of transmission was assigned to achieve similar initial SS and SP
prevalence projections.

Figure 2.2 shows the resulting prevalence projections for the SS and SP models for
high-prevalence settings (initial number of 144 unprotected sexual acts). Figure 4.1 cor-
responds to a low-prevalence setting with an initial number of 108 unprotected sex acts
per year.

The graphs show that for the same behaviour parameter changes in c and comparable
probabilities of transmission, the SP model gives much more marked peak prevalence
compared to the SS model both in low- and high-prevalence settings. The results show
that the magnitude of the peak prevalence is grossly underestimated by the SS model. At-
tempts to obtain accurate prevalence estimates for the initial years of the epidemic using
the SS model by using an elevated probability of transmission result in an inaccurately
higher peak prevalence well beyond the SP prevalence and an overestimated epidemic
during its declining phase. However, both the SS and SP models give similar position-
ing of the year at which the peak prevalence is reached in both low- and high-prevalence
settings.

6. Discussion

The analytical results show that from the same SS and SP initial HIV prevalences, the SP
prevalence increase at a faster rate (and hence reaches a higher peak) than the SS preva-
lence during the initial phase of the HIV epidemic. Hence the SP model gives a steeper
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rise in HIV prevalence than the SS model. Assuming that the SP model gives a better HIV
prevalence projection (since the SP model represents the HIV dynamics more accurately
than the SS model), then HIV prevalence projections based on SS models underestimate
the true HIV prevalence during the initial epidemic growth phase and consequently give
a lower peak prevalence than the SP model.

The analytical results further show that towards the end of the epidemic, the SS preva-
lence has a steeper decline than the SP prevalence. It follows that sometimes during
the epidemic there is a switch from faster SP prevalence changes to faster SS prevalence
changes. This occurs at a prevalence that depends on the removal rate ν and the recruit-
ment rate q. It follows from both analytical results and simulations that the prevalence
projections by the SS and the SP differ greatly. Moreover, fitting an SS model to the exist-
ing prevalence data in the rising phase of the epidemic may grossly overestimate the peak
prevalence and the entire declining phase of the epidemic.

Our findings are however subject to several limitations. First, the probability of trans-
mission applied to the SS model assumed equilibrium conditions. This assumption may
not be appropriate to the earlier phases of the epidemic due to more infections in the first
stage of HIV infection leading to a higher initial probability of transmission for the SS
model. However this cannot be easily accounted for by an elevated probability of trans-
mission since the equilibrium conditions are later attained, hence requiring changing to
a lower probability of transmission. Second, the time trend in the number of unprotected
sexual contacts may not be as smooth as the function for the contact rate used in the
model suggests. However, this function is more realistic given its lower boundedness. The
function is also particularly realistic for Uganda since the initial interventions in the late
1980s were highly intense resulting in immediate reductions in number of sexual part-
ners [16]. Lastly, we assumed several constant parameters over the fifty-year simulation
period including rates of HIV progression (ν1, ν2, and ν3), mortality and birth rates and
we also ignored the effects of mother-to-child transmission on population size.

These findings have significant implications on the choice of the HIV model to use for
national HIV prevalence projections. Our comparison of the SS and SP models suggests
that the SP model provides better projections than the SS model. Moreover extra param-
eters required by the SP model are not sought from national survey data but from existing
literature.
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