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Spectral theory from the second-order g-difference operator A, is developed. We give an
integral representation of its inverse, and the resolvent operator is obtained. As appli-
cation, we give an analogue of the Poincare inequality. We introduce the Zeta function
for the operator A; and we formulate some of its properties. In the end, we obtain the
spectral measure.
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1. Basic definitions

Consider 0 < g < 1. In what follows, the standard conventional notations from [1] will be
used

R,={Fq", nez}, [R{;:{q",nel},

n—1
(a,q)0 =1, (@) =[] (1-aq), (1.1)
i=0
nlq = 11—_4q”'

The g-schift operator is

Aqf(x) = f(gx). (1.2)
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Next, we introduce two concepts of g-analysis: the g-derivative and the g-integral. The
q-derivative (see [2]) of a function f is defined by

qu(X) — f(-x) _f(‘]x) (13)

and the second-order g-difference operator is

1
s =[] arpprw = St -] o
The product rule for the g-derivative is

Dy(fg)(x) =Dy f(x)g(x) + Ay f (x)Dyg(x). (1.5)

Jackson’s g-integral (see [3]) in the interval [a, b] is defined by

b 00
f)dgx = (1-q) > q"[bf (bq") —af (ag")]. (1.6)
4 n=0
Also the rule of g-integration by parts is given by
b
[ Dy f gty = [FB1gt) - fagt@] - [ A feopgtode (1)
The Hahn-Exton g-Bessel function of order o > —1 (see [4-6]) is defined by
at+l
I (x.q) = L(q é)q)wx“@l(o,q““,q;qxz)- (1.8)

The g-trigonometric functions (see [7]) are defined on C by

cos (x,q%) = 1¢1(0,q:9% 9°x%)

n(n+1) (qZ q )
x2n _ o X]( X, ,
> g (g VIR

Ms

(1.9)
sin(x,q)=(1— ) 'x1¢1(0,4°, 9% 4°x)

_ i( )n qn (n+1) x2n+1 B (qz)qz)w

(3) 2
N X X, .
n=0 (q Q)2n+1 (q)qz)oo ]1/2( q )

Both functions cos(x,¢?) and sin(x, g?) are analytic. In [7], it is proved that

N2 f(x), if f(x) = cos (Ax,g?)

A =1 _ . (1.10)
—a)lzf(x), if f(x) = sin (Ax,g?).
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Let &, be the space of all real-valued functions defined on
[O,l]q = {q", n=0,1,... },
such that
1 ) 12
sy = ([ 1760 dx) - <o

Then, ¥, is a separable Hilbert space with the inner product

(f.g) = Ll f(x)g(x)dyx.
In the following, we denote by & the subspace of &£, defined by
D= {f € Lyo, Ayf € Ly, lim f(g") = £(1) = 0O}
2. Eigenfunctions of A, in &
THEOREM 2.1. (Ag, D) has an infinite sequence of nonzero real eigenvalues

{77” = _)Lzl}nEN*’

where 0 <Ay < A,<- - - are the positive zeros of the following function:

x — sin (\/gx,q%).

The corresponding set of eigenfunctions is

{sin (VgAux,q%) } e

Proof. For f,g € 9, using the g-integration by parts we write
1 1
L AS'D; f(x)g(x)dgx = ¢ L D2A,! f(x)g(x)dgx
1
=-q’ JO AquAq_lf(x)Dqg(x)dqx

1
-4 || Dus D gy,

hence

1 1
Jo Agf (x)g(x)dgx = Jo fx)Ayg(x)dyx.

In particular, we can write

(1-¢q)?
q

1 1
JO Agf () f(x)dgx = — JO D, () Py

(1.11)

(1.12)

(1.13)

(1.14)

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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Let 0, be the sequence of eigenvalues of (A;,%). Then
o, CR_. (2.7)
Let f € % be a function satisfying the g-differential equation
Agf(x)=-Af(x), Vxe Ry (2.8)

Using (1.4), we write

| )-SR fa | =R A, vz @)

Therefore the set of solution of (2.8) is a vector space over R of dimension 2. From (1.10),
it follows that f can be written in the form

f(x) = asin (\JgAx,q*) + beos (Ax,q*), a,beER. (2.10)
If f satisfies
lim £(¢") = £(1) =0, (2.11)

then f(x) = asin(,/gAx,q*) and sin(,/gA,q?) = 0. In [5], it is proved that The Hahn-
Exton g-Bessel function of order & > —1 has a countably infinite number of positive sim-
ple zeros. This finishes the proof. O

3. The inverse of A, in the space &

Given x = ¢° € Rf, we define
[x,1]4=1q", n=0---s}, [0,x]g=1{q", n=s---]. (3.1)
We introduce the operator
up: Lg0 — u(£Ly2) (3.2)

defined by

1
w(HE) = s | Ky, (3.3)

where

(3.4)

{x(y—l) ify € [x1],
k(x,y) =
y(x—1) ifye[0,x],.

TueoreMm 3.1. The operator uy is the inverse of Aq in the space 9.
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X 1
w0 = | @ | yrdgex G-Dfpay] )

Then

ur(f) € g2 Aij{)louk(f)(q”) =ur(f)(1) =0.

On the other hand, using (1.5) we write

Dqui(f)(x) =

- (1 —qq)z [Joquf(y)dqy+ le(}’ N l)f(y)dq)/],

2 2

Dyu(f)(x) =

which shows that
g o uk(f)(x) = f(x).
We conclude that
u(f) €D, Agoux=idg,,.
Similarly, we can prove that
ugoAgf(x)= f(x), Vfed.

Indeed

q 1
i o Ag () () = Lme%ﬂw@

(1-¢g)?
with
k(x,0) = k(x,1) =0,

and we obtain

1
o ), Ko f ey

q

qx
(1_qq)z [(x—l)xf(x)+JO yf(y)dgy—x(x— l)f(x)+J

i-q7 5 [gxf(qx) = (qx— 1) f(qx)] = 2f (gx),

(3.6)

1

(=D )y |

qx

(3.7)
(3.8)
(3.9)

(3.10)
(3.11)

(3.12)

(3.13)

~ L |, ke g 0y = T S kg 10
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Next, we have
1 1+ 1
Agk(x,y) = — [k(x,q‘ly) — () + —k(x,qy)],
Y q q
which implies

Agk(x,x) = é[k(x,q_lx) - 1—l_qu(x,x) + ék(x,qx)]

-3
Now we will prove that
Agk(x,y) =0 ifx#y.

For y € [0,x],, we have

1 1+ 1
Mk(y) = G- Dy = T A Dy - Day| =0,

andify € [x,l]q,

1 B 1+ 1
Ak = s |- g - Sy (- Dgx| =0

Therefore

q 1
T |, Koy = (o).

This finishes the proof.

COROLLARY 3.2. The sequence

{sin (VgAnx,4%) } hens

is an orthogonal basis of £,.

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Proof. Since uy is a Hilbert-Schmidt operator, then u; is normal and compact because

¥, is separable. The eigenfunctions of uj are the elements of the sequence

{sin (VgAnx,4%) } ens

associated with corresponding eigenvalues

and they form an orthogonal basis of &£, ,.

(3.21)

(3.22)
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4. Resolvent operator and Green kernel

We introduce the g-hyperbolic sine and the g-hyperbolic cosine function as follows:
sinh (x,q%) = —isin (ix,q%), cosh (x,q%) = cos (ix,q*). (4.1)

For z € C/{0,}, we have the following result.

THEOREM 4.1. The g-Sturm-Liouville problem
AU(x) =2zU(x) - f(x), UeD, (4.2)
has a unique solution in the form
1
UG = (28" F0) = | Goelny)af Dy, (43)

where G, is the Green kernel defined by

7 1 Ui(x)Ua(gqy), y€lx1]y
Gyz(x,y) = — . > (4.4)
(1-q) /gzsinh (\/42,4°) | U, (qy)Us(x), ye [0,x]q
and Uy and U, are defined by
U, (x) = sinh (,/gzx,q°),
(4.5)

Uz (x) = cosh (v/zx,q?) sinh (\/qz,9*) — sinh (\/gzx,q*) cosh (\/z,4%).

Proof. We will solve this g-problem using the g-analogue of the method of variation of
constants. We write U in the following form:

U(x) = Ui(x) Vi(x) + Uz (x) V2 (x). (4.6)
Note that U; and U, form a fundamental solution set of the g-difference equation
AU (x) = zU(x). (4.7)
Using (1.5), we write
DyU(x) = DaUi(x) Vi (x) + AgU1(x)Dy Vi (x) + Dg Uz (x) Vo (x) + AgUa () Dy Vo (x). (4.8)
From the first condition
AqUi(x)Dy Vi(x) + AgUs(x) Dy Va(x) = 0, (4.9)
we get

D,yU(x) = DyU;(x) Vi (x) + Dy Uz (x) Va (). (4.10)
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Therefore

DiU(x) = DgVi(x)DgUi (x) + Ag Vi (x) D3 Ui (x) + Dy Vo (x) Dy U (x) + Ag Vo (x) D3 Us ().

(4.11)
From the second condition
2
D,V (x)Dy U (x) + Dy Va(x)Dy Us (x) = —(I?WAq f(), (4.12)
we obtain
2
D;U(x) = AgVi(¥)D}Ur(x) + A Va(x)D;Ua(x) = 1 S ) (4.13)
Conditions (4.9) and (4.12) form a linear system
(Aqu(x) AqUz(x)> (Dqu(x)) ) 2 0 o
D) DyUx) \DyVa(w)) ~ \ =L (0)) '
The solution of this system is
7
DyVi(x) = mAqUZ(x)Aqf(X))
) (4.15)
_ q
DqVZ(x) = (1 —_ q)zw(x) Aq Ul (x)Aqf(x)a
where
(x) = det AU A) Ur(x)D, Us(x) — AUs(x)Dy Uy () (4.16)
w(x) = de DU DyUs(x) = AgUi(x)DgUs (x qU2(x)Dg Uy (x .

is the g-Wronskian of the g-Sturm-Liouville problem.
Now since

A w(x) = Ui(x)A; ' DaUs(x) — Uz (x) A ' Dy Ui (x), (4.17)

using (1.5), and the fact that U; and U, are fundamental solution of the g-difference
equation A, U(x) = zU(x), we obtain
Dql\‘;l w(x) = Dql\‘;qu U (x)Up (x) + Dq U, (X)Dq Ui (x)
- DqA;IDq Ui(x) U (x) = D4U, (x)Dy Uz (x)

T _qq)z [AqU>(x) Uy (x) — Ag Ui (x) Us(x)] = 0.

(4.18)
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Therefore
w(q") = constant, Vn € Z.
Finally, for x € R} we get
w(x) = w(0) = U1(0)D,4U(0) — U3(0)Dy U1 (0).
Therefore the functions V; and V; satisfy

2

q

DaVi®) = o)

Aq Uz(X)Aqf(X),

2

DY) = ~ 1= )

AgUr(x)Ag f (),
which gives

7 :
Vilx) = —m L AqUa(y)Aqf (y)dgy,

Va(x) = _(1—;% | AU IS Dy
The condition U € 9% requires

U1(0) = U(1) = 0,
which implies

w(0) = —U,(0)D, Uy (0).

Using the fact that

Dysin (x,q%) = I ! cos (x,q%),

we obtain

1 .
w(0) = -4 qzsinh (\/q2,q°).

This completes the proof.

5. Poincare inequality
Here, we give a g-analogue of the Poincare inequality.

THEOREM 5.1. Given f € U, then

1 _ 2 1
L [F (0] dox < (1@;) L [D, f(x)]d,x.

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(5.1)
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Proof. For f € %, we write

Zki sin \/_Anx q Vx € [0,1]g

where
a, = Ll f(x)sin (\/ghux, q*) dgx, k, = ||sin (\/ﬁ/\nx,qz)H?gq’z.
Therefore
ilkin axApsin (\/ghax,q%), x €[0,1],.
This implies
J Ay f () f(x)dyx = Z 22, Ll [F ()] dyx = gaﬁ.
Using that

1 1
[ A4 D3 f 0 f g = a [ DIFIAS! F)dx

=4[, f (1)~ DS O O] ~a [ [Py

1
~—a [D.f@V e,

we obtain

1 2 q 1
L Dy  dye =~ L A, f (0 f(x)dyx

__ 14 S 2y2 _ QM m(&yz
(1_q)2n§1“n)‘n (1_‘1)2;1;1 1 n-

From the inequality

A
= >1, foreveryn=>1,

M
we conclude that

1 _ 2 1
L [F G0 dgx < (lqﬁ) L [D, f(x)]dyx

This completes the proof.

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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As an application, consider the function
f(x) =x(x—1). (5.10)

After simple calculations, we obtain

LT 1/[3]4
[l—q] = 1/[5], - 2/[4],+ 1/[3], (5.11)

6. Zeta function for the operator A,

TaeOREM 6.1. (1) If ¢° < (1 — %)%, then the Zeta function for the operator A,
© A s
AOEDY (A‘) (6.1)
p=1 14

is analytic in the region {s € C, R(s) > 0}.
(2) For every n € N*,

2
Cq(2n)=< 1q—/\q)2> J J k(x1,x2) - = k(oen15%0) K (X5 X1 ) dgx1 - - - dgxn.
(6.2)

Proof. In [8], it is proved that if
q2a+2 < (1 _q2)2’ (63)

then the positive roots w,ia)(qz) of the Hahn-Exton g-Bessel function ]és)(x,q) satisfy

%im Fw () = 1. (6.4)
Since
. 2 (4%9%) 3) 2
sin (x, = —2xJ; (x,97), (6.5)
( q ) (q’qz)oo 1/2( q )
we have

M= —— 5~ —qF, (6.6)

which leads to the first result.
To prove the second result we use the Mercer theorem for the operator uy

(1—qq> (7) = Zw sin (V44,%,q°) sin (\@Ap,4°), (6.7)
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and the orthogonality relations

1
ki L sin (\/gApx,q?) sin (\/gAmx,q*) dgx = Spm. (6.8)
»
This completes the proof. O
Example 6.2.
g} J q)tZ [ 1 1 }
- k(x — |
W)= g )y M= e | B,
(6.9)

A1 1 2 1 }
k d IS ——
J J Coyy gy dox = 7= i a1, [[51q 4, " 13,
In [7], it is proved that sin((1 — q)x,q*) — sin(x), as ¢ — 1. This implies
lim = (6.10)

Thus, when g — 17, we obtain the well-known identities for the Euler Zeta function
o1 o1 ot
((2)= 27=43 (@)= — == (6.11)

7. Spectral resolution

We can now find the spectral measure of A, from the resolvent, see the Stieltjes-Perron
inversion formula [9].

THEOREM 7.1. Let 11, = —A2 be a point from the spectrum of Ay. If
ue9p, ve Ly, (7.1)

then the spectral measure E of {1, } is given by

2 cosh (/7 q°) ) ,
< {ﬂn}u V> (1 q) (d/dX)SIHh(X q ) |x:\/m <u>51n (\/qlnx)qz)> ) <V,Sll‘l (\/q/lnx>q2)>~

(7.2)

Proof. In order to calculate E{#,}, we choose the interval (a,b) so that it contains only
1n = —A2 as a point from the spectrum. Then

(E{nutu,v) = (E(a,b)u,v)

b
= lsilrgﬁ . [{((s—ie— Aq)flu,v) - ((s+i8—Aq)71u,v>]ds (7.3)

1 -1
= —Ay) 'u,v)ds.
2im mn}«s )) ihv)ds



Lazhar Dhaouadi 13
Now observe that
1 1
((s— Aq)flu,v> = Jo . Jo Gs(o, y) Aqu(y)v(x)dyy dyx. (7.4)

If z = 1, then sinh(\/ﬁ, qz) = 0, which implies that the fundamental solutions U; and
U, of the g-difference equation

AU =2zU (7.5)
are proportional as follows:
Us(x) = —cosh (\/n,q*) Ui (x), Vx € [0,1],. (7.6)

Therefore

1 1
(E{tintu,v) = Jo . -L [Ress—y, Gs(x, y) | Aqu(y)v(x)dyy dgx

2

_ 9 1 (7.7)
(1-9q) cosh (i °) [Resg:% J@ssinh (,/75,¢2) ]

x (Aqu;sinh (\/q77,9%,9%) ) - (v,sinh (\/g77.x,q%) ).

If £(1) =0, then

1 1 (!
Agf @iy = [ fO0dpx 7.8
J, Ao oy = _ | fodys 78)
which implies
. 1 .
(Aqu,sinh (\/q11aqx,q)) = a(u,smh(qux,cf)). (7.9)
Finally we have
(E{nntu,v) = 2 cosh (/7w q") (u,sin (\/ghnx,q?)) - (v,sin (Yghax,q%)).
(1—q) (d/dx)sinh (x,q%) [~ g ’

(7.10)
This completes the proof. O

COROLLARY 7.2.

e e (=9 (d/dx)sinh (x,q?) | ._ -

K = [[sin (yahwo, 4*) I3, = — woh ) - W

Proof. For

u=v =sin(gAix,q%), (7.12)
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the result follows immediately from the following equality:

E{na} sin (\/ghax,q*) = sin (\/ghux,q). (7.13)
This finishes the proof. O
Remark 7.3. In [5], it is proved that

1 1-— d
L I (agx, %) ' dyx = —qu""llﬁ)l (a0,4°) 1P (6°) | -0 (7.14)

where a # 0 is a real zero of ]§3)(x,q2). This formula can be employed to evaluate k, by
another method.
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