Research Article
 The Interplay between Linear Representations of the Braid Group

Mohammad N. Abdulrahim and Nibal H. Kassem

Received 19 May 2007; Accepted 10 July 2007
Recommended by Howard E. Bell

We consider Wada's representation as a twisted version of the standard action of the braid group, B_{n}, on the free group with n generators. Constructing a free group, $G_{n m}$, of rank $n m$, we compose Cohen's map $B_{n} \rightarrow B_{n m}$ and the embedding $B_{n m} \rightarrow \operatorname{Aut}\left(G_{n m}\right)$ via Wada's map. We prove that the composition factors of the obtained representation are one copy of Burau representation and $m-1$ copies of the standard representation after changing the parameter t to t^{k} in the definitions of the Burau and standard representations. This is a generalization of our previous result concerning the standard Artin representation of the braid group.

Copyright © 2007 M. N. Abdulrahim and N. H. Kassem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

There are many kinds of representations of B_{n}, the braid group on n strings. The earliest was the Artin representation, which is an embedding $B_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$, the automorphism group of a free group on n generators [1, page 25]. A certain type of representation, introduced by F. R. Cohen and studied by him and others, is the map $B_{n} \rightarrow B_{n m}$ which is defined on geometric braids by replacing each string with m strings [2, page 208].

In Section 2 of this paper, we present an infinite series of representations generalizing the standard Artin representation, which were discovered by M. Wada [3]. More precisely, for an arbitrary nonzero integer k, the automorphism corresponding to the braid generator σ_{i} takes x_{i} to $x_{i}^{k} x_{i+1} x_{i}^{-k} ; x_{i+1}$ to x_{i}, and fixes all other free generators. Utilizing Fox derivatives, we have a twisted version of the Burau representation. Shpilrain has shown that these representations are indeed faithful [3, page 773]. In [4], it was shown that Wada's representations are unitary.

In Section 3, we compose Cohen's map with Wada's representation and we get a linear representation of degree $n m$ which has a subrepresentation isomorphic to the Burau representation, and the quotient is isomorphic to the direct sum of $m-1$ copies of the standard representation, which was studied by Sysoeva [5]. This is done after we change the indeterminate t to t^{k} in the definitions of the Burau and standard representations. As a corollary, by letting $k=1$, we get our previous result concerning the standard Artin representation of the braid group. For more details, see [6].

2. Notation and preliminaries

The braid group on n strings, B_{n}, is an abstract group which has a presentation with generators

$$
\begin{equation*}
\sigma_{1}, \ldots, \sigma_{n-1} \tag{2.1}
\end{equation*}
$$

and defining relations

$$
\begin{gather*}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \quad \text { for } i=1,2, \ldots, n-2 \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \quad \text { if }|i-j| \geq 2 \tag{2.2}
\end{gather*}
$$

The generators $\sigma_{1}, \ldots, \sigma_{n-1}$ are called the standard generators of B_{n}. Let t be an indeterminate and let $\mathbb{C}\left[t^{ \pm 1}\right]$ represent the Laurent polynomial ring over complex numbers.
Definition 2.1. The Burau representation $\beta_{n}(t): B_{n} \rightarrow G L_{n}\left(\mathbb{C}\left[t^{ \pm 1}\right]\right)$ is defined by

$$
\beta_{n}(t)\left(\sigma_{i}\right)=\left(\begin{array}{c|cc|c}
I_{i-1} & 0 & 0 \tag{2.3}\\
\hline 0 & 1-t & t & 0 \\
& 1 & 0 & 0 \\
\hline 0 & 0 & I_{n-i-1}
\end{array}\right) \quad \text { for } i=1, \ldots, n-1
$$

The standard representation $\gamma_{n}(t): B_{n} \rightarrow G L_{n}\left(\mathbb{C}\left[t^{ \pm 1}\right]\right)$ is defined by

$$
\gamma_{n}(t)\left(\sigma_{i}\right)=\left(\begin{array}{c|c|c}
I_{i-1} & 0 & 0 \tag{2.4}\\
\hline 0 & 0 & t \\
0 & 1 & 0
\end{array}\right) \quad \text { for } i=1, \ldots, n-1
$$

For more details about the standard representation, see [5].
There is a well-known standard representation (due to Artin) of group B_{n} in group $\operatorname{Aut}\left(F_{n}\right)$ of automorphisms of the free group F_{n} generated by x_{1}, \ldots, x_{n}. The automorphism $\overline{\sigma_{i}}$ corresponding to the braid generator σ_{i} takes $x_{i} \rightarrow x_{i} x_{i+1} x_{i}{ }^{-1} ; x_{i+1} \rightarrow x_{i}$, and fixes all other free generators.

A twisted version of the standard action of the braid group on the free group is Wada's representation; thus we have the following definition.

Definition 2.2. Wada's representations are generalizations of the standard Artin representation, discovered by M. Wada, and assert that the automorphism corresponding to σ_{i}
takes

$$
\begin{align*}
x_{i} & \longrightarrow x_{i}^{k} x_{i+1} x_{i}^{-k}, \\
x_{i+1} & \longrightarrow x_{i}, \tag{2.5}\\
x_{j} & \longrightarrow x_{j} \text { for } j \neq i, i+1 .
\end{align*}
$$

Definition 2.3 [7, page 104]. Let G be an arbitrary group and let $\mathbb{Z} G$ be the group ring of G with respect to the ring of integers \mathbb{Z}. A mapping $D: \mathbb{Z} G \rightarrow \mathbb{Z} G$ is said to be a derivative if and only if
(1) $D(f+h)=D f+D h$ and
(2) $D(f h)=(D f)(\epsilon h)+f(D h)$ (product rule) for all f and h in $\mathbb{Z} G$.

Here, ϵ is the augmentation homomorphism: $\mathbb{Z} G \rightarrow \mathbb{Z}$ defined by $\epsilon\left(\sum_{g \in G} n_{g} g\right)=$ $\sum_{g \in G} n_{g}$.

Let F_{n} be a free group of rank n, with free basis x_{1}, \ldots, x_{n}. We define for $j=1,2, \ldots, n$ the free derivatives on the group $\mathbb{Z} F_{n}$ by

$$
\begin{align*}
& \frac{\partial}{\partial x_{j}}\left(x_{\mu_{1}}^{\epsilon_{1}} \cdots x_{\mu_{r}}^{\epsilon_{r}}\right)=\sum_{i=1}^{r} \epsilon_{i} \delta_{\mu_{i}, j} x_{\mu_{1}}^{\epsilon_{1}} \cdots x_{\mu_{i}}^{(1 / 2)\left(\epsilon_{i}-1\right)} \tag{2.6}\\
& \frac{\partial}{\partial x_{j}}\left(\sum a_{g} g\right)=\sum a_{g} \frac{\partial g}{\partial x_{j}}, \quad g \in F_{n}, a_{g} \in \mathbb{Z}
\end{align*}
$$

where $\epsilon_{i}= \pm 1$ and $\delta_{i, j}$ is the Kronecker symbol.
The following properties hold true.
(i) $\partial x_{i} / \partial x_{j}=\delta_{i, j}$.
(ii) $\partial x_{i}^{-1} / \partial x_{j}=-\delta_{i, j} x_{i}^{-1}$.
(iii) $\left(\partial / \partial x_{j}\right)(u v)=\left(\partial u / \partial x_{j}\right) \epsilon(v)+u\left(\partial v / \partial x_{j}\right) u, v \in \mathbb{Z} F_{n}$.

Note that if $v \in F_{n}$, then $\epsilon(v)=1$. For simplicity, we denote $\partial / \partial x_{j}$ by d_{j}.
Using the Magnus representation, the automorphism σ_{i} under Wada's representation is mapped onto the $n \times n$ matrix $\left[\phi\left(\left(\partial / \partial x_{r}\right) \sigma_{i}\left(x_{j}\right)\right)\right]$ which differs from the identity only by a 2×2 block with the top left corner in the (i, i) th place. More precisely,

$$
\begin{equation*}
\sigma_{i}(t)=\left(\right) \quad \text { for } i=1,2, \ldots, n-1 \tag{2.7}
\end{equation*}
$$

Given a positive integer k, we introduce indeterminates y_{1}, \ldots, y_{n} defined as $y_{1}=x_{1}{ }^{k}$, $y_{2}=x_{2}{ }^{k}, \ldots, y_{n}=x_{n}{ }^{k}$ and let G_{n} be the free group of rank n with free basis y_{1}, \ldots, y_{n}.

If ϕ is an arbitrary homomorphism acting on F_{n} defined as $\phi\left(x_{i}\right)=t$, then $\phi\left(y_{i}\right)=t^{k}$ for $i=1, \ldots, n$. Let $G_{n}{ }^{\phi}$ denote the image of G_{n} under ϕ.

Under Wada's representation, the action of the generators of B_{n} on the free group F_{n} induces an action on the free subgroup G_{n}. That is, we have a faithful representation of B_{n} as a subgroup of $\operatorname{Aut}\left(G_{n}\right)$.

Lemma 2.4. Under Wada's representation, the action of σ_{i} on the basis of G_{n}, namely, $\left\{y_{1}, \ldots\right.$, $\left.y_{n}\right\}$, is given by

$$
\begin{align*}
y_{i} & \longrightarrow y_{i} y_{i+1} y_{i}^{-1}, \\
y_{i+1} & \longrightarrow y_{i}, \tag{2.8}\\
y_{r} & \longrightarrow y_{r}, \quad r \neq i, i+1 .
\end{align*}
$$

Proof. $\sigma_{i}\left(y_{i}\right)=\sigma_{i}\left(x_{i}{ }^{k}\right)=\left(\sigma_{i}\left(x_{i}\right)\right)^{k}=x_{i}{ }^{k} x_{i+1} x_{i}{ }^{-k} x_{i}{ }^{k} x_{i+1} x_{i}{ }^{-k} \cdots x_{i}{ }^{k} x_{i+1} x_{i}{ }^{-k}=x_{i}^{k} x_{i+1}{ }^{k} x_{i}{ }^{-k}=$ $y_{i} y_{i+1} y_{i}{ }^{-1}$.

The action of σ_{i} on the other generators follows easily.
Using Lemma 2.4 and the Magnus representation of B_{n} as a subgroup of $\operatorname{Aut}\left(G_{n}\right)$, the automorphism σ_{i} is mapped onto the $n \times n$ matrix $\left[\phi\left(\left(\partial / \partial y_{r}\right) \sigma_{i}\left(y_{s}\right)\right)\right]$. Direct computations show that it is the same matrix as in (2.7). Therefore, we get the following corollary.

Corollary 2.5. Under Wada's representation, the $n \times n$ matrices obtained by letting B_{n} act on F_{n} or on G_{n} are exactly the same.

Proof. This follows easily from Lemma 2.4 and the fact that we have defined $\phi\left(y_{i}\right)=t^{k}$.

3. Automorphisms of $G_{n m}$

Definition 3.1 [2, page 208]. The Cohen representation is the map $B_{n} \rightarrow B_{n m}$ defined as follows:
$\sigma_{i} \longrightarrow 1 \times \sigma_{i}=\left(\sigma_{m i} \sigma_{m i+1} \cdots \sigma_{m i+m-1}\right)\left(\sigma_{m i-1} \sigma_{m i} \cdots \sigma_{m i+m-2}\right) \cdots\left(\sigma_{m i-m+1} \sigma_{m i-m+2} \cdots \sigma_{m i}\right)$.

Here, $1 \times \sigma_{i}$ is the braid obtained by replacing each string of the geometric braid, σ_{i}, with m parallel strings. Cohen called $1 \times \sigma_{i}$ a tensor product.

Putting $k=1$ in the definition of Wada's map, we get the result in [6], which asserts that by composing Cohen's map with Artin's representation of the braid group, we get a linear representation: $B_{n} \rightarrow B_{n m} \rightarrow G L_{n m}\left(\mathbb{Z}\left[t^{ \pm 1}\right]\right)$ which has a subrepresentation isomorphic to the Burau representation, and the quotient is isomorphic to the direct sum of $m-1$ copies of the standard representation, which was studied by Sysoeva [5].

In this paper, we generalize the result by taking any positive integer k and consider Wada's representation, which is a twisted version of the standard action of the braid group on the free group.

Given the free generators $x_{1}, \ldots, x_{n m}$, we let $y_{i}=x_{i}{ }^{k}$ for $i=1, \ldots, n m$. We take $G_{n m}$ to be the free group generated by $y_{1}, \ldots, y_{n m}$.

Let τ_{i} be the image of the braid generator σ_{i} of B_{n} under the Cohen map. Using Lemma 2.4, there is an induced action of τ_{i} on the free subgroup $G_{n m}$. As in Section 2, we show that the $(n m) \times(n m)$ matrix obtained by letting τ_{i} as act on $F_{n m}$ with generators $x_{1}, \ldots, x_{n m}$ is exactly the same as that obtained by having τ_{i} act on $G_{n m}$ with generators $x_{1}{ }^{k}, \ldots, x_{n m}{ }^{k}$ instead. Therefore, we get the following theorem.

Theorem 3.2. The action of the image of the generator of B_{n} under Cohen's map, namely, τ_{i}, on $F_{n m}$ gives an $(n m) \times(n m)$ matrix which is the same as the one obtained under the action of τ_{i} on the free subgroup $G_{n m}$.

Proof. Let

$$
\begin{equation*}
\tau_{i}=\left(\sigma_{m i} \sigma_{m i+1} \cdots \sigma_{m i+m-1}\right)\left(\sigma_{m i-1} \sigma_{m i} \cdots \sigma_{m i+m-2}\right) \cdots\left(\sigma_{m i-m+1} \sigma_{m i-m+2} \cdots \sigma_{m i}\right) \tag{3.2}
\end{equation*}
$$

Let us see the action of τ_{i} on $F_{n m}$ with generators $x_{1}, \ldots, x_{n m}$.
It is clear that we need to see the action of τ_{i} especially on the $2 m$ elements, namely,

$$
\begin{equation*}
x_{m i-m+1}, x_{m i-m+2}, \ldots, x_{m i}, x_{m i+1}, x_{m i+2}, \ldots, x_{m i+m} \tag{3.3}
\end{equation*}
$$

As for the other elements, the action of τ_{i} is trivial. Direct computations show that

$$
\begin{equation*}
\tau_{i}\left(x_{m i-m+s}\right)=\left(x_{m i-m+1}{ }^{k} \cdots x_{m i}{ }^{k}\right) x_{m i+s}\left(x_{m i-m+1}{ }^{k} \cdots x_{m i}{ }^{k}\right)^{-1} \quad \text { for } s=1, \ldots, m . \tag{3.4}
\end{equation*}
$$

Also, we have that

$$
\begin{equation*}
\tau_{i}\left(x_{m i+s}\right)=x_{m i+s-m} \quad \text { for } s=1, \ldots, m . \tag{3.5}
\end{equation*}
$$

The action of τ_{i} on the free subgroup $G_{n m}$ with generators $y_{1}, \ldots, y_{n m}$, where $y_{j}=x_{j}{ }^{k}$ for $j=1, \ldots, n m$, is given by

$$
\begin{equation*}
\tau_{i}\left(y_{m i-m+s}\right)=\left(y_{m i-m+1} \cdots y_{m i}\right) y_{m i+s}\left(y_{m i-m+1} \cdots y_{m i}\right)^{-1} \quad \text { for } s=1, \ldots, m \tag{3.6}
\end{equation*}
$$

Also, we have that

$$
\begin{equation*}
\tau_{i}\left(y_{m i+s}\right)=y_{m i+s-m} \quad \text { for } s=1, \ldots, m \tag{3.7}
\end{equation*}
$$

Next, we apply Magnus representation to get the matrices corresponding to τ_{i}, namely, $\left[\phi\left(\left(\partial / \partial x_{r}\right) \tau_{i}\left(x_{s}\right)\right)\right]$ and $\left[\phi\left(\left(\partial / \partial y_{r}\right) \tau_{i}\left(y_{s}\right)\right)\right]$. Using Fox derivatives and having defined $\phi\left(x_{j}\right)=t$ and $\phi\left(y_{j}\right)=t^{k}$ for $j=1, \ldots, n m$, we get that the matrices are the same. To see this, we make some computations.

For fixed values of i and m, we denote $\phi\left(\left(\partial / \partial y_{r}\right) \tau_{i}\left(y_{m i-m+s}\right)\right)$ or $\phi\left(\left(\partial / \partial x_{r}\right) \tau_{i}\left(x_{m i-m+s}\right)\right)$ by $d_{r}\left(\tau_{i}\left(y_{m i-m+s}\right)\right)$ or $d_{r}\left(\tau_{i}\left(x_{m i-m+s}\right)\right)$. Direct computations show that these derivatives are
equal. More precisely, we have that

$$
\begin{align*}
& d_{m i-m+1}\left(\tau_{i}\left(y_{m i-m+s}\right)\right)=1-t^{k}, \quad d_{m i-m+2}\left(\tau_{i}\left(y_{m i-m+s}\right)\right)=t^{k}-t^{2 k} \\
& d_{m i-m+3}\left(\tau_{i}\left(y_{m i-m+s}\right)\right)=t^{2 k}-t^{3 k}, \ldots, d_{m i}\left(\tau_{i}\left(y_{m i-m+s}\right)\right)=t^{(m-1) k}-t^{m k} \tag{3.8}
\end{align*}
$$

For $2 \leq s \leq m$, we have

$$
\begin{equation*}
d_{m i+1}\left(\tau_{i}\left(y_{m i-m+s}\right)\right)=\cdots=d_{m i+s-1}\left(\tau_{i}\left(y_{m i-m+s}\right)\right)=0 . \tag{3.9}
\end{equation*}
$$

Also, we have that for $1 \leq s \leq m$

$$
\begin{equation*}
d_{m i+s}\left(\tau_{i}\left(y_{m i-m+s}\right)\right)=t^{m k} \tag{3.10}
\end{equation*}
$$

If $s \leq m-1$, then

$$
\begin{equation*}
d_{m i+s+1}\left(\tau_{i}\left(y_{m i-m+s}\right)\right)=\cdots=d_{m i+m}\left(\tau_{i}\left(y_{m i-m+s}\right)\right)=0 \tag{3.11}
\end{equation*}
$$

As for the elements $y_{m i+s}$, we have that

$$
\begin{equation*}
d_{p}\left(\tau_{i}\left(y_{m i+s}\right)\right)=\delta_{p, m i+s-m} \tag{3.12}
\end{equation*}
$$

($\delta_{i, j}$ is the Kronecker symbol).
Notice that for $m=1$, we get Corollary 2.5.
Throughout our work, we will then treat the generators of B_{n} as automorphisms of the free group $G_{n m}$ with generators $y_{1}, \ldots, y_{n m}$, where $y_{i}=x_{i}{ }^{k}$ rather than automorphisms of $F_{n m}$.

Next, we proceed as in [6] by choosing elements $z_{i, j}$ of $G_{n m}$, each of which is a word in these y_{i} 's. More precisely, for $1 \leq i \leq m$ and $1 \leq j \leq n$ we define $z_{i, j}$ as follows:

$$
\begin{equation*}
z_{i, j}=y_{1+m j-m} y_{2+m j-m} \ldots y_{m j-i+1} . \tag{3.13}
\end{equation*}
$$

It is then clear that for fixed choices of a positive integer, m, and an integer $i: 1 \leq i \leq m$, the length of $z_{i, j}$ is $m-i+1$. In other words, the generators $\left\{z_{i, j}\right\}$ are defined as follows:

$$
\begin{array}{llcc}
z_{1,1}=y_{1} \cdots y_{m}, & z_{2,1}=y_{1} \cdots y_{m-1}, & \cdots, & z_{m, 1}=y_{1}, \\
z_{1,2}=y_{1+m} \cdots y_{2 m}, & z_{2,2}=y_{1+m} \cdots y_{2 m-1}, & \cdots, & z_{m, 2}=y_{1+m} \\
\vdots & \vdots & & \vdots \tag{3.14}\\
z_{1, n}=y_{1+(n-1) m} \cdots y_{n m}, & z_{2, n}=y_{1+(n-1) m} \cdots y_{n m-1}, & \cdots, & z_{m, n}=y_{1+(n-1) m} .
\end{array}
$$

Lemma 3.3. $\left\{z_{i, j}\right\}$ is a basis of $G_{n m}$.

Let $\overline{\tau_{r}}$ be the automorphism on $G_{n m}$ that corresponds to τ_{r} which is the image of the braid generator σ_{r} of B_{n} under the Cohen map. When there is no danger of confusion, we will still denote the automorphism $\overline{\tau_{r}}$ by τ_{r}.

Using Lemma 2.4 in Section 2 of our work and [6, Theorem 3.1, page 172], we easily get the following theorem.

Theorem 3.4. For $1 \leq r \leq n-1$ and $1 \leq i \leq m$, the action of τ_{r} on the basis $\left\{z_{i, j}\right\}$ of $G_{n m}$ is given by
(1) $z_{i, r} \rightarrow z_{1, r} z_{i, r+1} z_{1, r}{ }^{-1}$,
(2) $z_{i, r+1} \rightarrow z_{i, r}$,
(3) $z_{i, j} \rightarrow z_{i, j}, 1 \leq j \leq n(j \neq r, r+1)$.

Let $\phi\left(z_{i, j}\right)=t^{k}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. Let $D_{i, j}=\phi\left(\partial / \partial z_{i, j}\right)$. Now to find the linear representation

$$
\begin{equation*}
B_{n} \longrightarrow B_{n m} \longrightarrow G L(n m, \mathbb{Z})\left[t^{ \pm 1}\right] \tag{3.15}
\end{equation*}
$$

we determine the Jacobian matrix of the image of the braid generator σ_{r} under Cohen map, namely the automorphism τ_{r} on the group $G_{n m}$. But first, we give an order to the generators of $G_{n m}$ as follows:

$$
\begin{equation*}
z_{1,1}, z_{1,2}, \ldots, z_{1, n}, z_{2,1}, z_{2,2}, \ldots, z_{2, n}, \ldots, z_{m, 1}, z_{m, 2}, \ldots, z_{m, n} \tag{3.16}
\end{equation*}
$$

Then we define the Jacobian matrix as follows:

$$
J\left(\tau_{r}\right)=\left(\begin{array}{ccc}
D_{1,1}\left(\tau_{r}\left(z_{1,1}\right)\right) & \cdots & D_{m, n}\left(\tau_{r}\left(z_{1,1}\right)\right) \tag{3.17}\\
\vdots & & \vdots \\
D_{1,1}\left(\tau_{r}\left(z_{m, n}\right)\right) & \cdots & D_{m, n}\left(\tau_{r}\left(z_{m, n}\right)\right)
\end{array}\right) .
$$

We now prove our main theorem.
Theorem 3.5. The linear representation obtained by composing the Cohen representation with Wada's representation has a subrepresentation isomorphic to the Burau representation of B_{n}, and the quotient is isomorphic to the direct sum of $m-1$ copies of the standard representation of B_{n} after changing the parameter t to t^{k} in the definitions of the Burau and standard representations. More precisely,

$$
\sigma_{r} \longrightarrow\left(\begin{array}{cccc}
\beta_{n}\left(t^{k}\right)\left(\sigma_{r}\right) & 0 & \cdots & 0 \tag{3.18}\\
& \gamma_{n}\left(t^{k}\right)\left(\sigma_{r}\right) & & \vdots \\
& & \ddots & 0 \\
& & & \gamma_{n}\left(t^{k}\right)\left(\sigma_{r}\right)
\end{array}\right)
$$

Proof. Using Definition 2.3 for free derivatives and Theorem 3.4, we get for $1 \leq i \leq m$

$$
\begin{equation*}
D_{1, r}\left(\tau_{r}\left(z_{i, r}\right)\right)=1-t^{k}, \quad D_{i, r+1}\left(\tau_{r}\left(z_{i, r}\right)\right)=t^{k} . \tag{3.19}
\end{equation*}
$$

Also notice that

$$
\begin{equation*}
D_{i, r}\left(\tau_{r}\left(z_{i, r+1}\right)\right)=1 \tag{3.20}
\end{equation*}
$$

(here $\left.\phi\left(z_{i, j}\right)=t^{k}\right)$.
We take this subrepresentation as the one specified by the basis $\left\{z_{1,1}, \ldots, z_{1, n}\right\}$. The direct summands of the quotient are generated by the images of $\left\{z_{i, 1}, \ldots, z_{i, n}\right\}$ for $i=2$, \ldots, m. In other words, the Jacobian matrix of τ_{r} is given by

Recalling Definition 2.1, we have then proved our theorem.
Notice that, for $k=1$, we get the result that was proved in [6].

References

[1] E. Artin, The Collected Papers of Emil Artin, Addison-Wesley, Reading, Mass, USA, 1965.
[2] F. R. Cohen, "Artin's braid groups and classical homotopy theory," in Combinatorial Methods in Topology and Algebraic Geometry (Rochester, NY, 1982), vol. 44 of Contemporary Mathematics, pp. 207-220, American Mathematical Society, Providence, RI, USA, 1985.
[3] V. Shpilrain, "Representing braids by automorphisms," International Journal of Algebra and Computation, vol. 11, no. 6, pp. 773-777, 2001.
[4] M. N. Abdulrahim, "Generalizations of the standard Artin representation are unitary," International Journal of Mathematics and Mathematical Sciences, vol. 2005, no. 8, pp. 1321-1326, 2005.
[5] I. Sysoeva, "Dimension n representations of the braid group on n strings," Journal of Algebra, vol. 243, no. 2, pp. 518-538, 2001.
[6] M. N. Abdulrahim, "On the composition of the Burau representation and the natural map $B_{n} \rightarrow$ $B_{n k}$," Journal of Algebra and Its Applications, vol. 2, no. 2, pp. 169-175, 2003.
[7] J. S. Birman, Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies, no. 82, Princeton University Press, Princeton, NJ, USA, 1974.

Mohammad N. Abdulrahim: Department of Mathematics, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon
Email address: mna@bau.edu.lb
Nibal H. Kassem: Department of Mathematics, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon
Email address: nibal_rose@hotmail.com

