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The concept of statistical convergence was presented by Steinhaus in 1951. This concept
was extended to the double sequences by Mursaleen and Edely in 2003. Karakus has re-
cently introduced the concept of statistical convergence of ordinary (single) sequence on
probabilistic normed spaces. In this paper, we define statistical analogues of convergence
and Cauchy for double sequences on probabilistic normed spaces. Then we display an ex-
ample such that our method of convergence is stronger than usual convergence on prob-
abilistic normed spaces. Also we give a useful characterization for statistically convergent
double sequences.
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1. Introduction

An interesting and important generalization of the notion of metric space was introduced
by Menger [1] under the name of statistical metric, which is now called probabilistic met-
ric space. The notion of a probabilistic metric space corresponds to the situations when
we do not know exactly the distance between two points, we know only probabilities of
possible values of this distance. The theory of probabilistic metric space was developed
by numerous authors, as it can be realized upon consulting the list of references in [2], as
well as those in [3, 4]. An important family of probabilistic metric spaces are probabilistic
normed spaces. The theory of probabilistic normed spaces is important as a generaliza-
tion of deterministic results of linear normed spaces. The concept of statistical conver-
gence of ordinary (single) sequence on probabilistic normed spaces was introduced by
Karakus in [5]. In this paper, we extended in [5] the concept of statistical convergence
from single to multiple sequences and proved some basic results.

Now we recall some notations and definitions which we use in the paper.



2 International Journal of Mathematics and Mathematical Sciences

Definition 1.1. A function f :R→R+
0 is called a distribution function if it is nondecreas-

ing and left continuous with inf t∈R f (t)= 0 and supt∈R f (t)= 1.

We will denote the set of all distribution functions by D.

Definition 1.2. A triangular norm, briefly t-norm, is a binary operation on [0,1] which is
continuous, commutative, associative, nondecreasing and has 1 as neutral element, that
is, it is the continuous mapping ∗ : [0,1]× [0,1]→ [0,1] such that for all a,b,c ∈ [0,1]:

(1) a∗ 1= a,
(2) a∗ b = b∗ a,
(3) c∗d ≥ a∗ b if c ≥ a and d ≥ b,
(4) (a∗ b)∗ c = a∗ (b∗ c).

Example 1.3. The ∗ operations a∗ b=max{a+ b− 1,0}, a∗ b=ab, and a∗ b=min{a,b}
on [0,1] are t-norms.

Definition 1.4. A triple (X ,N ,∗) is called a probabilistic normed space (briefly, a
PN-space) if X is a real vector space, N is a mapping from X into D (for x ∈ X , the
distribution function N(x) is denoted by Nx, and Nx(t) is the value of Nx at t ∈R) and ∗
is a t-norm satisfying the following conditions:

(PN-1) Nx(0)= 0,
(PN-2) Nx(t)= 1 for all t > 0 if and only if x = 0,
(PN-3) Nαx(t)=Nx(t/|α|) for all α∈R\{0},
(PN-4) Nx+y(s+ t)≥Nx(s)∗Ny(t) for all x, y ∈ X , and s, t ∈R+

0 .

Example 1.5. Suppose that (X ,‖ · ‖) is a normed space μ ∈ D with μ(0) = 0 and μ �= h,
where

h(t)=
⎧
⎨

⎩

0, t ≤ 0,

1, t > 0.
(1.1)

Define

Nx(t)=

⎧
⎪⎪⎨

⎪⎪⎩

h(t), x = 0,

μ
(

t

‖x‖
)

, x �= 0,
(1.2)

where x ∈ X , t ∈R. Then (X ,N ,∗) is a PN-space. For example if we define the functions
μ and μ′ on R by

μ(x)=
⎧
⎪⎨

⎪⎩

0, x ≤ 0,
x

1 + x
, x > 0,

μ′(x)=

⎧
⎪⎪⎨

⎪⎪⎩

0, x ≤ 0,

exp
(−1

x

)

, x > 0,
(1.3)

then we obtain the following well-known ∗-norms:

Nx(t)=
⎧
⎪⎨

⎪⎩

h(t), x = 0,
t

t+‖x‖ , x �= 0,
N ′

x(t)=
⎧
⎪⎨

⎪⎩

h(t), x = 0,

exp
(−‖x‖

t

)

, x �= 0.
(1.4)
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We recall the concepts of convergence and Cauchy for single sequences in a probabilis-
tic normed space.

Definition 1.6. Let (X ,N ,∗) be a PN-space. Then, a sequence x = (xn) is said to be con-
vergent to L∈ X with respect to the probabilistic norm N if, for every ε > 0 and λ∈ (0,1),
there exists a positive integer k0 such that Nxn−L(ε) > 1− λ whenever n≥ k0. It is denoted

by N − limx = L or xn
N−→ L as n→∞.

Definition 1.7. Let (X ,N ,∗) be a PN-space. Then, a sequence x = (xn) is called a Cauchy
sequence with respect to the probabilistic norm N if, for every ε > 0 and λ∈ (0,1), there
exists a positive integer k0 such that Nxn−xm(ε) > 1− λ for all n,m≥ k0.

Remark 1.8 [6]. Let (X ,‖ · ‖) be a real normed space, and Nx(t) = t/(t+‖x‖), where
x ∈ X and t ≥ 0 (standard ∗-norm induced by ‖ · ‖). Then it is not hard to see that

xn
‖·‖−−→ x if and only if xn

N−→ x.

Definitions 1.6 and 1.7 for double sequences on probabilistic normed space are as
follows.

Definition 1.9 [5]. Let (X ,N ,∗) be a PN-space. Then, a double sequence x = (xjk) is said
to be convergent to L∈ X with respect to the probabilistic norm N if, for every ε > 0 and
λ∈ (0,1), there exists a positive integer k0 such that Nxjk−L(ε) > 1− λ whenever j,k ≥ k0.

It is denoted by N2− limx = L or xjk
N→ L as j,k→∞.

Definition 1.10 [5]. Let (X ,N ,∗) be a PN-space. Then, a double sequence x = (xjk) is
said to be a Cauchy sequence with respect to the probabilistic norm N if, for every ε > 0
and λ∈ (0,1), there exist M′ =M′(ε) and M =M(ε) such that Nxjk−xpq(ε) > 1− λ for all
j, p ≥M′, k,q ≥M.

2. Statistical convergence of double sequence on PN-spaces

Steinhaus [7] introduced the idea of statistical convergence (see also Fast [8]). If K is a
subset of N, the set of natural numbers, then the asymptotic density of K denoted by
δ(K) is given by

δ(K) := lim
n

1
n

∣
∣
{
k ≤ n : k ∈ K

}∣
∣ (2.1)

whenever the limit exists, where |A| denotes the cardinality of the set A. A sequence x =
(xk) of numbers is statistically convergent to L if

δ
({
k ∈N :

∣
∣xk −L

∣
∣≥ ε

})= 0 (2.2)

for every ε > 0. In this case we write st− limx = L.
Statistical convergence has been investigated in a number of papers [9–11].
Now we recall the concept of statistical convergence of double sequences.
Let K ⊆ N×N be a two-dimensional set of positive integers and let K(n,m) be the

numbers of (i, j) in K such that i ≤ n and j ≤m. Then the two-dimensional analog of
natural density can be defined as follows.
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The lower asymptotic density of a set K ⊆N×N is defined as

δ2(K)= lim
n,m

inf
K(n,m)
nm

. (2.3)

In case the sequence (K(n,m)/nm) has a limit in Pringsheim’s sense [12], then we say
that K has a double natural density and is defined as

lim
n,m

K(n,m)
nm

= δ2(K). (2.4)

If we consider the set of K = {(i, j) : i, j ∈N}, then

δ2(K)= lim
n,m

K(n,m)
nm

≤ lim
n,m

√
n
√
m

nm
= 0. (2.5)

Also, if we consider the set of {(i,2 j) : i, j ∈N} has double natural density 1/2.
If we set n=m, we have a two-dimensional natural density considered by Christopher

[13].
Now we recall the concepts of statistical convergence and statistical Cauchy for double

sequences as follows.

Definition 2.1 [14]. A real double sequence x = (xjk) is said to be statistically convergent
to a number � provided that, for each ε > 0, the set

{
( j,k), j ≤ n, k ≤m :

∣
∣xjk − �

∣
∣≥ ε

}
(2.6)

has double natural density zero. In this case, one writes st2− lim j,k xjk = �.

Definition 2.2 [14]. A real double sequence x = (xjk) is said to be statistically Cauchy
provided that, for every ε > 0 there exist N =N(ε) and M =M(ε) such that for all j, p ≥
N , k,q ≥M, the set

{
( j,k), j ≤ n, k ≤m :

∣
∣xjk − xpq

∣
∣≥ ε

}
(2.7)

has double natural density zero.

The statistical convergence for double sequences is also studied by Móricz [15].
Now we give the analogues of these definitions with respect to the probabilistic

norm N .

Definition 2.3. Let (X ,N ,∗) be a PN-space. A double sequence x = (xjk) is statistically
convergent to L ∈ X with respect to the probabilistic norm N provided that, for every
ε > 0 and λ∈ (0,1),

K = {( j,k), j ≤ n, k ≤m : Nxjk−L(ε)≤ 1− λ
}

(2.8)

has double natural density zero, that is, if K(n,m) become the numbers of ( j,k) in K :

lim
n,m

K(n,m)
nm

= 0. (2.9)
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In this case, one writes stN2− lim j,k xjk = L, where L is said to be stN2− limit. Also, one
denotes the set of all statistically convergent double sequences with respect to the proba-
bilistic norm N by stN2 .

Now we give a useful lemma as follows.

Lemma 2.4. Let (X ,N ,∗) be a PN-space. Then, for every ε > 0 and λ∈ (0,1) the following
statements are equivalent:

(i) stN2− lim j,k xjk = L,
(ii) δ2{( j,k), j ≤ n and k ≤m : Nxjk−L(ε)≤ 1− λ} = 0,

(iii) δ2{( j,k), j ≤ n and k ≤m : Nxjk−L(ε) > 1− λ} = 1,
(iv) st2− limNxjk−L(ε)= 1.

Proof. The first three parts are equivalent is trivial from Definition 2.3. It follows from
Definition 2.1 that
{

( j,k), j ≤ n, k ≤m :
∣
∣Nxjk−L(ε)− 1

∣
∣≥ λ

}

= {( j,k), j≤n, k≤m : Nxjk−L(ε)≥ 1+λ
}∪{( j,k), j≤n, k ≤m : Nxjk−L(ε)≤ 1−λ}.

(2.10)

Also, Definition 1.4 implies that (ii) and (iv) are equivalent. �

Theorem 2.5. Let (X ,N ,∗) be a PN-space. If a double sequence x = (xjk) is statistically
convergent with respect to the probabilistic norm N , then the stN2−limit is unique.

Proof. Let x=(xjk) be a double sequence. Suppose that stN2− limx=L1 and stN2− limx=
L2. Let ε > 0 and λ > 0. Choose γ ∈ (0,1) such that (1− γ)∗ (1− γ) ≥ 1− λ. Then, we
define the following sets:

KN ,1(γ,ε) := {( j,k)∈N×N : Nxjk−L1 (ε)≤ 1− γ
}

,

KN ,2(γ,ε) := {( j,k)∈N×N : Nxjk−L2 (ε)≤ 1− γ
}
.

(2.11)

Since stN2− limx = L1, we have δ2{KN ,1(γ,ε)} = 0 for all ε > 0. Furthermore, using stN2

− limx = L2, we get δ2{KN ,2(γ,ε)} = 0 for all ε > 0. Now let KN (γ,ε) := {KN ,1(γ,ε)} ∩
{KN ,1(γ,ε)}. Then observe that δ2{KN (γ,ε)} = 0 which implies

δ2
{
N×N | KN (γ,ε)

}= 1. (2.12)

If ( j,k)∈N×N/KN (γ,ε), then we have

NL1−L2 (ε)≥Nxjk−L1

(
ε

2

)

∗Nxjk−L2

(
ε

2

)

> (1− γ)∗ (1− γ)≥ 1− λ. (2.13)

Since λ > 0 was arbitrary, we get NL1−L2 (ε)= 1 for all ε > 0, which yields L1 = L2. There-
fore, we conclude that the stN2− limit is unique. �

Theorem 2.6. Let (X ,N ,∗) be a PN-space. If N2 − limx = L for a double sequence x =
(xjk), then stN2− limx = L.
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Proof. By hypothesis, for every λ ∈ (0,1) and ε > 0, there is a number k0 ∈ N such that
Nxjk−L(ε) > 1− λ for all j ≥ k0 and k ≥ k0. This guarantees that the set {( j,k) ∈N×N :
Nxjk−L(ε)≤ 1− λ} has at most finitely many terms. Since every finite subset of the natural
numbers has double density zero, we immediately see that

δ2
{

( j,k)∈N×N : Nxjk−L(ε)≤ 1− λ
}= 0, (2.14)

whence the result. �

The following example shows that the converse of Theorem 2.6 does not hold in gen-
eral.

Example 2.7. Let (R,| · |) be a real normed space, and Nx(t) = t/(t+ |x|), where x ∈ X
and t ≥ 0 (standard ∗-norm induced by | · |). In this case, observe that (X ,N ,∗) is a
PN-space. Now we define a sequence x = (xjk) whose terms are given by

xjk :=
⎧
⎨

⎩

√

jk, if j and k are squares,

0, otherwise.
(2.15)

Then, for every λ∈ (0,1) and for any ε > 0, let

K(λ,ε)(n,m) := {( j,k), j ≤ n, k ≤m : Nxjk (ε)≤ 1− λ
}
. (2.16)

Since

K(λ,ε)(n,m)=
{

( j,k), j ≤ n, k ≤m :
t

t+
∣
∣xjk

∣
∣
≤ 1− λ

}

=
{

( j,k) , j ≤ n, k ≤m :
∣
∣xjk

∣
∣≥ λt

1− λ
> 0
}

=
{

( j,k), j ≤ n, k ≤m : xjk =
√

jk
}

= {( j,k), j ≤ n, k ≤m : j, k are squares
}

,

(2.17)

we get

1
nm

∣
∣K(λ,ε)(n,m)

∣
∣≤ 1

nm

∣
∣
{

( j,k), j ≤ n, k ≤m : j , k are squares
}∣
∣

≤
√
n
√
m

nm
= 0,

(2.18)

which implies that δ2{K(λ,ε)(n,m)} = 0. Hence, by Definition 2.3, we get stN2 − limx = 0.
However, since the sequence x = (xjk) given by (2.15) is not convergent in the space (R,
| · |), by Remark 1.8, we also see that x is not convergent with respect to the probabilistic
norm N .

Theorem 2.8. Let (X ,N ,∗) be a PN-space and let x = (xjk) be a double sequence. Then
stN2− limx = L if and only if there exists a subset K = {( j,k) : j,k = 1,2, . . .} ⊆N×N, such

that δ2(K)= 1 and N2− lim j,k→∞
( j,k)∈Kxjk = L.
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Proof. We first assume that stN2− limx = L. Now, for any ε > 0 and r ∈N, let

K(r,ε) :=
{

( j,k)∈N×N : Nxjk−L(ε)≤ 1− 1
r

}

,

M(r,ε)=
{

( j,k)∈N×N : Nxjk−L(ε) > 1− 1
r

}

.

(2.19)

Then δ2{K(r,ε)} = 0 and
(1) M(1,ε)⊃M(2,ε)⊃ ··· ⊃M(i,ε)⊃M(i+ 1,ε)⊃ . . . ,
(2) δ2{M(r,ε)} = 1, r = 1,2, . . ..

Now we have to show that for ( j,k) ∈M(r,ε), (xjk) is N2-convergent to L. Suppose
that (xjk) is not N2-convergent to L. Therefore there is λ > 0 such that

{
( j,k)∈N×N : Nxjk−L(ε)≤ 1− λ

}
(2.20)

for infinitely many terms.
Let

M(λ,ε)= {( j,k)∈N×N : Nxjk−L(ε) > 1− λ
}

, λ >
1
r

(r = 1,2, . . .). (2.21)

Then
(3) δ2{M(λ,ε)} = 0,

and by (1), M(r,ε) ⊂M(λ,ε). Hence δ2{M(r,ε)} = 0 which contradicts (2). Therefore
(xjk) is N2-convergent to L.

Conversely, suppose that there exists a subset K = {( j,k) : j,k = 1,2, . . .} ⊂N×N such
that δ2(K) = 1 and N2 − lim j,k∈K xjk = L, that is, there exists k0 ∈ N such that for every
λ∈ (0,1) and ε > 0

Nxjk−L(ε) > 1− λ, ∀ j,k ≥ k0. (2.22)

Now

M(λ,ε)= {( j,k)∈N×N : Nxjk−L(ε)≤ 1− λ
}

⊆N×N− {( jk0+1,kk0+1
)
,
(
jk0+2,kk0+2

)
, . . .
}
.

(2.23)

Therefore, δ2{M(λ,ε)} ≤ 1− 1= 0. Hence, we conclude that stN2− limx = L. �

Definition 2.9. Let (X ,N ,∗) be a PN-space. It is assumed that a double sequence x = (xjk)
is statistically Cauchy with respect to the probabilistic norm N provided that, for every
ε > 0 and λ ∈ (0,1), there exist M′ =M′(ε) and M =M(ε) such that for all j, p ≥M′,
k,q ≥M, the set

{
( j,k), j ≤ n, k ≤m : Nxjk−xpq(ε)≤ 1− λ

}
(2.24)

has double natural density zero.

Now using a similar technique in the proof of Theorem 2.8, one can get the following
result at once.
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Theorem 2.10. Let (X ,N ,∗) be a PN-space, and let x = (xjk) be a double sequence whose
terms are in the vector space X . Then, the following conditions are equivalent:

(i) x is a statistically Cauchy sequence with respect to the probabilistic norm N ;
(ii) there exists an increasing index sequence K = {( j,k) : j,k = 1,2, . . .} ⊆ N×N such

that δ2(K)= 1 and the subsequence {xjk}( j,k)∈K is a Cauchy sequence with respect to
the probabilistic norm N .

Now we show that statistical convergence of double sequences on probabilistic normed
spaces has some arithmetical properties similar to properties of the usual convergence
on R.

Lemma 2.11. Let (X ,N ,∗) be a PN-space.
(i) If stN2− limxjk = ξ and stN2− lim yjk = η, then stN2− lim(xjk + yjk)= ξ +η.

(ii) If stN2− limxjk = ξ and α∈R, then stN2− limαxjk = αξ.
(iii) If stN2− limxjk = ξ and stN2− lim yjk = η, then stN2− lim(xjk − yjk)= ξ −η.

Proof. (i) Let stN2− limxjk = ξ, stN2− lim yjk = η, ε > 0 and λ ∈ (0,1). Choose γ ∈ (0,1)
such that (1− γ)∗ (1− γ)≥ 1− λ. Then we define the following sets:

KN ,1(γ,ε) := {( j,k)∈N×N : Nxjk−ξ(ε)≤ 1− γ
}

,

KN ,2(γ,ε) := {( j,k)∈N×N : Nxjk−η(ε)≤ 1− γ
}
.

(2.25)

Since stN2− limxjk = ξ, we have

δ2
{
KN ,1(γ,ε)

}= 0 ∀ε > 0. (2.26)

Similarly, since stN2− lim yjk = η, we get

δ2
{
KN ,2(γ,ε)

}= 0 ∀ε > 0. (2.27)

Now let KN (γ,ε) := KN ,1(γ,ε)∩KN ,2(γ,ε). Then observe that δ2{KN (γ,ε)} = 0 which im-
plies δ2{N×N/KN (γ,ε)} = 1. If ( j,k)∈N×N/KN (γ,ε), then we have

N(xjk−ξ)+(yjk−η)(ε)≥Nxjk−ξ
(
ε

2

)

∗Nyjk−η
(
ε

2

)

> (1− γ)∗ (1− γ)≥ 1− λ.
(2.28)
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This shows that

δ2
({

( j,k)∈N×N : N(xjk−ξ)+(yjk−η)(ε)≤ 1− λ
})= 0 (2.29)

so stN2− lim(xjk + yjk)= ξ +η.
(ii) Let stN2− limxjk = ξ, λ∈ (0,1) and ε > 0. First of all, we consider the case of α= 0.

In this case

N0xjk−0ξ(ε)=N0(ε)= 1 > 1− λ. (2.30)

So we obtain N2− lim0xjk = 0. Then from Theorem 2.6 we have stN2− lim0xjk = 0.
Now we consider the case of α∈R (α �= 0). Since stN2− limxjk = ξ, if we define the set

KN (γ,ε) := {( j,k)∈N×N : Nxjk−ξ(ε)≤ 1− λ
}

, (2.31)

then we can say δ2(KN (γ,ε)) = 0 for all ε > 0. In this case δ2(N×N/KN (γ,ε)) = 1. If
( j,k)∈N×N/KN (γ,ε) then

Nαxjk−αξ(ε)=Nxjk−ξ
(

ε

|α|
)

≥Nxjk−ξ(ε)∗N0

(
ε

|α| − ε
)

=Nxjk−ξ(ε)∗ 1=Nxjk−ξ(ε) > 1− λ
(2.32)

for α∈R (α �= 0). This shows that

δ2
({

( j,k)∈N×N : Nαxjk−αξ(ε)≤ 1− λ
})= 0 (2.33)

so stN2− limαxjk = αξ.
(iii) The proof is clear from (i) and (ii). �

Definition 2.12. Let (X ,N ,∗) be a PN-space. For x = (xjk) ∈ X , t > 0 and 0 < r < 1, the
ball centered at x with radius r is defined by

B(x,r, t)= {y ∈ X : Nx−y(t) > 1− r
}
. (2.34)

Definition 2.13. A subset Y of PN-space (X ,N ,∗) is called bounded on PN-spaces if for
every r ∈ (0,1), there exists t0 > 0 such that Nxjk (t0) > 1− r for all x = (xjk)∈ Y .

It follows from Lemma 2.11 that the set of all bounded statistically convergent dou-
ble sequences on PN-space is a linear subspace of the linear normed space �N2∞ (X) of all
bounded sequences on PN-space.

Theorem 2.14. Let (X ,N ,∗) be a PN-space and the set stN2 (X)∩ �N2∞ (X) is closed linear
subspace of the set �N2∞ (X).

Proof. It is clear that stN2 (X)∩�N2∞ (X)⊂stN2 (X)∩�N2∞ (X). Now we show stN2 (X)∩ �N2∞ (X)

⊂ stN2 (X)∩ �N2∞ (X). Let y ∈ stN2 (X)∩ �N2∞ (X). Since B(y,r, t)∩ (stN2 (X)∩ �N2∞ (X)) �=∅,
there is an x ∈ B(y,r, t)∩ (stN2 (X)∩ �N2∞ (X)).
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Let t > 0 and ε ∈ (0,1). Choose r ∈ (0,1) such that (1− r)∗ (1− r) ≥ 1− ε. Since
x ∈ B(y,r, t)∩ (stN2 (X)∩ �N2∞ (X)), there is a set K ⊆N×N with δ2(K)= 1 such that

Nyjk−xjk

(
t

2

)

> 1− r, Nxjk

(
t

2

)

> 1− r (2.35)

for all ( j,k)∈ K . Then we have

Nyjk (t)=Nyjk−xjk+xjk (t)

≥Nyjk−xjk

(
t

2

)

∗Nxjk

(
t

2

)

> (1− r)∗ (1− r)≥ 1− ε

(2.36)

for all ( j,k)∈ K . Hence

δ2
({

( j,k)∈N×N : Nyjk (t) > 1− ε
})= 1 (2.37)

and thus y ∈ stN2 (X)∩ �N2∞ (X). �

3. Conclusion

In this paper, we obtained results on statistical convergence for double sequences on prob-
abilistic normed spaces. As every ordinary norm induces a probabilistic norm, the ob-
tained results here are more general than the corresponding results of normed spaces.
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