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1. Introduction

In this paper, we will consider the fourth-order differential equation

x(iv) + a
...
x + f (x, ẋ)ẍ+ g(ẋ) +h(x)= p(t), (1.1)

where a > 0, the functions f , g, h, p are continuous in the respective arguments displayed
explicitly, ẋ = dx/dt, ẍ = d2x/dt2,

...
x = d3x/dt3, and x(iv) = d4x/dt4. The conditions on f ,

g, h, and p are such that the existence of solutions of (1.1) corresponding to any preas-
signed initial solutions is guaranteed.

Solutions of the equation of the form (1.1) have been investigated by several
researchers on the account of boundedness, stability, and global asymptotic stability (see,
e.g., [1–9]). Some results on these can be found in [10]. Out of the numerous works on
this class of equations only a few were devoted to the convergence of the solutions (see,
e.g., [11, 12]).

By convergence of solutions we mean, given any two solutions x1(t) and x2(t) of (1.1),
x2(t)− x1(t)→ 0, ẋ2(t)− ẋ1(t)→ 0, ẍ2(t)− ẍ1(t)→ 0, and

...
x 2(t)− ...

x 1(t)→ 0 as t→∞.
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In [13–16], certain classes of third-order nonlinear differential equations were investi-
gated and their solutions were proved to converge under certain conditions.

In [15], the author considered the equation

...
x + aẍ+ bẋ+h(x)= p(t,x, ẋ, ẍ) (1.2)

and established that the boundedness of both p(t) and
∫
p(τ)dτ together with the differ-

entiability of the function h guaranteed the convergence of the solutions of the considered
equation. This result was improved upon in [16] when the stringent conditions placed on
the function h in [15] were dispensed with.

Similarly in [14], the author established that the solutions of the considered equation
converged without many restrictions on the nonlinear terms that were involved.

In [11], the author considered (1.1) with g(ẋ) = cẋ (c > 0), and further with the as-
sumption that h was not necessarily differentiable but satisfied an incrementary ratio
η−1(h(x + ξ)− h(ξ)) η �= 0, which lies in a closed subinterval I0 of the Routh-Hurwitz
interval (0,(ab− c)c/a2), where I0 ≡ [Δ0,k(ab− c)c/a2].

The author in [12] considered (1.1) with f (x, ẋ) = b and criteria for the existence of
convergent solutions were established, whereas in [11] he considered (1.1) with f (x, ẋ)=
b and g(ẋ)= c. The work in [12] extends [11] from equation with one nonlinearity to the
one having two nonlinearities which makes it an extension of [11] as well as an extension
of [15] to an analogous fourth-order equation.

In all these studies, Lyapunov’s second method has been the main tool of investiga-
tion. In the literature, the incomplete Lyapunov functions are frequent and used by a
quite appreciable number of researchers due to the nature of construction and simplicity.
The works with the complete Lyapunov functions are not as frequent as the ones with
incomplete Lyapunov function.

In this present work, we will extend the work in [14] to (1.1). With a suitable complete
Lyapunov function and less stringent assumptions on the nonlinear terms f , g, h, and p,
we will show that the solutions of (1.1) converge.

This work is organized in this order, the main result is presented in Section 2 as for-
mulation of results. Section 3 deals with the tools needed to the proof of the main result.
The proof of the main theorem is presented is Section 4.

2. Formulation of results

The following is the main result.

Theorem 2.1. Suppose that x1(t) and x2(t) are two solutions of (1.1), suppose further that
for arbitrary ξ,η (η �= 0),

(i) (h(ξ +η)−h(ξ))/η ∈ I0, η �= 0;
(ii) (g(ξ +η)− g(ξ))/η �= 0;

(iii) h(0)= g(0)= 0;
(iv) | f (x, y)| ≤ b;
(v) |p(t)| ≤Λ, (Λ constant)

then there exists a positive constant K5 such that
(vi) S(t2)≤ S(t1)e−K5(t2−t1) for t2 ≥ t1,
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where

S(t)=
{[
x2(t)− x1(t)

]2
+
[
ẋ2(t)− ẋ1(t)

]2
+
[
ẍ2(t)− ẍ1(t)

]2
+
[...
x 2(t)− ...

x 1(t)
]2
}
.

(2.1)

Furthermore, all solutions of (1.1) converge.

We have the following corollaries as the consequences of Theorem 2.1 when x1(t)= 0
and t1 = 0.

Corollary 2.2. Suppose that p = 0 in (1.1) and suppose further that the conditions of the
theorem hold, then the trivial solution of (1.1) is exponentially stable in the large.

Corollary 2.3. Suppose also that the conditions of Corollary 2.2 hold for arbitrary η (η �=
0) and ξ = 0, then there exists a constant K0 such that every solution x(t) of (1.1) satisfies

∣
∣x(t)

∣
∣≤ K0,

∣
∣ẋ(t)

∣
∣≤ K0,

∣
∣ẍ(t)

∣
∣≤ K0,

∣
∣...
x 2(t)

∣
∣≤ K0. (2.2)

Remark 2.4. The corresponding linear equation to (1.1) given as

x(iv) + a
...
x + bẍ+ cẋ+ dx = p(t), (∗)

d > 0 and constants b, c (with h(x) = dx, f (x, ẋ) = b, g(ẋ) = cẋ) and p(t) = 0 in (1.1),
is known to have convergent solutions if the Routh-Hurwitz conditions/criteria ab− c
> 0, (ab− c)c− a2d > 0 hold.

Notations 2.5. Throughout this paper, K3, K4, and K5 will denote finite positive constants
whose magnitudes depend only on the constants a, b, c, d, δ, and Δ but are independent
of solutions of (1.1). Ki’s are not necessarily the same for each time they occur, but each
Ki, i= 1,2, . . . ,5 retains its identity throughout.

3. Preliminary results

On setting ẋ = y, ẏ = z, ż =w, (1.1) can be replaced by an equivalent system

ẋ = y, ẏ = z, ż =w,

ẇ =−aw− f (x, y)z− g(y)−h(x) + p(t).
(3.1)

Following Cartwright [17] and Reissig et al. [10], a possible Lyapunov function is a qua-
dratic function in the variables for which the coefficients are suitably chosen. In this re-
gard, we will assume a Lyapunov function of the form

2V(x, y,z,w)= Ax2 +By2 +Cz2 +Dw2 + 2Exy + 2Fxz

+ 2Ixw+ 2J yz+ 2Myw+ 2Nzw.
(3.2)

Our investigation rests mainly on the properties of the function

W(t)≡V
(
x2(t)− x1(t), y2(t)− y1(t),z2(t)− z1(t),w2(t)−w1(t)

)
(3.3)
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with V(x(t), y(t),z(t),w(t)) written as V(x, y,z,w), where

A= aδ

Δ

{
(b+d)

(
c2 +d2)[d(1− ad)− c

]
+d3[a

(
b2 +d2)+L

]}
,

B = δ

Δ

{
dL(abd+ c) + a

(
b2 +d2)[b(d− c) + cd

]

+
[
d(1− ad)− c

][
ad
(
b2 + c2)− cd2(b+ 1) + a2bc

]}
,

C = δ

Δ

{
a
(
b2 +d2)[d

(
1− ad+ a2c+d

)− c
]

+d
[
c
(
a2 + b2)− ab

][
d(1− ad)− c

]
+dL

(
a2c+d

)}
,

D = cdδ

Δ

{
L+ ab2 + (d− c) + ab

[
(1− ad)− c

]}
,

E = acδ

Δ

{
d2L+

(
b2 +d2)(d− c)

}
,

F = cdδ

bdΔ

{
d2L+ ad2(b2 +d2)+

[
b
(
a2 +d2)+d2][ab2d2[d(1− ad)− c

]]}
,

I = abc
[
d(1− ad− c)

]
δ

Δ
,

J = abcdδ

Δ

{
a
(
b2 +d2)+L

}
,

M = aδ

Δ

{
d2L+ bd

[
d(1− ad)− c

]
+
(
b2 +d2)(d− c)

}
,

N = acdδ

Δ

{
ab2 +d− c+L

}
,

Δ= abcd
[
d(1− ad)− c

]
,

L= b
[
ad+ c

[
c(b+ 1)− c

]]
,

(3.4)

with a, b, c, d positive and [d(1− ad)− c] > 0 were obtained after solving the equations
that arose when constructing the Lyapunov function.

Thus, W is equivalent to V(x, y,z,w) with x, y, z, w replaced with x2 − x1, y2 − y1,
z2− z1, and w2−w1, respectively.

Now, define W as

2W
(
x2− x1, y2− y1,z2− z1,w2−w1

)

= A
(
x2− x1

)2
+B
(
y2− y1

)2
+C

(
z2− z1

)2
+D

(
w2−w1

)2

+ 2E
(
x2− x1

)(
y2− y1

)
+ 2F

(
x2− x1

)(
z2− z1

)

+ 2I
(
x2− x1

)(
w2−w1

)
+ 2J

(
y2− y1

)(
z2− z1

)

+ 2M
(
y2− y1

)(
w2−w1

)
+ 2N

(
z2− z1

)(
w2−w1

)
.

(3.5)

We will prove the following.
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Lemma 3.1. Suppose W is defined as in (3.5) and W(0,0,0,0)= 0, then there exist constants
K1 and K2 such that the inequalities

K1
((
x1− x2

)2
+
(
y1− y2

)2
+
(
z1− z2

)2
+
(
w1−w2

)2)

≤W ≤ K2
((
x1− x2

)2
+
(
y1− y2

)2
+
(
z1− z2

)2
+
(
w1−w2

)2) (3.6)

hold.

Proof of Lemma 3.1. Clearly, W(0,0,0,0)≡ 0.
By rearranging (3.5), we have

2W
(
x2− x1, y2− y1,z2− z1,w2−w1

)

=
(
δ

Δ

){
a
[
d(1− ad)

]
{
b
[
c
(
x2− x1

)
+d
(
y2− y1

)
+
(
w2−w1

)]2

+d2[(y2− y1
)

+ b3d2(x2− x1
)]2

+ b2d
[(
y2− y1

)
+ a2bd

(
x2− x1

)]2

+ acd
[(
z2− z1

)
+
b2d3

a

(
x2− x1

)]2}

+dL
{
[(
z2− z1

)
+ ac

(
x2− x1

)]2

+ ac2
[
(
z2− z1

)
+

1
a

(
w2−w1

)
]2

+ c
[
(
y2− y1

)
+
ad

c

(
w2−w1

)
]2

+ ad2
[
(
x2− x1

)
+
c

d

(
y2− y1

)
]2

+ abd
[
(
y2− y1

)
+
c

d

(
z2− z1

)
]2}

+ ad
(
b2 +d2)

{
ad2
[
(
x2− x1

)
+
c(d− c)
ad3

(
y2− y1

)
]2

+ a2c
[
(
z2− z1

)
+
d

a

(
x2− x1

)
]2

+
c

a
(
b2 +d2

)
[(
w2−w1

)
+ a
(
z2− z1

)]2

+ b(d− c)
[
(
y2− y1

)
+

(
w2−w1

)

b

]2

+ c
[(
y2− y1

)
+ ab

(
z2− z1

)]2
}

+
{
[
d(1− ad)− c

](
ad
(
c2 +d2)+ abd2)− cd3

a

(
b2 +d2)

− b4cd3− a5b4d3− ab6d4− a2c2d2L
}
(
x2− x1

)2
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+
{
[
d(1− ad)− c

][
ad
(
b2 + c2)− cd2(b+ 1) + a2bc− abd2]

− ac2dL− c2(d− c)2

d3

}
(
y2− y1

)2

+
{
ad2(b2 +d2)+d

(
b2c− ab

)[
d(1− ad)− c

]− a3b2cd
(
b2 +d2)

− abc2L− a2cd
[
ab2 + (d− c)

]}(
z2− z1

)2

+
{
L− ab

[
d(1− ad)− c

]− a

b

(
b2 +d2)(d− c)− a2d3

c
− cdL

}
(
w2−w1

)2
}

,

(3.7)

from which we obtain

2W
(
x2− x1, y2− y1,z2− z1,w2−w1

)

≥
(
δ

Δ

){{
[
d(1− ad)− c

](
ad
(
c2 +d2)+ abd2)− cd3

a

(
b2 +d2)

− b4cd3− a5b4d3− ab6d4− a2c2d2L
}
(
x2− x1

)2

+
{
[
d(1− ad)− c

][
ad
(
b2 + c2)− cd2(b+ 1) + a2bc− abd2]− ac2dL

− c2(d− c)2

d3

}
(
y2− y1

)2

+
{
ad2(b2 +d2)+d

(
b2c− ab

)[
d(1− ad)− c

]

− a3b2cd
(
b2 +d2)− abc2L− a2cd

[
ab2 + (d− c)

]
}
(
z2− z1

)2

+
{
L− ab

[
d(1− ad)− c

]

− a

b

(
b2 +d2)(d− c)− a2d3

c
− cdL

}
(
w2−w1

)2
}

≥ K1
((
x2− x1

)2
+
(
y2− y1

)2
+
(
z2− z1

)2
+
(
w2−w1

)2)
,

(3.8)

where

K1 = δ

Δ
min

{∣∣
∣
∣
[
d(1− ad)− c

](
ad
(
c2 +d2)+ abd2)− cd3

a

(
b2 +d2)

− b4cd3− a5b4d3− ab6d4− a2c2d2L
∣
∣
∣
∣,

∣
∣
∣
∣
[
d(1− ad)− c

][
ad
(
b2 + c2)− cd2(b+ 1) + a2bc− abd2]

− ac2dL− c2(d− c)2

d3

∣
∣
∣
∣,
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∣
∣
∣
∣ad

2(b2 +d2)+d
(
b2c− ab

)[
d(1− ad)− c

]− a3b2cd
(
b2 +d2)

− abc2L− a2cd
[
ab2 + (d− c)

]
∣
∣
∣
∣,

∣
∣
∣
∣L− ab

[
d(1− ad)− c

]− a

b

(
b2 +d2)(d− c)− a2d3

c
− cdL

∣
∣
∣
∣

}
.

(3.9)

Therefore,

2W
(
x2− x1, y2− y1,z2− z1,w2−w1

)

≥ K1
((
x2− x1

)2
+
(
y2− y1

)2
+
(
z2− z1

)2
+
(
w2−w1

)2)
.

(3.10)

By using the the Schwartz inequality |xy| ≤ (1/2)‖x2 + y2‖ on (3.2), we have

2W
(
x2− x1, y2− y1,z2− z1,w2−w1

)

≤
(
δ

Δ

){
[A+E+F + I]

(
x2− x1

)2
+ [B+E+ J +M]

(
y2− y1

)2

+ [C+F + J +N]
(
z2− z1

)2
+ [D+ I +M +N]

(
w2−w1

)2
}

≤ K2

((
x2− x1

)2
+
(
y2− y1

)2
+
(
z2− z1

)2
+
(
w2−w1

)2
)

,

(3.11)

where

K2 =
(
δ

Δ

)
max

{
[A+E+F + I],[B+E+ J +M],[C+F + J +N],[D+ I +M +N]

}
> 0.

(3.12)

From inequalities (3.10) and (3.11), we have

K1
((
x2− x1

)2
+
(
y2− y1

)2
+
(
z2− z1

)2
+
(
w2−w1

)2)

≤W ≤ K2
((
x2− x1

)2
+
(
y2− y1

)2
+
(
z2− z1

)2
+
(
w2−w1

)2)
.

(3.13)

This proves Lemma 3.1. �

Lemma 3.2. Suppose that (x1(t), y1(t),z1(t),w1(t)), and (x2(t), y2(t),z2(t),w2(t)) are any
two distinct solutions of system (3.1) such that

H
(
x1,x2

)= h
(
x1(t)

)−h
(
x2(t)

)

x1(t)− x2(t)
∈ I0, G

(
y1, y2

)= g
(
y1(t)

)− g
(
y2(t)

)

y1(t)− y2
(t) �= 0

(3.14)

for all t > 0 (0 < t <∞), where I0 carries its usual meaning as I0 = [δ,Δ], then the function

W =V
(
x1− x2, y1− y2,z1− z2,w1−w2

)
(3.15)
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satisfies

Ẇ ≤−K3W (3.16)

for some K3 > 0.

Proof of Lemma 3.2. Differentiating W with respect to t using system (3.1), we obtain
after some simplifications

Ẇ =
(
δ

Δ

){
− Ih

(
x1(t)− x2(t)

)(
x1− x2

)−Mg
(
y1(t)− y2(t)

)(
y1− y2

)

− [Nb− J]
(
z1− z2

)2− [Da−N]
(
w1−w2

)2− Ig
(
y1(t)− y2(t)

)(
x1− x2

)

−Mh
(
x1(t)− x2(t)

)(
y1− y2

)− [Ib−E]
(
x1− x2

)(
z1− z2

)

−Nh
(
x1(t)− x2(t)

)(
z1− z2

)− [Ia−F]
(
x1− x2

)(
w1−w2

)

−Dh
(
x1(t)− x2(t)

)(
w1−w2

)− [Mb−F −B]
(
y1− y2

)(
z1− z2

)

−Ng
(
y1(t)− y2(t)

)(
z1− z2

)− [Ma− I − J]
(
y1− y2

)(
w1−w2

)

−Dg
(
y1(t)− y2(t)

)(
w1−w2

)− [Db+Na−M−C]
(
z1− z2

)(
w1−w2

)

+E
(
y1− y2

)2
+A

(
x1− x2

)(
y1− y2

)
+ p(t)

[
I
(
x1− x2

)
+M

(
y1− y2

)

+N
(
z1− z2

)
+D

(
w1−w2

)]}
.

(3.17)

Using the conditions on h(x1− x2) and g(y1− y2), (3.17) becomes

Ẇ ≤
(
δ

Δ

){
− IH

(
x1,x2

)(
x1− x2

)2−MG
(
y1, y2

)(
y1− y2

)2− [Nb− J]
(
z1− z2

)2

− [Da−N]
(
w1−w2

)2− IG
(
y1, y2

)(
x1− x2

)(
y1− y2

)

−MH
(
x1,x2

)(
x1− x2

)(
y1− y2

)− [Ib−E]
(
x1− x2

)(
z1− z2

)

−NH
(
x1,x2

)(
x1− x2

)(
z1− z2

)−NG
(
y1, y2

)(
y1− y2

)(
z1− z2

)

− [Mb−F −B]
(
y1− y2

)(
z1− z2

)− [Ia−F]
(
x1− x2

)(
w1−w2

)

−DH
(
x1,x2

)(
x1− x2

)(
w1−w2

)− [Ma− I − J]
(
y1− y2

)(
w1−w2

)

−DG
(
y1, y2

)(
y1− y2

)(
w1−w2

)− [Db+Na−M−C]
(
z1− z2

)(
w1−w2

)

+E
(
y1− y2

)2
+A

(
x1− x2

)(
y1− y2

)
+ p(t)

[
I
(
x1− x2

)
+M

(
y1− y2

)

+N
(
z1− z2

)
+D

(
w1−w2

)]}
.

(3.18)
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This can be written as

Ẇ ≤− δ

Δ
W , (3.19)

where

W = {W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8 +W9 +W10 +W11 +W12−W13
}

,
(3.20)

with

W1 = α1H
(
x1,x2

)(
x1− x2

)2
+β1MG

(
y1, y2

)
(y1− y2

)2
+ γ1

(
z1− z2

)2

+η1
(
w1−w2

)2
,

W2 = α2H
(
x1,x2

)(
x1− x2

)2
+ IG

(
y1, y2

)(
x1− x2

)(
y1− y2

)

+β2MG
(
y1, y2

)(
y1− y2

)2
,

W3 = α3H
(
x1,x2

)(
x1− x2

)2
+MH

(
x1,x2

)(
x1− x2

)(
y1− y2

)

+β3MG
(
y1, y2

)(
y1− y2

)2
,

W4 = α4H
(
x1,x2

)(
x1− x2

)2
+ [Ib−E]

(
x1− x2

)
(z1− z2

)
+ γ2

(
z1− z2

)2
,

W5 = α5H
(
x1,x2

)(
x1− x2

)2
+NH

(
x1,x2

)(
x1− x2

)(
z1− z2

)
+ γ3

(
z1− z2

)2
,

W6 = α6H
(
x1,x2

)(
x1− x2

)2
+ [Ia−F]

(
x1− x2

)(
w1−w2

)
+η2

(
w1−w2

)2
,

W7 = α7H
(
x1,x2

)(
x1− x2

)2
+DH

(
x1,x2

)(
x1− x2

)(
w1−w2

)
+η3

(
w1−w2

)2
,

W8 = β4MG
(
y1, y2

)(
y1− y2

)2
+ [Mb−F −B]

(
y1− y2

)(
z1− z2

)
+ γ4

(
z1− z2

)2
,

W9 = β5MG
(
y1, y2

)(
y1− y2

)2
+NG

(
y1, y2

)(
y1− y2

)(
z1− z2

)

+ γ5MG
(
y1, y2

)(
y1− y2

)2
,

W10 = β6MG
(
y1, y2

)(
y1− y2

)2
+ [Ma− I − J]

(
y1− y2

)(
w1−w2

)

+η4
(
w1−w2

)2
,

W11 = β7MG
(
y1, y2

)(
y1− y2

)2
+DG

(
y1, y2

)(
y1− y2

)(
w1−w2

)
+η5

(
w1−w2

)2
,

W12 = γ6
(
z1− z2

)2
+ [Db+Na−M−C]

(
z1− z2

)(
w1−w2

)
+η6

(
w1−w2

)2
,

W13 =
[
I
(
x1− x2

)
+M

(
y1− y2

)
+N

(
z1− z2

)
+D

(
w1−w2

)]
p(t),

7∑

i=1

αi = 1,
7∑

i=1

βi = 1,
6∑

i=1

γi = 1,
6∑

i=1

ηi = 1,

(3.21)
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W2,W3, . . . ,W12 are quadratic forms in the variables involved. For any quadratic form
AX2 +BX +C to be positive, B2 ≤ 4AC. With this property, Wi’s, i= 2,3, . . . ,12, are posi-
tive if

max

{
(Ib−E)2

α4γ2
,
(Ia−F)2

4α6η2

}

≤H ≤min

{
4α5γ3

N2
,
4α7η3

D2

}

, (a)

max

{
(Mb−F −B)2

Mβ4γ4
,
(Ma− I − J)2

4Mβ6γ4

}

≤G≤min

{
4Mβ5γ5

N2
,
4Mβ7η5

D2

}

(b)

(see the appendix for details).
Moreover, with suitable choice of δ (small enough), we can always have

W13 ≥ δ
{(
x2− x1

)2
+
(
y2− y1

)2
+
(
z2− z1

)2
+
(
w2−w1

)2}1/2
. (3.22)

With these conditions, we have that

W ≥W1,

W1 ≤ K3
{((

x1− x2
)2

+
(
y1− y2

)2
+
(
z1− z2

)2
+
(
w1−w2

)2)}
,

(3.23)

with K3 =max{α1H(x1,x2),β1MG(y1, y2),γ1,η1}.
Then from (3.19), we could have a K4 such that

Ẇ ≤
(
δ

Δ

)
{−K4

((
x1− x2

)2
+
(
y1− y2

)2
+
(
z1− z2

)2
+
(
w1−w2

)2)}
(3.24)

or

Ẇ ≤−K5W , (3.25)

with K5 = δ/ΔK4.
This completes the proof of Lemma 3.2. �

Since x1(t) and x2(t) are solutions to be considered, we want to establish that the two
solutions converge. Next is to establish that the solutions x1(t) and x2(t) converge.

4. Proof of the main result

We will now give the proof of the main result.

Proof of Theorem 2.1. Indeed from inequality (3.25),

dW

dt
≤−K5W. (4.1)

On integration from t1 to t2, we have that

ln
(
W
(
t2
)

W
(
t1
)
)
≤−K5

(
t2− t1

)
,

W
(
t2
)

W
(
t1
) ≤ exp−(K5

(
t2− t1

))
.

(4.2)



B. S. Ogundare and G. E. Okecha 11

Therefore,

W
(
t2
)≤W

(
t1
)

exp
(
K5
(
t2− t1

))
. (4.3)

From inequality (3.23), it follows that

W1 ≤ K3S, (4.4)

where S is as defined in Theorem 2.1. From Lemma 3.1, we have that

W
(
t1
)≤ K2

((
x1− x2

)2
+
(
y1− y2

)2
+
(
z1− z2

)2
+
(
w1−w2

)2)= K2S
(
t1
)
,

W
(
t2
)≤ K2

((
x1− x2

)2
+
(
y1− y2

)2
+
(
z1− z2

)2
+
(
w1−w2

)2)= K2S
(
t2
)
;

(4.5)

using this in inequality (4.3), we have

S
(
t2
)≤ S

(
t1
)

exp
(−K5

(
t2− t1

))
(4.6)

for t2 ≥ t1.
As t→∞,we have from inequality (4.3) that

Ẇ ≤ 0. (4.7)

Also from inequality (4.6),

S
(
t2
)−→ 0 as t2 −→∞. (4.8)

This implies that

x2(t)− x1(t)−→ 0, ẋ2(t)− ẋ1(t)−→ 0,

ẍ2(t)− ẍ1(t)−→ 0,
...
x 1(t)− ...

x 2(t)−→ 0.
(4.9)

Hence the proof of Theorem 2.1 is complete. �

Appendix

The Wi’s, i= 2,3, . . . ,12, are positive if

G
(
y1, y2

)

H
(
x1,x2

) ≤ 4Mα2β2

I2
, (A.1)

H
(
x1,x2

)

G
(
y1, y2

) ≤ 4α3β3

M
, (A.2)

(Ib−E)2

α4γ2
≤H

(
x1,x2

)
, (A.3)

H
(
x1,x2

)≤ 4α5γ3

N2
, (A.4)

(Ia−F)2

4α6η2
≤H

(
x1,x2

)
, (A.5)
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H
(
x1,x2

)≤ 4α7η3

D2
, (A.6)

(Mb−F −B)2

Mβ4γ4
≤G

(
y1, y2

)
, (A.7)

G
(
y1, y2

)≤ 4Mβ5γ5

N2
, (A.8)

(Ma− I − J)2

4Mβ6η4
≤G

(
y1, y2

)
, (A.9)

G
(
y1, y2

)≤ 4Mβ7η5

D2
, (A.10)

(Db+Na−M−C)2 ≤ 4γ6η6, (A.11)

respectively.
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