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1. Introduction

Given the functions K(x, t) and f (x), we consider the problem of finding a function y(x),
−1 < x < 1, such that

b

π

∫ 1

−1

y(t)
t− xdt+

∫ 1

−1
K(x, t)y(t)dt = f (x), (1.1)

which is the one-dimensional, real, Cauchy-type singular integral equation (SIE) of the
first kind, defined on the finite interval [−1,1]. There is no loss of generality here since
any finite interval [c,d] can be transformed into [−1,1] by the linear transformation t =
(1/2)[c+ d + (d− c)s]. In (1.1), b is a real constant, y(t) is the unknown function which
we seek to find,K(x, t) is a known well-behaved kernel, which is continuous on the square
S= {(x, t) : x, t ∈ (−1,1)× (−1,1)} and satisfies the condition

∫∫ 1
−1K

2(x, t)dxdt <∞, and
f (x) is a regular known function.
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These equations (see [1]) arise most naturally and directly from boundary value prob-
lems for special nonsmooth boundaries such as cuts, cracks, foils, slits, strips; and these
boundaries possess sharp edges where singularities can be expected. In some applications,
the strengths of these singularities may be output quantities of some interest. The most
dominant areas where these equations are encountered are in aerodynamics and plane
elasticity. Often, they represent the equations of cracks existing in an infinite, isotropic
elastic medium [2], which are serious engineering problems. In the last three decades or
more, several authors have studied the numerical solution of (1.1) and among the meth-
ods used are the direct quadrature method [2], the spline approximation method [3], and
the trigonometric polynomial interpolation method [4].

In this paper, we present an efficient quadrature rule which is based on Lagrange in-

terpolation and Gauss-Jacobi quadrature, with the zeros of the Jacobi polynomial P
α,β
n (t)

of degree n adopted as our interpolation nodes. Both the nodes and the weights depend,
of course, on α and β. It is well known [1, 5, 6] that the unknown function y(t) in (1.1)
possesses singularities at t = ±1 and is possibly unbounded at these points, and there-
fore it is appropriate to express it [6] as y(t)= w(t)φ(t), where φ(t) is a regular function
and w(t) is the weight function, w(t)= (1− t)α(1 + t)β, α,β >−1. For this reason, we will
assume that the solution y(t) has the following boundary behavior in [−1,1], namely,
(i) y(t) is unbounded at both ends of the interval; (ii) y(t) is bounded at both ends; (iii)
y(t) is bounded at either of the ends. Each case is a consequence of the choices made
for α and β in the weight function w(t). A quadrature rule for each case (except the last
one) will be developed as a special case of our more general quadrature rule developed in
Section 2.

The paper is organized as follows. In Section 2, we develop an algorithm based on La-
grange interpolation and Gauss-Jacobi quadrature for the numerical solution of (1.1). In
Sections 3 and 4, we develop rules for the first two cases ((i) & (ii)) mentioned previ-
ously. Four numerical examples are given in these two sections to validate our method.
We shelved the third case (iii), as our method can easily be adapted to it. A theoretical
convergence of our method is proved in Section 5.

2. Construction of the rule

Let {t1, t2, . . . , tn} be the sequence of distinct points in [−1,1]. Given these distinct points,
such that the values of some function ρ(t) are defined and known at these points, it is
known [7] that there exists a unique polynomial hn−1(t) of degree n− 1 such that,

hn−1
(
tk
)= ρ(tk), k = 1,2, . . . ,n. (2.1)

This interpolating polynomial hn−1(t), written in Lagrangian form, is

n∑
k=1

ρ
(
tk
)
�k(t), (2.2)



G. E. Okecha 3

where

�k(t)= Wn(t)(
t− tk

)
W ′

n

(
tk
) ,

Wn(t)=
n∏
k=1

(
t− tk

)
,

�i
(
tk
)= δik =

⎧⎨
⎩

0, i �= k,

1, i= k,

(2.3)

and the error [7] following this approximation is (Wn(t)/n!)ρ(n)(ζ), ζ ∈ (−1,1)∩ (t1, tn).
Our approximate rule will be based on the preceding form of interpolation, which is

Lagrangian.
We will assume, from here and the rest of the paper, that {t j}nj=1 are the zeros of the Ja-

cobi polynomials P
α,β
n (t), which are classical orthogonal polynomials defined on [−1,1]

with the weight function w(t) = (1− t)α(1 + t)β, α,β > −1; some special cases of these
polynomials are the Chebyshev polynomials (first and second kind), Legendre polyno-
mials, and the Gegenbauer polynomials.

Suppose as mentioned earlier that we set y(t)=w(t)φ(t) and interpolate to φ(t) at the
set of points t j , j = 1, . . . ,n, to give

φ(t) ≈

n∑
j=1

φ
(
t j
)
�j(t), (2.4)

then, on substituting this approximation in the first integral of (1.1), we have

∫ 1

−1

w(t)φ(t)
t− x dt ≈

n∑
j=1

φ
(
t j
)∫ 1

−1

w(t)P
α,β
n (t)

(t− x)
(
t− t j

)
P
′α,β
n
(
t j
)dt. (2.5)

Using Christoffel-Darboux identity [8],

−γnhn
n−1∑
k=0

1
hk

P
α,β
k (t)P

α,β
k

(
t j
)

P
α,β
n+1

(
t j
) = P

α,β
n (t)(
t− t j

) , (2.6)

where hn = 〈Pα,β
n (t),P

α,β
n (t)〉 is a positive normalization constant defined by

hn = 2α+β+1Γ(n+α+ 1)Γ(n+β+ 1)
(2n+α+β)Γ(n+α+β+ 1)

,

γn = cn+1

cn
,

(2.7)
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where cn is the coefficient of tn in P
α,β
n (t). The pairs (hr ,cr) have been tabulated [8] for

some orthogonal polynomials. From (2.5), on using (2.6), (2.7),

∫ 1

−1

w(t)φ(t)
t− x dx ≈−γnhn

n∑
j=1

φ
(
t j
)

P
α,β
n+1

(
t j
)
P
′α,β
n
(
t j
)
n−1∑
k=0

1
hk
P
α,β
k

(
t j
)
vk(x), (2.8)

where vk(x) are functions of the second kind, which are defined in this case by

vk(x)=
∫ 1

−1

w(t)P
α,β
k (t)

t− x dt. (2.9)

For the special cases of the Jacobi polynomials, vk(x) are usually known in a closed form,
(see [8, page 785]). However, where this is not readily available, vk may be evaluated from

the recurrence relations satisfied by P
α,β
k (t). Since P

α,β
k (t) satisfies the recurrence relation

of the form

P
α,β
k+1(t)= (A+Bt)P

α,β
k (t)−CPα,β

k−1(t), (2.10)

where

A=A(α,β,k), B = B(α,β,k), C = C(α,β,k) (2.11)

then, it is easy to show that vk satisfies the recursion equation

vk+1 = (A+Bx)vk −Cvk−1 +BΥ, k = 1,2, . . . , (2.12)

with starting values

v0 =
∫ 1

−1

(1− t)α(1 + t)β

t− x dt,

v1 = ψΥ+
(
ψx+

1
2

(α−β)
)
v0, ψ = 1 +

1
2

(α+β),

(2.13)

where

Υ= 2α+β+1 Γ(β+ 1)Γ(α+ 1)
Γ(α+β+ 2)

. (2.14)

From experiment, the recursion equation (2.12) is most often stable in the increasing
direction of k for all α,β >−1.
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Suppose that we apply the Gauss-Jacobi quadrature rule to the second integral of (1.1)
as follows:

∫ 1

−1
w(t)K(x, t)φ(t)dt ≈

n∑
j=1

wjK
(
x, t j

)
φ
(
t j
)
. (2.15)

Then substituting (2.8) and (2.15) in (1.1) and collocating at the points xi (Nyström’s
method), we have

− b
π
γnhn

n∑
j=1

φ
(
t j
)

P
α,β
n+1

(
t j
)
P
′α,β
n
(
t j
)
n−1∑
k=0

1
hk
P
α,β
k

(
t j
)
vk
(
xi
)

+
n∑
j=1

wjK
(
xi, t j

)
φ
(
t j
)= f

(
xi
)
,

i= 1, . . . ,n− 1.
(2.16)

We let

Sn−1(i, j)=
n−1∑
k=0

1
hk
P
α,β
k

(
t j
)
vk
(
xi
)
,

ηn =− b
π
γnhn,

Rj = ηn

P
α,β
n+1

(
t j
)
P
′α,β
n
(
t j
) ,

φ
(
t j
)= φj , f

(
xi
)= fi, K

(
xi, t j

)= Ki, j .

(2.17)

Then we have the rule

n∑
j=1

(
RjSn−1(i, j) +wjKi, j

)
φj = fi, i= 1, . . . ,n− 1. (2.18)

Let us assume an additional condition equation of the form

n∑
j=1

φ
(
t j
)= 0. (2.19)

This assumption is logical since (1.1) is a special case of Cauchy-type singular integral
equations of the second kind in which (2.19) may be required for a unique solution when
some index k =−(α+β)= 1.
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Equations (2.18) and (2.19) constitute an n×n system of linear equations in φj and in
matrix form may be expressed as

AΦ= F, (2.20)

where

Φ= [φ1,φ2, . . . ,φn
]T

,

F= [ f1, f2, . . . , fn−1,0
]T

,
(2.21)

A=

⎛
⎜⎜⎜⎜⎜⎜⎝

(
R1Sn−1(1,1) +w1K11

) (
R2Sn−1(1,2) +w2K12

)
. . .

(
RnSn−1(1,n) +wnK1n

)
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .(

R1Sn−1(n,1) +w1Kn1
) (

R2Sn−1(n,2) +wnKn2
)

. . .
(
RnSn−1(n,n) +wnKnn

)

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(2.22)

The linear algebraic system (2.20) gives an approximation of the solution of (1.1), (2.19)
at a discrete set of points t j , j = 1,2, . . . ,n. For all the numerical experiments considered
below, we found the coefficient matrix A in (2.20) to be invertible and nearly diagonally
dominant in each case of n. The determinant of the matrix grew with increasing n and
the growth was ∝ n2. There is a rule of the thumb which suggests that a matrix is ill-
conditioned if its determinant is small compared to the entries in the matrix. Therefore,
our matrix is well conditioned. Nevertheless, we used Gaussian elimination with partial
pivoting while solving the linear systems.

3. Solution unbounded at both endpoints of interval

For this case, we set the solution to be of the form

y(t)= (1− t2)−1/2
φ(t), −1≤ t ≤ 1, (3.1)

and therefore we have considered α,β =−1/2, and as a sequel, P−1/2,−1/2
n (t)= Tn(t), which

is the Chebyshev polynomial of the first kind degree n.
Then, it follows immediately in this case that

θj = (2 j− 1)
2n

π = cos−1 (t j), j = 1, . . . ,n,

t j = cosθj , Tn
(
t j
)= 0.

(3.2)
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Suppose that we choose the discrete points {xi}n−1
i=1 as the zeros of Un−1(x), which is the

Chebyshev polynomial of the second-kind degree n− 1, then we will have

xi = cos
(
πi

n

)
, Un−1

(
xi
)= 0, i= 1, . . . ,n− 1,

hn =
⎧⎨
⎩
π if n= 0,
π

2
if n �= 0,

γn = 2,

Tn+1
(
t j
)= cos

(
(n+ 1)θj

)
,

T′n
(
t j
)= nsin

(
nθj
)

sin
(
θj
) ,

wj = π

n
,

vk
(
ti
)= πUk−1

(
ti
)= π sin

(
kθi
)

sin
(
θi
) ,

Tk
(
t j
)= cos

(
kθj
)
,

ηn =−b, n≥ 1,

Rj =
ηn sin

(
θj
)

nsin
(
nθj
)

cos
(
(n+ 1)θj

) ,

Sn−1(i, j)=
n−1∑
k=0

cos
(
kθj
)

sin
(
kθi
)

sin
(
θi
)

= sin(n/2)
(
θi− θj

)
sin
(
(n− 1)/2

)(
θi− θj

)
cos(1/2)

(
θi + θj

)− cos(1/2)
(
3θi− θj

)

+
sin(n/2)

(
θi + θj

)
sin
(
(n− 1)/2

)(
θi + θj

)
cos(1/2)

(
θi− θj

)− cos(1/2)
(
3θi + θj

) .

(3.3)

Using these equations in (2.18) reduces (2.18) to the approximate rule

n∑
j=1

[
RjSn−1(i, j) +

π

n
Kij

]
φj = f

(
cosθi

)
, i= 1, . . . ,n− 1. (3.4)

To validate (3.4) in conjunction with (2.19), we present below the results of two numerical
experiments.

(a) Consider [9] the equation

1
π

∫ 1

−1

y(t)
t− xdt =

2
π

[
1 + x2(1− x2)−1/2

log

∣∣∣∣∣
(
1− x2

)1/2− x+ 1(
1− x2

)1/2
+ x− 1

∣∣∣∣∣
]

(3.5)

with the exact solution y(x)= x|x|(1− x2)−1/2.
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Table 3.1

Our method

n ‖y− yn‖∞
3 2.18×10−2

7 3.8×10−3

9 9.88 ×10−4

Table 3.2

Method [9]

n ‖φ−φn‖∞
4 5.33× 10−2

8 1.26× 10−2

16 3.07× 10−3

Table 3.3

Our method

n ‖y− yn‖∞
4 2.1×10−6

6 1.2×10−10

8 1.27×10−10

Comparing this integral with (1.1), it can be noted that b = 1 andKy = 0. Using (2.19)
and (3.4) and noting the changes in this equation, we obtain the results shown in Table 3.1
and which are more accurate than those in Table 3.2.

(b) Consider the integral equation [3]

1
π

∫ 1

−1

y(t)
t− xdt+

1
π

∫ 1

−1
sin(t− x)y(t)dt = J1(1)cos(x) + 1, −1 < x < 1, (3.6)

where J1 is the Bessel function of the first kind of order 1. The exact solution is y(t) =
t(1− t2)−1/2. Applying the rule (3.4) with (2.19) leads to the results shown in Table 3.3,
and because the results ‖g − gn‖∞ are not given in [3], we cannot make a direct compari-
son but we believe that our results will not be less accurate.

4. Solution is bounded at both ends of interval

For this case, we require that y(−1)= y(1)= 0, and so require that the solution be of the
form

y(t)= (1− t2)1/2
φ(t), −1≤ t ≤ 1. (4.1)



G. E. Okecha 9

Substituting (4.1) into (1.1) gives

b

π

∫ 1

−1

(
1− t2)1/2

φ(t)
t− x dt+

∫ 1

−1

(
1− t2)1/2

K(x, t)φ(t)dt = f (x). (4.2)

Let t j , j = 1, . . . ,n, be the zeros of Un(t). By interpolating to φ(t) at {t j}nj=1, we have

φ(t) ≈

n∑
j=1

�j(t)φ
(
t j
)
, �j(t)= Un(t)(

t− t j
)
U ′
n

(
t j
) . (4.3)

Substituting (4.3) and applying the Gauss-Chebyshev quadrature rule to the second inte-
gral,

b

π

n∑
j=1

φ
(
t j
)∫ 1

−1

(
1− t2)1/2

Un(t)
(t− x)U ′

n

(
t j
)(
t− t j

)dt+
n∑
j=1

WjK
(
x, t j

)
φ
(
t j
)= f (x). (4.4)

Using Christoffel-Darboux identity [8] and applying some algebraic manipulations, we
have

n∑
j=1

γRjφ
(
t j
)n−1∑
k=0

sin
(
(k+ 1)zj

)
sin
(
zj
) Tk+1(x) +

n∑
j=1

WjK
(
x, t j

)
φ
(
t j
)= f (x), (4.5)

where (see [8])

Wj = π

n+ 1
sin2

(
jπ

n+ 1

)
,

t j = cos
(

jπ

n+ 1

)
.

(4.6)

We let

zj = cos−1 (t j)= jπ

n+ 1
,

δj =Un+1
(
t j
)= sin

(
(n+ 2)zj

)
sin
(
zj
) ,

λj =U ′
n

(
t j
)= sin

(
(n+ 1)zj

)
cos
(
zj
)

sin3 (zj) − (n+ 1)cos
(
(n+ 1)zj

)
sin2 (zj) ,

Rj =
(
δjλj

)−1
,

γ = (2π)
(
b

π

)
.

(4.7)
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By choosing the collocation points xi = cos(i− 1/2)(π/(n + 1)), i = 1, . . . ,n, we further
reduce (4.5) into the linear algebraic system

n∑
j=1

[
γRj

n−1∑
k=0

sin
(
(k+ 1)zj

)
cos
(
(k+ 1)cos−1 xi

)
sin
(
zj
) +WjK

(
xi, t j

)]
φ
(
t j
)= f

(
xi
)
, i=1, . . . ,n

(4.8)

which we may write in matrix form as

(
An +Bn

)
Φn = Fn, (4.9)

where

(
An
)
i, j = γRj

n−1∑
k=0

sin
(
(k+ 1)zj

)
cos
(
(k+ 1)cos−1 xi

)
sin
(
zj
) , i, j = 1, . . . ,n,

(
Bn
)
i, j =WjK

(
xi, t j

)
, i, j = 1, . . . ,n,

Φn =
[
φ
(
t1
)
,φ
(
t2
)
, . . . ,φ

(
tn
)]T

,

Fn =
[
f
(
x1
)
, f
(
x2
)
, . . . , f

(
xn
)
].

(4.10)

As previously mentioned in Section 2, the matrix Dn = An +Bn of (4.9) is invertible and
stable with increasing n.

For a numerical experiment, we consider the simple equation
(a)

∫ 1

−1

y(t)
t− xdt+

∫ 1

−1
y(t)x2dt = π

(
1
2
x+

1
8
x2− x3

)
(4.11)

which has the exact solution y(t)= √(1− t2)t2. Using (4.9), the following results are ob-
tained. With n= 3, the maximum absolute error obtained is ‖y− yn‖∞ = 0.1665× 10−15,
which is correct to the machine accuracy. This is expected as both φ and K(x, t) have been
approximated exactly by our method.

Finally, we consider the equation
(b)

∫ 1

−1

(
1− t2)1/2

φ(t)dt
t− x +

1
π

∫ 1

−1

(
1− t2)1/2

φ(t)t3ex
2
dt = ex

2

16
−πT4(x) (4.12)

which has the exact solution, y = (1− t2)1/2U3(t). Here, Tr and Um are the Chebyshev
polynomials of the first and second kind, respectively. Again, with n = 4, the maximum
absolute error obtained is ‖y− yn‖∞ = .122× 10−14.
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5. Convergence analysis

Since y(t)=w(t)φ(t), then (1.1) becomes

b

π

∫ 1

−1

w(t)φ
t− x dt+

∫ 1

−1
w(t)K(x, t)φ(t)dt = f (x). (5.1)

We treat this problem as an operator equation on the real-weighted C[−1,1] space with
the weight function w(t)= (1− t)α(1 + t)β, α,β >−1.

Let L and K be the linear and bounded integral operators defined by

L= b

π

∫ 1

−1

w(t)
t− xdt,

K=
∫ 1

−1
w(t)K(x, t)dt.

(5.2)

Rewriting (5.1) using the operator notation, we have

Lφ+ Kφ= f (x). (5.3)

Let

φn =
n∑
j=1

�j(t)φ
(
t j
)
, (5.4)

where �j(t) are the usual Lagrangian interpolation polynomials, and φn a polynomial of
degree n− 1.

Hence,

Lφn =
n∑
j=1

φ
(
t j
)
hj , (5.5)

where

hj = b

π

∫ 1

−1

w(t)�j(t)

t− x dt <∞ (5.6)

and hj is calculated analytically and therefore exact.
Applying the Gauss-Jacobi rule to Kφ, we obtain

Knφ=
n∑
j=1

wjK
(
x, t j

)
φ
(
t j
)
. (5.7)

Then,

Lφn + Knφ = fn. (5.8)

Theorem 5.1. Assume that f ,φ ∈ C[−1,1] and K(x, t) is bounded in the closed domain
−1≤ x, t ≤ 1. If ‖L‖−1 exists in the uniform norm, then our rule converges uniformly to the
true solution.
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Proof. From (5.3) and (5.8), we may write

L
(
φ−φn

)
+
(

K−Kn
)
φ= ( f − fn

)
. (5.9)

Therefore,

‖L‖∣∣φ−φn∣∣≤ ∥∥K−Kn

∥∥|φ|+
∥∥ f − fn

∥∥,∣∣φ−φn∣∣≤ ‖L‖−1{∥∥K−Kn

∥∥|φ|+
∥∥ f − fn

∥∥}. (5.10)

By Gauss-Jacobi quadrature rule, ‖K−Kn‖→ 0 as n→∞, and by collocation, ‖ f − fn‖→
0 as n→∞ and this proves our theorem. �
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