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A point p of a topological space X is a cut point of X if X −{p} is disconnected. Further,
if X −{p} has precisely m components for some natural number m≥ 2 we will say that
p has cut point order m. If each point y of a connected space Y is a cut point of Y , we
will say that Y is a cut point space. Herein we construct a space S so that S is a connected
Hausdorff space and each point of S is a cut point of order three. We also note that there
is no uncountable separable cut point space with each point a cut point of order three
and therefore no such space may be embedded in a Euclidean space.
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1. Introduction

The study of cut points in topological spaces has long been of interest. Whyburn (e.g.,
[1–3]) studied heavily the role of cut points of metric continua. In particular, he showed
that all cut points of a separable metric continuum are of order two except for a countable
number.

Shimrat [4] proved that the following are equivalent for a nonempty connected sepa-
rable metric space X : (1) X is locally connected and every point of X is a cut point; (2)
X is locally arcwise connected, contains no simple closed curves, and has no end-points;
(3) X is an open ramification. The reader is also referred to Stone [5].

Ward [6] showed that every metric space that is separable, connected and locally con-
nected, and in which each point is a strong cut point (having cut point order two), is
homeomorphic to the real line �. Franklin and Krishnarao [7] have shown that the same
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characterization does not hold for Hausdorff spaces. Klieber [8] has provided a character-
ization similar to that of Ward’s, namely that a separable Hausdorff spaceX is homeomor-
phic to � if every x ∈ X is a strong cut point and the set of components of complements
of points forms a subbase for the space X .

A comprehensive study of cut point spaces in the most general setting has been done by
Honari and Bahrtampour [9]; the work is done without the assumption of any separation
axioms. It is shown that each cut point is either open or closed and that every cut point
space has infinitely many closed points and is noncompact. It is also shown that there is
just one irreducible cut point space, to within a homeomorphism, namely the ”Khalimsky
line”. This is a topology on the set Z of all integers, in which each odd integer is isolated
and each even integer n has the smallest neighborhood {n− 1,n,n+ 1}.

A natural question is whether a connected space may have each point be a cut point of
fixed order greater than or equal to three. Herein, we complement the studies mentioned
above by constructing a space S so that S is a connected Hausdorff space and each point
of S is a cut point of order three. We also demonstrate in Section 4 that no cut point space
with each point a cut point of order three may be embedded in a Euclidean space, and
indeed that no such space that is uncountable can be separable, connected, and Hausdorff

space.

2. Preliminaries

We will say that a point p of a topological space X is a cut point of X if X −{p} is discon-
nected. Further, if X −{p} has precisely m components for some natural number m≥ 2,
we will say that p has cut point order m. If each point y of a connected space Y is a cut
point of Y , we will say that Y is a cut point space. If N is a natural number greater than
or equal to two and each point y of a cut point space Y has cut point order N , we will say
that Y is a cut point space of order N .

For a space X and A ⊆ X , Cl(A) will denote the closure of A in X . For subsets A and
B of space X , we will say that A and B are mutually separated if and only if Cl(A)∩
B = ∅ and A∩Cl(B) = ∅. For points x and y in the Euclidean space �2, let d(x, y)
denote the Euclidean distance between x and y and, for ε > 0, let N(x,ε) denote the open
neighborhood {y : d(x, y) < ε}.

3. Construction of cut point space S

We first construct a connected set in the plane, each point of which is a cut point of order
two or three. The closure of this set is a well-known dendrite.

Consider the open interval G0 = (0,1)×{0} on the x-axis in �2. Although not itself
an element of the space, the origin will play a special role when we define the topology
for our space and will be denoted by �. Let D be the set of all dyadic rational numbers in
(0,1). That is, let x ∈ D if and only if there is a positive integer n and a positive integer
k such that k ≤ 2(n−1) and x = (2k− 1)/2n. For each x = (2k− 1)/2n ∈ D, let Ix denote
the open vertical interval {x}× (0,1/2n). Let G1 be the set of all these intervals Ix. Next,
for each interval g in G1, add a collection of open horizontal intervals as was done for
G0. The midpoint p of each g ∈ G1 should have an interval added of length half the
length of g with left endpoint at p. Call this collection of open intervals G2. Next add a
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Figure 3.1

collection of open vertical intervals for each interval in G2 in the same manner. Call this
collection of open intervals G3. Continue this process inductively. No two intervals in
⋃

i>0Gi should intersect. Let M0 be the connected union of all these intervals; Figure 3.1
gives an indication of the first few steps in the construction of M0.

Let T0 be the set of cut points of M0 of order three and let C0 be the set of cut points
of M0 of order two. For each whole number n, let Mn denote the set of all sequences
(p0, p1, . . . , pn) such that pn ∈M0 and if n > 0, then pi ∈ C0 for each i such that 0≤ i < n.
If p0 ∈M0, we may refer to (p0) simply as p0.

Let S = ⋃∞i=0Mi; S is the set of points (finite sequences) on which we will define a
topology �. If p ∈ S, then for each positive number ε we will define a subset R(p,ε) of
S containing p. Let Bp = {R(p,ε) : ε > 0}. The members of Bp will be called regions and
the union of all of the sets Bp for p ∈ S will form a basis for �.

Let p ∈ S. Then p = (p0, p1, . . . , pn) is in Mn, pn ∈M0 and if n > 0, then for each i such
that 0≤ i < n, pi ∈ C0. Let ε > 0.

We next define our regions R(p,ε).
(1) If pn ∈ T0, then

if n= 0, R(p,ε)=N(p0,ε)∩T0, and
if n > 0, R(p,ε)= (p0, p1, . . . , pn−1)× (N(pn,ε)∩T0).

(2) If pn ∈ C0, then
if n= 0, R(p,ε)= {p0}∪ (N(p0,ε)∩T0)∪ (p0× (N(�,ε)∩T0)), and
if n > 0, R(p,ε)= ({p}∪ (p0, p1, . . . , pn−1)× (N(pn,ε)∩T0))∪ ((p0, p1, . . . ,
pn)× (N(�,ε)∩T0)).

The next two lemmas are direct applications of our definitions.

Lemma 3.1. If p ∈ S, ε > 0, δ > 0, and ε < δ, then R(p,ε)⊆ R(p,δ).

Lemma 3.2. If p ∈ S, ε > 0, and q ∈ R(p,ε), then there is a positive number δ such that
R(q,δ)⊆ R(p,ε).

Theorem 3.3. B = {Bp = R(p,ε) : p ∈ S, ε > 0} is a basis for a topology � on S.

Here, we must show that if a point p is in each of the regions U and V , there is a region
containing p that is a subset of U ∩V . The proof is a direct application of Lemmas 3.1
and 3.2.

Theorem 3.4. (S,�) is Hausdorff.

Proof. Suppose p = (p0, p1, . . . , pn) and q = (q0,q1, . . . ,qm) are distinct elements of S. We
consider two cases.
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Case 1. Assume m= n. Select ε to be one third of the distance between pn and qn. Then
N(pn,ε)∩N(qn,ε)=∅ and, therefore, R(p,ε)∩R(q,ε)=∅.

Case 2. Assume without loss of generality that m > n. Since for any point x ∈ S and any
ε > 0, if x ∈Mn, then R(x,ε)⊆Mn∪Mn+1, then R(p,ε)∩R(q,ε)=∅ unless m= n+ 1.
In this case, we set ε to be less than one third of the distance from qm to �. Thus, we have
that N(qm,ε)∩N(�,ε)=∅. It follows that R(p,ε)∩R(q,ε)=∅. �

Theorem 3.5. (S,�) is connected.

Proof. We begin by showing that M0 with the subspace topology of S is connected. As-
sume S is not connected. Then there is a nonempty set U 
=M0 open relative to M0 such
that no point is a boundary point of U . If x ∈ U , then there exists an εx > 0 such that
N(x,εx)∩T0 ⊆ U . Moreover, if p ∈ N(x,εx)∩C0, p ∈ U since otherwise p is a bound-
ary point of U . Thus, U = [

⋃
x∈U(N(x,εx)∩T0)]∪ (C0∩U)=⋃x∈U[N(x,εx)]. Then U

is a nonempty open set in M0 with the subspace topology of R2 such that no point is a
boundary point of U , a contradiction.

We next show that M0∪M1 with the subspace topology of S is connected. If p0 ∈ C0,
then p0 is a limit point of M1(p0) = p0 ×M0 and M1(p0) is connected since M0 is con-
nected. Now M1 =

⋃
x∈C0

M1(x) so M0∪M1 is the union of a collection of connected sets
one of which, M0, contains a limit point of each of the others so M0∪M1 is connected.

By a similar argument and by induction
⋃k

i=0Mk is connected for each natural number
k. It then follows that S=⋃∞i=0Mk is connected. �

Lemma 3.6. With M0 having the subspace topology of S, each point of T0 is a cut point of
order three in M0 and each point of C0 is a cut point of order two in M0.

Proof. Suppose t ∈ T0. If M0 were to have the subspace topology of the plane, it is clear
that t would have cut point order three with M0−{t0} = K1∪K2∪K3 such that K1, K2,
and K3 are pairwise mutually separated and each is connected. We claim that K1, K2 and
K3 are also the pairwise mutually separated components of M0−{t0}, where M0 has the
subspace topology of S.

We show that Cl(K1)∩K2 =∅. Assume that s ∈ Cl(K1)∩K2. Then for each natural
number j, R(s,1/ j)∩K1 
= ∅. Then N(s,1/ j)∩K1 
= ∅ and K1 and K2 are not mutually
separated with M0 having the subspace topology of the plane, a contradiction. In a similar
way, K1∩ Cl(K2)=∅ and K1 and K2 are mutually separated. By parallel arguments, the
pairs K1 and K3 and K2 and K3, respectively, are mutually separated.

By a proof similar to that of Theorem 3.5, each of K1, K2, and K3 is connected in S, and
therefore t ∈ T0 is a cut point of order three in M0 ⊂ S.

Suppose c ∈ C0. If M0 were to have the subspace topology of the plane, it is clear that
c would have cut point order two with M0 − {c0} = K1 ∪K2 such that K1 and K2 are
mutually separated and each is connected. By an argument like that above, K1 and K2

are also the mutually separated components of M0 − {c0}, where M0 has the subspace
topology of S. Therefore, c ∈ C0 is a cut point of order two in M0 ⊂ S. �

Lemma 3.7. If q0 is a fixed element of C0, then the collection of sequences Q0 = {(q0, p1, . . . ,
pn)} in S for all whole numbers n is connected. Furthermore, Q0−{q0} is connected.
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Proof. Note that N ′
1 = {q0}×M0 is connected since M0 is connected. Since q0 is a limit

point of N ′
1, N1 = N ′

1 ∪ {q0} is also connected. Similarly, N ′
2(x) = (q0,x)×M0 is con-

nected for each x ∈ C0. As before, (q0,x) is a limit point of N ′
2(x) and a point of N ′

1.
Thus, N ′

2 =
⋃

x∈C0
N ′

2(x) is the union of a collection of connected sets each having a
limit point in N ′

1. So we have that N2 = N ′
2 ∪N ′

1 is connected. Next define for each
(x1,x2) ∈ C0 ×C0, N ′

3(x1,x2) = (q0,x1,x2)×M0. N ′
3(x1,x2) is connected and has a limit

point (q0,x1,x2)∈ N ′
2. Thus, N ′

3 =
⋃

(x1,x2)∈C0×C0
N ′

3(x1,x2) is the union of a collection of
connected sets each having a limit point in the connected set N ′

2∪N ′
1 so N ′

3∪N ′
2∪N ′

1 is
connected. This process can be continued to define N ′

n for each positive integer n to be
the union of a collection of connected copies of M0 each having a limit point in N ′

n−1 so
that N ′

1∪N ′
2∪···∪N ′

n is connected and contains all points of Q0 having n+ 1 or fewer
coordinates. Thus, Q0 and Q0−{q0} =

⋃
i>0N

′
i is connected. �

Theorem 3.8. Each point of (S,�) is a cut point of order three.

Proof. If C is a component of M0−{p0} for some p0 ∈M0, let C′ denote {p = (x0, p1, p2,
. . . , pn)∈ S : n is a whole number, and x0 ∈ C}.

Let p = (p0, p1, p2, . . . , pn) be a point of (S,�). We now consider four cases.

Case 1. Suppose n= 0 and p0 ∈ T0. From Lemma 3.6, we have M0−{p0} = S1∪ S2∪ S3

so that Si is a component of M0−{p0} for each 1≤ i≤ 3. Then S−{p0} = S′1∪ S′2∪ S′3.
Note that each S′i , 1≤ i≤ 3 is connected follows from Lemma 3.7.

We show that Cl(S′1)∩ S′2 =∅ and S′1 ∩Cl(S′2) =∅. Assume that t ∈ Cl(S′1)∩ S′2. We
now consider three cases.

Case 1.1. Assume t = (t0)∈ S′2 with t0 ∈ S2∩T0. Let U be an open set in S with t ∈U that
contains no point of S1. Then U ∩ S′1 
= ∅ and U ∩ S′1 ⊆ T0. This implies that U contains
a point s= (s0) with s0 ∈ S1 contrary to the definition of U .

Case 1.2. Assume t = (t0)∈ S′2 with t0 ∈ C0. Let ε be a positive number such that N(t0,ε)
contains no point of S1 in R2. Let U = R(t0,ε)= {t0}∪ (N(t0,ε)∩T0)∪ (t0× (N(�,ε)∩
T0)). U ∩ S′1 must contain a point p in S. But if p = (p0), then p ∈N(t0,ε)∩ S1 contrary
to the definition of ε. Also if p = (p0, p1), then p0 = t0 /∈ S1 so p /∈ S′1.

Case 1.3. Assume t = (t0, t1, . . . , tn)∈ S′2 with n > 0 and t0 ∈ S2. If U = R(t,ε), and q ∈U ,
then q = (q0,q1, . . . ,qm) ∈ U where m = n or m = n+ 1. In either case q0 = t0 so q /∈ S′1,
contrary to the assumption that Cl(S′1)∩ S′2 
= ∅.

Therefore, Cl(S′1)∩ S′2 =∅. By a parallel argument, S′1∩Cl(S′2)=∅. By similar argu-
ments, Cl(S′1)∩ S′3 =∅ and S′1∩Cl(S′3) =∅, and Cl(S′2)∩ S′3 =∅ and S′2∩Cl(S′3)=∅.
Therefore, S′1, S′2, and S′3 are pairwise mutually separated and p0 is a cut point of order
three.

Case 2. Suppose n = 0 and p0 ∈ C0. Suppose M0 − {p0} = S1 ∪ S2 so that Si is a com-
ponent of M0 −{p0} for each 1 ≤ i ≤ 2. Then S−{p0} = S′1 ∪ S′2 ∪T′ where T′ = {p =
(p0, p1, . . . , pn) : p ∈ S, n ≥ 1}. S′1, S′2, and T′ are pairwise mutually separated by
arguments similar to those used in Case 1, and each of S′1, S′2, and T′ is connected by
Lemma 3.7. Thus, (p0) is a cut point of order three.
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Case 3. Suppose n > 0, p = (p0, p1, . . . , pn), and pn ∈ T0. Suppose M0−{pn} = S1∪ S2∪
S3 and without loss of generality assume that S1 has � in its closure (if S1 were to have
the subspace topology of the plane). Let A0 be the set of all points of S having a point
of M0 − {p0} as its first coordinate. For each positive integer j < n, let Aj be the set of
all points of S whose first j + 1 coordinates are p0, p1, . . . , pj−1,x where x is a point of

M0 − {pj}. Let A = ⋃i=n−1
i=1 Ai. If i ∈ {1,2,3}, let Bi be the set of all points of S whose

first n+ 1 coordinates are p0, p1, . . . , pn−1,x where x ∈ Si. A direct argument shows that
S−{p} = A∪B1∪B2∪B3. We will show that A∪B1, B2 and B3 are mutually separated.

We show that Cl(A∪B1)∩B2 =∅. Assume that t ∈ Cl(A∪B1)∩B2. We consider two
cases.

Case 3.1. Assume t = (t0, t1, . . . , tn). Since t ∈ B2, tn ∈ S2 and there is an ε > 0 such that
N(tn,ε)∩ S1 =∅. Let U = R(t,ε). If x ∈ U , x = (x0,x1, . . . ,xk) for k = n or k = n+ 1. In
either case xn ∈ N(tn,ε) so xn /∈ S1 and x /∈ B1. It remains to show that A1 ∩U =∅. If
x ∈U , xi = ti = pi for 0≤ i < n. But if x ∈ A, there is an i, 0≤ i < n such that x ∈ Ai and
xi 
= pi.

Case 3.2. t = (p0, p1, . . . , pn−1, tn, . . . , tk) with k > n and tn ∈ S2∩C0. If U is a region con-
taining t and x is in U , then x has the same first k− 1 coordinates as t. But this means
that xn = tn ∈ S2, so x is not in S1. As before, x /∈ A, since xi = t1 = pi for 0≤ i < n.

We now show that (A1 ∪B1)∩Cl(B2) = (A1 ∩Cl(B2))∪ (B1 ∩Cl(B2)) =∅. Assume
that t ∈ (A1∪B1)∩Cl(B2). We consider two cases.

Case 3.3. t ∈ A1 ∩Cl(B2), then t = (t0, t1, . . . , t j) for some whole number j, and since
t ∈ A, there is an integer k such that 0 ≤ k < n such that tk 
= pk. If x is in the region
R(t,ε), then xi = ti for 0≤ i < n. But this implies that xk = tk 
= pk and x /∈ B2, contrary to
our assumption that t ∈ Cl(B2).

Case 3.4. t ∈ B1 ∩Cl(B2), then t = (t0, t1, . . . , tn−1, tn, tn+1 . . . , tk) with tn ∈ S1, k ≥ n, and
tn 
= pn. Since S1 and S2 are mutually separated, there is a positive number ε such that
N(tn,ε)∩ S2 =∅. It follows that R(t,ε)∩ B2 =∅, contrary to the assumption that t ∈
Cl(B2).

Therefore, (A1∪B1) and B2 are mutually separated. In a similar way, the pairs (A1∪
B1) and B2 and B2 and B3, respectively, are mutually separated. Furthermore, it fol-
lows from Lemma 3.7 that each of (A1 ∪ B1), B2, and B3 is connected. Therefore, p =
(p0, p1, . . . , pn) with n > 0 and pn ∈ T0 is a cut point of order three.

Case 4. Suppose n > 0, p = (p0, p1, . . . , pn), and pn ∈ C0. Suppose M0 − {pn} = S1 ∪ S2

and without loss of generality assume that S1 has � in its closure (if S1 were to have the
subspace topology of the plane). Let A be defined exactly as was done in Case 3. For j ∈
{1,2}, let Bj be the set of all points of S whose first n+ 1 coordinates are p0, p1, . . . , pn−1,x
where x ∈ S1. Let B3 be the set of all points of S whose first n+ 1 coordinates are p0, p1, . . . ,
pn. Using arguments entirely similar to those already given it can be shown that each of
(A1∪B1), B2, and B3 is connected and that they are pairwise mutually separated. There-
fore, p = (p0, p1, . . . , pn) with n > 0 and pn ∈ C0 is a cut point of order three. �
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4. Embedding cut point spaces

In Kuratowski [10, Theorem 1, page 160], it is shown that for a connected separable
metric space Z, the set Z − {z} is connected or is the union of two connected sets for
every z ∈ Z except for a countable set of points of Z. See also [2, Theorem 3.2]. The
following is therefore immediate.

Theorem 4.1. If X is a cut point space and each point p of X has cut point order m where
m ≥ 3, then X may not be separable and metric and thus may not be embedded in �n for
any n≥ 2.

We now provide a similar theorem in the setting of separable, connected Hausdorff

spaces. The referee correctly noted that in the following theorem we did not need X to be
Hausdorff. We do need the points to be closed and some authors refer to such a space as
a T1-space. Thus, we have a slightly stronger theorem than is stated.

Theorem 4.2. If X is a separable connected Hausdorff space, then X does not contain un-
countably many points that separate X into three mutually separated connected sets.

Proof. Assume that there is an uncountable set of points T of X that separate X into 3
mutually exclusive connected sets. Let P = {p1, p2, p3, . . .} be a countable dense subset of
X with pi 
= pj if and only if i 
= j. For each two positive integers m and n, let Cm,n be
the set of all points of X that separate pm from pn. Note that if x ∈ T , then X − {x} is
the union of two mutually exclusive open sets, so x separates two points of P. Thus, each
point of T is in Cm,n for some choice of m and n. Thus, there exist integers i and j such
that M = T ∩Ci, j is uncountable. If x ∈M, then X −{x} is the union of three mutually
separated sets, and x separates pi from pj , so these points belong to different components
of X −{x}. For each x ∈M, let Ax be the component containing pi, Bx the component
containing pj , and Cx the other component. Note that Cx is open in X for each x ∈M.

We now show that if x and y are two distinct points ofM, thenCx does not intersectCy .
Assume to the contrary that there exist points x and y in M such that Cx ∩Cy 
= ∅. Now
X −{x} = Ax ∪ Bx ∪Cx. Note that y 
∈ Cx since if it were, then X −{y} would contain
Ax ∪ Bx ∪{x} which is connected, so y would not separate pi from pj , contrary to the
definition of M. So y is in Ax or Bx. First, assume y ∈ Bx. Then X −{y} contains {x},
Ax, Cx, and Cy and the union of these sets is connected and thus a subset of Ay . Thus, we
have that Cy ⊆Ay , but these sets are mutually exclusive. Next assume that y ∈Ax. In this
case, we have {x}∪Bx ∪Cx ∪Cy is a connected subset of X −{y} and thus of By . This is
again a contradiction since Cy and By are mutually exclusive.

Therefore, the set of all Cx for all x ∈M is an uncountable collection of mutually
exclusive open sets in X , contrary to the separability of X . �

Corollary 4.3. If X is an uncountable, separable, and connected cut point space and each
point p of X has cut point order 3, then X may not be Hausdorff and thus may not be
embedded in �n for any n≥ 2.

The referee suggested that it might be possible to construct a more intuitive example
of a cut point space of order three by modifying an example of Velicko [11]. Indeed, one
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that is metric and dendritic. We think this would be quite interesting but we were unable
to construct such an example.
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