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We obtain necessary and sufficient conditions for the asymptotic stability of the linear
delay difference equation xn+1 + p

∑N
j=1 xn−k+( j−1)l = 0, where n = 0,1,2, . . . , p is a real

number, and k, l, and N are positive integers such that k > (N − 1)l.

1. Introduction

In [4], the asymptotic stability condition of the linear delay difference equation

xn+1− xn + p
N∑
j=1

xn−k+( j−1)l = 0, (1.1)

where n ∈ N0 = N∪{0}, p is a real number, and k, l, and N are positive integers with
k > (N − 1)l is given as follows.

Theorem 1.1. Let k, l, and N be positive integers with k > (N − 1)l. Then the zero solution
of (1.1) is asymptotically stable if and only if

0 < p <
2sin(π/2M)sin(lπ/2M)

sin(Nlπ/2M)
, (1.2)

where M = 2k+ 1− (N − 1)l.

Theorem 1.1 generalizes asymptotic stability conditions given in [1, page 87], [2, 3, 5],
and [6, page 65]. In this paper, we are interested in the situation when (1.1) does not
depend on xn, namely we are interested in the asymptotic stability of the linear delay
difference equation of the form

xn+1 + p
N∑
j=1

xn−k+( j−1)l = 0, (1.3)

where n ∈ N0 = N∪{0}, p is a real number, and k, l, and N are positive integers with
k ≥ (N − 1)l. Our main theorem is the following.
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Theorem 1.2. Let k, l, and N be positive integers with k ≥ (N − 1)l. Then the zero solution
of (1.3) is asymptotically stable if and only if

− 1
N

< p < pmin, (1.4)

where pmin is the smallest positive real value of p for which the characteristic equation of
(1.3) has a root on the unit circle.

2. Proof of theorem

The characteristic equation of (1.3) is given by

F(z)= zk+1 + p
(
z(N−1)l + ···+ zl + 1

)= 0. (2.1)

For p = 0, F(z) has exactly one root at 0 of multiplicity k+ 1. We first consider the location
of the roots of (2.1) as p varies. Throughout the paper, we denote the unit circle by C and
let M = 2k+ 2− (N − 1)l.

Proposition 2.1. Let z be a root of (2.1) which lies on C. Then the roots z and p are of the
form

z = ewmi, (2.2)

p = (−1)m+1 sin(lwm/2)
sin(Nlwm/2)

≡ pm (2.3)

for some m= 0,1, . . . ,M− 1, where wm = (2m/M)π. Conversely, if p is given by (2.3), then
z = ewmi is a root of (2.1).

Proof. Note that z = 1 is a root of (2.1) if and only if p =−1/N , which agrees with (2.2)
and (2.3) forwm = 0. We now consider the roots of (2.1) which lie onC except the root z =
1. Suppose that the value z satisfies zNl = 1 and zl �= 1. Then zNl − 1 = (zl − 1)(z(N−1)l +
···+ zl + 1)= 0 which gives z(N−1)l + ···+ zl + 1= 0, and hence z is not a root of (2.1).
As a result, to determine the roots of (2.1) which lie on C, it suffices to consider only the
value z such that zNl �= 1 or zl = 1. For these values of z, we may write (2.1) as

p =− zk+1

z(N−1)l + ···+ zl + 1
. (2.4)

Since p is real, we have

p =− zk+1

z(N−1)l + ···+ zl + 1
=− z−k−1+(N−1)l

z(N−1)l + ···+ zl + 1
, (2.5)

where z denotes the conjugate of z. It follows from (2.4) and (2.5) that

z2k+2−(N−1)l = 1 (2.6)

which implies that (2.2) is valid for m = 0,1, . . . ,M − 1 except for those integers m such
that eNlwmi = 1 and elwmi �= 1. We now show that p is of the form stated in (2.3). There are
two cases to be considered as follows.
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Case 1. z is of the form ewmi for some m= 1,2, . . . ,M− 1 and zNl �= 1.
From (2.4), we have

p =−zk+1
(
zl − 1

)
zNl − 1

=−e(k+1)wmi
(
elwmi− 1

)
eNlwmi− 1

=−e(k+1−(N−1)(l/2))wmi
(
elwmi/2− e−lwmi/2

)
eNlwmi/2− e−Nlwmi/2

=−e(k+1−(N−1)(l/2))wmi sin(lwm/2)
sin(Nlwm/2)

=−emπi sin(lwm/2)
sin(Nlwm/2)

= (−1)m+1 sin(lwm/2)
sin(Nlwm/2)

≡ pm.

(2.7)

Case 2. z is of the form ewmi for some m= 1,2, . . . ,M− 1 and zl = 1.
In this case, we have lwm = 2qπ for some positive integer q. Then taking the limit of

pm as lwm→ 2qπ, we obtain

p =− (−1)m+q(N−1)

N
. (2.8)

From these two cases, we conclude that p is of the form in (2.3) for m= 1,2, ...,M− 1
except for those m such that eNlwmi = 1 and elwmi �= 1.

Conversely, if p is given by (2.3), then it is obvious that z = ewmi is a root of (2.1). This
completes the proof of the proposition. �

From Proposition 2.1, we may consider p as a holomorphic function of z in a neigh-
borhood of each zm. In other words, in a neighborhood of each zm, we may consider p as
a holomorphic function of z given by

p(z)=− zk+1

z(N−1)l + ···+ zl + 1
. (2.9)

Then we have

dp(z)
dz

=− (k+ 1)zk

z(N−1)l + ···+ zl + 1
+
zk
{

(N − 1)lz(N−1)l + ···+ lzl
}

(
z(N−1)l + ···+ zl + 1

)2 . (2.10)

From this, we have the following lemma.

Lemma 2.2. dp/dz|z=ewmi �= 0. In particular, the roots of (2.1) which lie on C are simple.

Proof. Suppose on the contrary that dp/dz|z=ewmi = 0. We divide (2.10) by p(z)/z to ob-
tain

k+ 1− l
{

(N − 1)z(N−1)l + ···+ zl
}

z(N−1)l + ···+ zl + 1
= 0. (2.11)

Substituting z by 1/z in (2.10), we obtain

k+ 1− l
{

(N − 1) + (N − 2)zl + ···+ z(N−2)l
}

z(N−1)l + ···+ zl + 1
= 0. (2.12)
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By adding (2.11) and (2.12), we obtain

2k+ 2− (N − 1)l = 0 (2.13)

which contradicts k ≥ (N − 1)l. This completes the proof. �

From Lemma 2.2, there exists a neighborhood of z = ewmi such that the mapping p(z)
is one to one and the inverse of p(z) exists locally. Now, let z be expressed as z = reiθ .
Then we have

dz

dp
= z

r

{
dr

dp
+ ir

dθ

dp

}
(2.14)

which implies that

dr

dp
= Re

{
r

z

dz

dp

}
(2.15)

as p varies and remains real. The following result describes the behavior of the roots of
(2.1) as p varies.

Proposition 2.3. The moduli of the roots of (2.1) at z = ewmi increase as |p| increases.

Proof. Let r be the modulus of z. Let z = ewmi be a root of (2.1) on C. To prove this
proposition, it suffices to show that

dr

dp
· p
∣∣∣∣
z=ewmi

> 0. (2.16)

There are two cases to be considered.
Case 1 (zNl �= 1). In this case, we have

p(z)=−zk+1
(
zl − 1

)
zNl − 1

=− zk f (z)
zNl − 1

, (2.17)

where f (z)= z(zl − 1). Then

dp

dz
=− zk−1g(z)(

zNl − 1
)2 , (2.18)

where g(z)= (k f (z) + z f ′(z))(zNl − 1)−NlzNl f (z). Lettingw(z)=−(zNl − 1)2/(zkg(z)),
we obtain

dr

dp
= Re

(
r

z

dz

dp

)
= rRe(w). (2.19)

We now compute Re(w). We note that

f (z)=− f (z)
zl+2

, f ′(z)= h(z)
zl

, (2.20)
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where h(z)= l+ 1− zl. From the above equalities and as zM = 1, we have

zkg(z)= 1
zk

{(
k f (z) +

1
z
f ′(z)

)(
1
zNl

− 1
)
− Nl

zNl
f (z)

}

=
(− k f (z) + zh(z)

)(
1− zNl

)
+Nl f (z)

zNl+l+2+k

=
(− k f (z) + zh(z)

)(
1− zNl

)
+Nl f (z)

z2Nl−k .

(2.21)

It follows that

Re(w)= w+w

2

=−1
2

{(
zNl − 1

)2

zkg(z)
+

(
zNl − 1

)2

zkg(z)

}

=−1
2

{
zkg(z)

(
zNl − 1

)2
+ zkg(z)

(
zNl − 1

)2

∣∣g(z)
∣∣2

}

=− 1

2
∣∣g(z)

∣∣2

{(− k f (z) + zh(z)
)(

1− zNl
)

+Nl f (z)
z2Nl−k · (zNl−1)2

+ zk
((
k f (z) + z f ′(z)

)(
zNl − 1

)−NlzNl f (z)
)( 1

zNl
− 1
)2
}

=−
(
zNl − 1

)2
zk

2z2Nl
∣∣g(z)

∣∣2

{(
k f (z)− zh(z)

)(
zNl − 1

)
+Nl f (z)

+
((
k f (z) + z f ′(z)

)(
zNl − 1

))−NlzNl f (z)
}

=−
(
zNl − 1

)3
zk

2z2Nl
∣∣g(z)

∣∣2

{
2k f (z) + z

(
f ′(z)−h(z)

)−Nl f (z)
}
.

(2.22)

Since

2k f (z) + z
(
f ′(z)−h(z)

)−Nl f (z)=M f (z), (2.23)

we obtain

Re(w)=
(
zNl − 1

)4
M

2z2Nl
∣∣g(z)

∣∣2 ·
−zk f (z)
zNl − 1

=
(
zNl − 1

)4
Mp

2z2Nl
∣∣g(z)

∣∣2 . (2.24)

The value of Re(w) at z = ewmi is

Re(w)=
(
zNl − 1

)4

z2Nl
· Mp

2
∣∣g(z)

∣∣2 =
(
2cosNlwm− 2

)2 · Mp

2
∣∣g(z)

∣∣2 > 0. (2.25)
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Therefore,

dr

dp
= 2r

(
cosNlwm− 1

)2
Mp∣∣g(z)

∣∣2 (2.26)

and it follows that (2.16) holds at z = ewmi.
Case 2 (zl = 1). With an argument similar to Case 1, we obtain

dr

dp
= 2rN2Mp∣∣(M + 1)z−M + 1

∣∣2 (2.27)

which implies that (2.16) is valid for z = ewmi.
This completes the proof. �

We now determine the minimum of the absolute values of pm given by (2.3). We have
the following result.

Proposition 2.4. |p0| =min{|pm| : m= 0,1, . . . ,M− 1}.
To prove Proposition 2.4, we need the following lemma, which was proved in [4].

Lemma 2.5. Let N be a positive integer, then

∣∣∣∣ sinNt

sin t

∣∣∣∣≤N (2.28)

holds for all t ∈R.
Proof of Proposition 2.4. From (2.3), pm = (−1)m+1(sin(lwm/2)/ sin(Nlwm/2)). Form= 0,
it follows from L’Hospital’s rule that p0 =−1/N . For m= 1,2, . . . ,M− 1, we have

∣∣pm∣∣=
∣∣∣∣(−1)m+1 sin(lwm/2)

sin(Nlwm/2)

∣∣∣∣≥ 1
N

(2.29)

by Lemma 2.5. This completes the proof. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Note that F(1) = 1 + Np ≤ 0 if and only if p ≤ −1/N . Since
limz→+∞F(z) = +∞, it follows that (2.1) has a positive root α such that α > 1 when p ≤
−1/N . We claim that if |p| is sufficiently small, then all the roots of (2.1) are inside the
unit disk. To this end, we note that when p = 0, (2.1) has exactly one root at 0 of multi-
plicity k + 1. By the continuity of the roots with respect to p, this implies that our claim
is true. By Proposition 2.4, p0 = −1/N and |pm| ≥ 1/N which implies that |p0| = 1/N is
the smallest positive value of p such that a root of (2.1) intersects the unit circle as |p|
increases. Moreover, Proposition 2.3 implies that if p > pmin, then there exists a root α of
(2.1) such that |α| ≥ 1, where pmin is the smallest positive real value of p for which (2.1)
has a root on C. We conclude that all the roots of (2.1) are inside the unit disk if and only
if −1/N < p < pmin. In other words, the zero solution of (1.3) is asymptotically stable if
and only if condition (1.4) holds. This completes the proof. �
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3. Examples

Example 3.1. In (1.3), Let l and k be even positive integers, then we have

F(−1)=−1 + pN. (3.1)

Thus if p = 1/N , then F(−1) = 0 and we conclude that (1.3) is asymptotically stable if
and only if −1/N < p < 1/N .

Example 3.2. In (1.3), let N = 3, l = 3, and k = 6. Then M = 8 and we obtain p0 =−1/3,
p1 = sin(3/8)π/sin(9/8)π, p2 = −sin(3/4)π/sin(9/4)π, p3 = sin(9/8)π/sin(27/8)π, p4 =
−sin(3/2)π/sin(9/2)π, p5 = sin(15/8)π/sin(45/8)π, p6 = −sin(9/4)π/sin(27/4)π, and
p7 = sin(21/8)π/sin(63/8)π. Thus, p3 = p5 = sin(π/8)/sin(3π/8) is the smallest positive
real value of p such that (2.1) has a root on C. We conclude that (1.3) is asymptotically
stable if and only if −1/3 < p < sin(π/8)/sin(3π/8).
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