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A moduleM is⊕-supplemented if every submodule ofM has a supplement which is
a direct summand ofM . In this paper, we show that a quotient of a⊕-supplemented
module is not in general ⊕-supplemented. We prove that over a commutative ring
R, every finitely generated⊕-supplementedR-moduleM having dual Goldie dimen-
sion less than or equal to three is a direct sum of local modules. It is also shown
that a ring R is semisimple if and only if the class of ⊕-supplemented R-modules
coincides with the class of injective R-modules. The structure of ⊕-supplemented
modules over a commutative principal ideal ring is completely determined.
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1. Introduction. All rings considered in this paper will be associative with

an identity element. Unless otherwise mentioned, all modules will be left uni-

tary modules. Let R be a ring and M an R-module. Let A and P be submodules

ofM . The submodule P is called a supplement of A if it is minimal with respect

to the property A+P = M . Any L ≤ M which is the supplement of an N ≤ M
will be called a supplement submodule of M . If every submodule U of M has

a supplement in M , we call M complemented. In [25, page 331], Zöschinger

shows that over a discrete valuation ring R, every complemented R-module

satisfies the following property (P): every submodule has a supplement which

is a direct summand. He also remarked in [25, page 333] that every module

of the form M � (R/a1)×···× (R/an), where R is a commutative local ring

and ai (1≤ i≤n) are ideals of R, satisfies (P). In [12, page 95], Mohamed and

Müller called a module ⊕-supplemented if it satisfies property (P).
On the other hand, let U and V be submodules of a module M . The sub-

module V is called a complement of U inM if V is maximal with respect to the

property V∩U = 0. In [17] Smith and Tercan investigate the following property

which they called (C11): every submodule of M has a complement which is a

direct summand of M . So, it was natural to introduce a dual notion of (C11)
which we called (D11) (see [6, 7]). It turns out that modules satisfying (D11)
are exactly the ⊕-supplemented modules. A module M is called a completely

⊕-supplemented (see [5]) (or satisfies (D+11) in our terminology, see [6, 7]) if

every direct summand of M is ⊕-supplemented.
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Our paper is divided into four sections. The purpose of Section 2 is to an-

swer the following natural question: is any factor module of a⊕-supplemented

module ⊕-supplemented? Some relevant counterexamples are given.

In Section 3 we prove that, over a commutative ring, every finitely generated

⊕-supplemented module having dual Goldie dimension less than or equal to

three is a direct sum of local modules.

Section 4 describes the structure of ⊕-supplemented modules over commu-

tative principal ideal rings.

In the last section we determine the class of rings R with the property that

every ⊕-supplemented R-module is injective. These turn out to be the class

of all left Noetherian V -rings (Proposition 5.3). It is also shown that a ring R
is semisimple if and only if the class of ⊕-supplemented R-modules coincides

with the class of injective R-modules (Proposition 5.5).

For an arbitrary module M , we will denote by Rad(M) the Jacobson radical

of M . The injective hull of M will be denoted by E(M). The annihilator of M
will be denoted by AnnR(M). A submodule A ofM is called small inM (A�M)

if A+B ≠M for any proper submodule B of M . A nonzero module H is called

hollow if every proper submodule is small in H and is called local if the sum

of all its proper submodules is also a proper submodule. We notice that a local

module is just a cyclic hollow module.

2. Quotients of ⊕-supplemented modules. By [23, corollary on page 45],

every factor module of a complemented module is complemented. Now, let

M be a ⊕-supplemented module. In this section we will answer the following

natural question: is any factor module of M ⊕-supplemented?

First, we mention the following result, which we will use frequently in the

sequel.

Proposition 2.1 [6, Proposition 1]. The following are equivalent for a mod-

ule M :

(i) M is ⊕-supplemented;

(ii) for any submodule N of M , there exists a direct summand K of M such

that M =N+K and N∩K is small in K.

A commutative ring R is a valuation ring if it satisfies one of the following

three equivalent conditions:

(i) for any two elements a and b, either a divides b or b divides a;

(ii) the ideals of R are linearly ordered by inclusion;

(iii) R is a local ring and every finitely generated ideal is principal.

A module M is called finitely presented if M � F/K for some finitely gene-

rated free module F and finitely generated submodule K of F . An important

result about these modules is that if M is finitely presented and M � F/G,

where F is a finitely generated free module, thenG is also finitely generated (see

[2]).
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Example 2.2. LetR be a commutative local ring which is not a valuation ring

and let n≥ 2. By [21, Theorem 2], there exists a finitely presented indecompos-

able moduleM = R(n)/K which cannot be generated by fewer than n elements.

By [6, Corollary 1], R(n) is ⊕-supplemented. HoweverM is not ⊕-supplemented

[6, Proposition 2].

The dual Goldie dimension of an R-module, denoted by corank(RM), was

introduced by Varadarajan in [19]. If M = 0, the corank of M is defined as 0.

Let M ≠ 0 and k an integer greater than or equal to one. If there is an epimor-

phism f : M →∏k
i=1Ni, where each Ni ≠ 0, we say that the corank(RM) ≥ k.

If corank(RM)≥ k and corank(RM)� k+1, then we define corank(RM)= k. If

the corank(RM) ≥ k for every k ≥ 1, we say that the corank(RM) = ∞. It was

shown in [14, 19] that the corank(RM) <∞ if and only if there is an epimor-

phism f :M →∏k
i=1Hi, where Hi is hollow and ker(f ) is small in M .

As in [20], a moduleM has the exchange property if for any moduleG, where

G =M′ ⊕C =⊕i∈IDi (2.1)

with M′ �M , there are submodules D′i ≤Di such that G =M′ ⊕(⊕i∈ID′i).
Before proceeding any further, we consider another example (note that the

module considered is decomposable).

Example 2.3. Let R be a commutative local ring which is not a valuation

ring. Let a and b be elements of R, neither of them divides the other. By taking

a suitable quotient ring, we may assume (a)∩(b)= 0 and am= bm= 0, where

m is the maximal ideal of R. Let F be a free module with generators x1, x2, and

x3. Let K be the submodule generated by ax1−bx2 and let M = F/K. Thus,

M = Rx1⊕Rx2⊕Rx3

R
(
ax1−bx2

) = (Rx1+Rx2
)⊕Rx3. (2.2)

Suppose that M is ⊕-supplemented. There exist submodules H and N of M
such thatM =H⊕N, Rx1+N =M , and Rx1∩N is small in N (Proposition 2.1).

By the proof of [21, Theorem 2], Rx1+Rx2 is an indecomposable module which

cannot be generated by fewer than 2 elements. Thus corank(Rx1+Rx2) = 2

by [14, Proposition 1.7]. Hence corank(M) = 3. Since H � M/N and M/N �
Rx1/(N ∩ Rx1), we get that H is a local direct summand of M and hence

corank(N) = 2 (see [14, Corollary 1.9]). Since R is a commutative local ring,

EndR(Rx3) is a local ring by [4, Theorem 4.1]. Since Rx3 has the exchange

property [20, Proposition 1], there are submodules H′ ≤ H and N′ ≤ N such

that M = Rx3⊕H′ ⊕N′. Therefore Rx1+Rx2 � H′ ⊕N′. Thus H′ ⊕N′ is inde-

composable. Hence N′ = 0 or H′ = 0. But corank(M) = 3 and corank(N) = 2,

so M = Rx3⊕N and N � Rx1+Rx2 is indecomposable. Since x1,x2 ∈M , there

are α,β∈ R and y1,y2 ∈N such that x1 =αx3+y1 and x2 = βx3+y2. Hence

x1−αx3 ∈ N and x2−βx3 ∈ N. But M = Rx3⊕ [R(x1−αx3)+R(x2−βx3)].
Then N = R(x1 − αx3)+ R(x2 − βx3). Now, M = Rx1 +N and x3 ∈ M , so
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there exists α′ ∈ R such that x3 −α′ x1 ∈ N. Note that α′x1 −α′αx3 ∈ N
and (1 − α′α)x3 ∈ N ∩ Rx3. Thus (1 − α′α)x3 = 0, that is, (1 − α′α)x3 ∈
R(ax1−bx2). Hence 1−α′α= 0. So α is invertible and α−1 =α′. Note that

a
(
x1−αx3

)−b(x2−βx3
)= (bβ−aα)x3. (2.3)

Thus a(x1−αx3)−b(x2−βx3) ≠ 0. Otherwise, (bβ−aα)x3 ∈ R(ax1−bx2),
which gives bβ= aα and then a= bβα′, which is a contradiction. Since (bβ−
aα)x3 ∈ N∩Rx3, then N∩Rx3 ≠ 0, which is a contradiction. It follows that

M is not ⊕-supplemented. But Rx1⊕Rx2⊕Rx3 is completely ⊕-supplemented

[6, Corollary 2].

These examples show that a factor module of a ⊕-supplemented module is

not in general ⊕-supplemented.

Proposition 2.5 deals with a special case of factor modules of ⊕-supple-

mented modules. First we prove the following lemma.

Lemma 2.4. LetM be a nonzero module and let U be a submodule ofM such

that f(U)≤U for each f ∈ EndR(M). IfM =M1⊕M2, then U =U∩M1⊕U∩M2.

Proof. Let πi : M → Mi (i = 1,2) denote the canonical projections. Let x
be an element of U . Then x = π1(x)+π2(x). By hypothesis, πi(U) ≤ U for

i= 1,2. Thus πi(x)∈U∩Mi for i= 1,2. Hence U ≤U∩M1⊕U∩M2. It follows

that U =U∩M1⊕U∩M2.

Proposition 2.5. Let M be a nonzero module and let U be a submodule

of M such that f(U) ≤ U for each f ∈ EndR(M). If M is ⊕-supplemented, then

M/U is ⊕-supplemented. If, moreover, U is a direct summand of M , then U is

also ⊕-supplemented.

Proof. Suppose that M is ⊕-supplemented. Let L be a submodule of M
which containsU . There exist submodulesN andN′ ofM such thatM =N⊕N′,
M = L+N, and L∩N is small in N (Proposition 2.1). By [23, Lemma 1.2(d)],

(N+U)/U is a supplement of L/U in M/U . Now apply Lemma 2.4 to get that

U =U∩N⊕U∩N′. Thus,

(N+U)∩(N′ +U)≤ (N+U+N′)∩U+(N+U+U)∩N′. (2.4)

Hence,

(N+U)∩(N′ +U)≤U+(N+U∩N+U∩N′)∩N′. (2.5)

It follows that (N + U)∩ (N′ + U) ≤ U and ((N + U)/U)⊕ ((N′ + U)/U) =
M/U . Then (N +U)/U is a direct summand of M/U . Consequently, M/U is

⊕-supplemented.

Now suppose that U is a direct summand of M . Let V be a submodule of U .

Since M is ⊕-supplemented, there exist submodules K and K′ of M such that
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M = K⊕K′, M = V +K, and V ∩K� K (Proposition 2.1). Thus U = V +U∩K.

But U = U ∩K⊕U ∩K′ (Lemma 2.4), hence U ∩K is a direct summand of U .

Moreover, V∩(U∩K)= V∩K is small in K. Then, V∩(U∩K) is small in U∩K
by [23, Lemma 1.1(b)]. Therefore U ∩K is a supplement of V in U and it is a

direct summand of U . Thus U is ⊕-supplemented.

Corollary 2.6. Let M be an R-module and P(M) the sum of all its radi-

cal submodules. If M is ⊕-supplemented, then M/P(M) is ⊕-supplemented. If,

moreover, P(M) is a direct summand of M , then P(M) is also ⊕-supplemented.

Proof. By Proposition 2.5, it suffices to prove that f(P(M)) ≤ P(M) for

each f ∈ EndR(M). Let N be a radical submodule of M and let f be an endo-

morphism ofM and g its restriction toN. By [1, Proposition 9.14], g(Rad(N))≤
Rad(f (N)). But Rad(N) = N and f(N) = g(N), hence f(N) ≤ Rad(f (N)).
Thus, Rad(f (N)) = f(N). This implies that f(N) ≤ P(M), and the corollary

is proved.

We recall that a module M is called semi-Artinian if every nonzero quotient

module of M has nonzero socle. For a module RM , we define

Sa(M)=
∑
U≤M

U semi-Artinian

U. (2.6)

By [18, Chapter VIII, Section 2, Corollary 2.2], if R is a left Noetherian ring and

RM a semi-Artinian left R-module, then M is the sum of its submodules of

finite length.

If R is a commutative Noetherian ring and M is an R-module, then Sa(M)=
L(M), the sum of all Artinian submodules of M .

Corollary 2.7. Let M be a ⊕-supplemented R-module. Then M/Sa(M) is

⊕-supplemented. If, moreover, Sa(M) is a direct summand of M , then Sa(M) is

also ⊕-supplemented.

Proof. By Proposition 2.5, it suffices to prove that f(Sa(M)) ≤ Sa(M) for

each f ∈ EndR(M). Let U be a semi-Artinian submodule of M and let f be an

endomorphism of M and g its restriction to U . Thus U/Ker(g)� g(U). Hence

f(U) � U/Ker(g). But it is easy to check that U/Ker(g) is a semi-Artinian

module. Therefore, f(U) is semi-Artinian.

Remark 2.8. LetM be a⊕-supplemented module. It is clear thatM/Rad(M)
and M/Soc(M) are also ⊕-supplemented (see Proposition 2.5 and [1, Proposi-

tions 9.14 and 9.8]).

3. Some properties of finitely generated ⊕-supplemented modules. A

module M is called supplemented if for any two submodules A and B with

A+B =M , B contains a supplement of A.
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The proof of the next result is taken from [6, Lemma 2], but is given for the

sake of completeness.

Lemma 3.1. Let M be a ⊕-supplemented R-module. If M contains a maximal

submodule, then M contains a local direct summand.

Proof. Let L be a maximal submodule of M . Since M is ⊕-supplemented,

there exists a direct summand K of M such that K is a supplement of L in

M . Then for any proper submodule X of K, X is contained in L since L is a

maximal submodule and L+X is a proper submodule of M by minimality of

K. Hence X ≤ L∩K and X is small in K by [12, Lemma 4.5]. Thus K is a hollow

module, and the lemma is proved.

Proposition 3.2. If M is a ⊕-supplemented module such that Rad(M) is

small in M , then M can be written as an irredundant sum of local direct sum-

mands of M .

Proof. Since Rad(M) is small in M , M contains a maximal submodule and

hence M contains a local direct summand by Lemma 3.1. Let N be the sum of

all local direct summands of M . If N is a proper submodule of M , then there

exists a maximal submodule L of M such that N ≤ L (see [8, Proposition 9 and

Theorem 8]). Let P be a direct summand of M such that P is a supplement of

L in M . Note that P is a local module (see the proof of Lemma 3.1) and hence

it is contained in N, so M = L+P ≤ L+N = L. This is a contradiction. Hence

we have N =M . Now let M =∑i∈I Li where each Li is a local direct summand

of M . Then,

M
Rad(M)

=
∑
i∈I

[
Li+Rad(M)

Rad(M)

]
(3.1)

and each

Li+Rad(M)
Rad(M)

� Li
Li∩Rad(M)

(3.2)

is simple by [23, Lemma 1.1(c)]. Hence

M
Rad(M)

=
⊕
k∈K

[
Lk+Rad(M)

Rad(M)

]
(3.3)

for some subset K ⊆ I. Thus M =∑k∈K Lk since Rad(M) is small in M . Clearly,

the sum
∑
k∈K Lk is irredundant.

Corollary 3.3. Let R be a commutative ring and M a finitely generated

R-module. If M is ⊕-supplemented, then M =H1+H2+···+Hn, where each Hi
is a local direct summand of M and n= corank(M).
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Proof. By Proposition 3.2, M =H1+H2+···+Hn, where each Hi is a local

direct summand of M and the sum
∑n
i=1Hi is irredundant. By [16, Corollary

4.6],M is supplemented. Thereforen= corank(M) by [14, Proposition 1.7] and

[19, Lemma 2.36 and Theorem 2.39].

Remark 3.4. (i) The module M = (Rx1+Rx2)⊕Rx3 in Example 2.3 is not

⊕-supplemented. On the other hand, M can be written as follows: M = (Rx1+
Rx2)⊕R(x1−x3); M = (Rx1+Rx2)⊕R(x2−x3); and M = R(x1−x3)+R(x2−
x3)+Rx3. Therefore M is an irredundant sum of local direct summands of M .

However, M is not ⊕-supplemented.

(ii) In the same example, we have that K = Rx1+Rx2 is an indecomposable

direct summand of

M = Rx1⊕Rx2⊕Rx3

R
(
ax1−bx2

) = (Rx1+Rx2
)⊕Rx3. (3.4)

Then K is not an irredundant sum of local direct summands. This example

shows that, in general, a direct summand of a module which is written as an

irredundant sum of local direct summands does not have the same property.

Proposition 3.5. Let M be a finitely generated ⊕-supplemented module

such that k= corank(M)≤ 2. Then M is a direct sum of local modules.

Proof. It is clear that if k = 1, then M is a local module. Now suppose

that k= 2. Since M is ⊕-supplemented, M contains a local direct summand H
(Lemma 3.1). Let K be a submodule ofM such thatM =H⊕K. By [14, Corollary

1.9], we have corank(K)= 1 and hence K is a local module (see [19, Proposition

1.11]). Thus M is a direct sum of local modules, as required.

Our next objective is to prove that over a commutative ring, ifM is a finitely

generated⊕-supplemented module with corank(M)= 3, thenM is a direct sum

of local modules. We first prove the following generalization of [11, Lemma

2.3].

Lemma 3.6. Let L1,L2, . . . ,Ln be indecomposable direct summands of a mod-

ule M such that EndR(Li) is a local ring for each i ( 1≤ i≤ n). If Li �� Lj for all

i≠ j, then
∑n
i=1Li is direct and is a direct summand of M .

Proof. We use induction over n. Assume that L1+L2+···+Ln−1 is a direct

sum and is a direct summand ofM and let L= L1⊕L2⊕···⊕Ln−1. There exists

a submodule N of M such that M = L⊕N. By [20, Proposition 1], Ln has the

exchange property. Thus, M = Ln ⊕L′ ⊕N′ for some submodules L′ and N′

of M with L′ ≤ L and N′ ≤ N. Let N′′ and L′′ be two submodules of M such

that N = N′ ⊕N′′ and L = L′ ⊕ L′′. Hence M = L′ ⊕N′ ⊕L′′ ⊕N′′. Therefore,

Ln � L′′ ⊕N′′. This implies that L′′ = 0 or N′′ = 0. Hence L′ = L or N′ = N.

Suppose thatN′ =N. Thus Ln⊕L′ � L. By the Krull-Schmidt-Azumaya theorem,
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every indecomposable direct summand of L is isomorphic to one of the Li,
1 ≤ i ≤ n−1. It follows that Ln is isomorphic to one of the Li, 1 ≤ i ≤ n−1,

which is a contradiction. Therefore L′ = L and M = Ln⊕L⊕N′, that is, M =
L1⊕L2⊕···⊕Ln−1⊕Ln⊕N′, and the lemma is proved.

Corollary 3.7. Suppose that R is commutative or left Noetherian. Let L1,

L2, . . . ,Ln be hollow local direct summands of a moduleM . If Li �� Lj for all i≠ j,
then

∑n
i=1Li is direct and is a direct summand of M .

Proof. This is a consequence of [4, Theorems 4.1 and 4.2] and Lemma 3.6.

Proposition 3.8. Suppose that R is a commutative ring. Let M be a finitely

generated ⊕-supplemented module such that all the hollow direct summands of

M are isomorphic. Then M is a direct sum of hollow local modules.

Proof. By Proposition 3.2, we can write M = H1+H2+···+Hn as an ir-

redundant sum of hollow local direct summands. By hypothesis, H1 � H2 �
··· �Hn. Thus,

AnnR
(
H1
)=AnnR

(
H2
)= ··· =AnnR

(
Hn
)
. (3.5)

Hence,

AnnR(M)=
n⋂
i=1

AnnR
(
Hi
)=AnnR

(
Hi
)

for each i (1≤ i≤n). (3.6)

Therefore all hollow local direct summands ofM are isomorphic to R/I, where

I = AnnR(M). Let H be a local submodule of M such that H is not small in M .

Since M is ⊕-supplemented, there exist submodules N and N′ of M such that

H+N = M , N′ ⊕N = M , and H∩N is small in N (Proposition 2.1). It follows

that N′ � M/N � H/(H ∩N). Hence, N′ is a local module. This implies that

AnnR(N′) = I and AnnR(H/(H∩N)) = I. Thus, the set {r ∈ R | rx ∈ N} = I,
where H = Rx. Let y ∈ H∩N. There exists α ∈ R with y = αx. So α ∈ I and

hence y = 0 since I ⊆AnnR(H). Therefore H∩N = 0 andM =H⊕N. It follows

that every nonsmall local submodule of M is a direct summand of M . Note

that corank(M) < ∞ (Corollary 3.3). Applying [23, corollary on page 45] and

[8, Proposition 9], we get that M is a direct sum of local modules.

Corollary 3.9. Let R be a commutative ring and M a finitely generated

⊕-supplemented module with corank(M) = 3. Then M is a direct sum of local

modules.

Proof. Let F0 be an irredundant set of representatives of the local direct

summands ofM (F0 is not empty by Lemma 3.1). By Corollary 3.7, Card(F0)≤ 3.

If Card(F0) = 3, then M is a direct sum of local modules (Corollary 3.7). If

Card(F0)= 2 and F0 = {L1,L2}, then there exists a submodule L3 ofM such that
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M = L1⊕L2⊕L3 (Corollary 3.7). But corank(M) = 3. Therefore corank(L3) = 1

(see [14, Corollary 1.9]) and hence L3 is a local module. If Card(F0) = 1, then

M is a direct sum of local modules by Proposition 3.8.

Remark 3.10. (i) If M is a finitely generated ⊕-supplemented module with

corank(M) ≤ 2, then M is completely ⊕-supplemented (see [6, Proposition 6]

and Proposition 3.5).

(ii) If R is a commutative ring and M a finitely generated ⊕-supplemented

module with corank(M) = 3, then M is completely ⊕-supplemented (see [6,

Corollary 6] and Corollary 3.9).

4. ⊕-supplemented modules over commutative principal ideal rings. In

this section, the structure of ⊕-supplemented modules over a principal ideal

ring is completely determined.

Let R be a commutative Noetherian ring. Let Ω be the set of all maximal

ideals of R. As in [24, page 53], if m∈Ω and M is an R-module, we denote the

m-local component ofM by Km(M)= {x ∈M | x = 0 or the only maximal ideal

over AnnR(x) is m}. We call M m-local if Km(M)=M or, equivalently, if m is

the only maximal ideal over each p ∈Ass(M). In this case,m is an Rm-module

by the following operation: (r/s)x := rx′ with x = sx′ (r ∈ R, s ∈ R\m). The

submodules of M over R and over Rm are identical.

For K(M) = {x ∈ M | Rx is complemented}, we always have a decomposi-

tion K(M) = ⊕m∈ΩKm(M) and for a complemented module M , we have M =
K(M) [24, Theorems 2.3 and 2.5].

A principal ideal ring is called special if it has only one prime ideal p ≠ R
and p is nilpotent [22, page 245].

Theorem 4.1. Let R be a commutative local principal ideal ring (not neces-

sarily a domain) with maximal ideal m.

(i) If m is nilpotent, then every R-module is ⊕-supplemented.

(ii) If m is not nilpotent, then R is a domain and RM is a ⊕-supplemented R-

module if and only ifM � Ra⊕Qb⊕(Q/R)c⊕B(1, . . . ,n), whereQ is the quotient

field of R and B(1, . . . ,n) denotes the direct sum of arbitrarily many copies of

R/m,. . . ,R/mn, for some positive integer n.

Proof. (i) Suppose that m is nilpotent. By [1, Theorem 15.20], R is an

Artinian principal ideal ring. Thus, every R-module is ⊕-supplemented by [7,

Theorem 1.1].

(ii) Suppose that m is not nilpotent. Then R is not a special principal ideal

ring. By [22, Chapter IV, Section 15, Theorem 33], R is a principal ideal domain

and the result follows from [12, Proposition A.7].

The proof of the following result can be found in [7, Proposition 2.1].

Proposition 4.2. Let R be a commutative Noetherian ring and M an R-

module. The following assertions are equivalent:
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(i) M is ⊕-supplemented;

(ii) M =K(M) and Km(M) is ⊕-supplemented for all m∈Ω.

Corollary 4.3. Let R be a commutative principal ideal ring (not necessarily

a domain) and M an R-module. The following conditions are equivalent:

(i) M is ⊕-supplemented;

(ii) (1) the ring R/p is local for all p ∈Ass(M);
(2) ifm∈Ω such thatmRm is not nilpotent, thenKm(M)� Ram⊕Q(Rm)b

⊕ [Q(Rm)/Rm]c ⊕Bm(1, . . . ,nm) (in Mod -Rm), where Q(Rm) is the

quotient field of Rm and Bm(1, . . . ,nm) denotes the direct sum of ar-

bitrarily many copies of Rm/mRm,. . . ,Rm/(mRm)nm , for some pos-

itive integer nm.

Proof. See Proposition 4.2, [13, Proposition 2.2(b)], and Theorem 4.1.

Proposition 4.4 (see [7, Corollary 2.2]). LetR be a commutative Noetherian

ring and M an R-module. The following assertions are equivalent:

(i) M is completely ⊕-supplemented;

(ii) M =K(M) and Km(M) is completely ⊕-supplemented for all m∈Ω.

Corollary 4.5. Let R be a commutative principal ideal ring (not necessarily

a domain) and M an R-module. Then M is ⊕-supplemented if and only if M is

completely ⊕-supplemented.

Proof. By Proposition 4.4 and the proof of Theorem 4.1, it suffices to prove

the result for an R-module M over a local principal ideal domain R with maxi-

mal idealm≠ 0. IfM is ⊕-supplemented, thenM � Ra⊕Qb⊕(Q/R)c⊕B(1, . . . ,
n), whereQ is the quotient field of R and B(1, . . . ,n) denotes the direct sum of

arbitrarily many copies of R/m,. . . ,R/mn (Theorem 4.1). By [7, Theorem 2.1],

Qb ⊕ (Q/R)c and Ra ⊕B(1, . . . ,n) both are ⊕-supplemented. By [6, Corollary

2], Ra⊕B(1, . . . ,n) is completely ⊕-supplemented. Now consider the module

Qb⊕(Q/R)c . SinceQ andQ/R are injective, EndR(Q) and EndR(Q/R) are local

rings (see [1, Lemma 25.4]). By [1, Corollary 12.7] and [12, Proposition A.7],Qb⊕
(Q/R)c is completely ⊕-supplemented. HenceQb⊕(Q/R)c⊕Ra⊕B(1, . . . ,n) is

completely ⊕-supplemented (see [7, Corollary 2.1]).

5. Some rings whose modules are ⊕-supplemented. A ring R is called a

left V -ring if every simple left R-module is injective. The ring R is called an

SSI-ring if every semisimple left R-module is injective.

Lemma 5.1. LetM be a module with Rad(M)= 0. ThenM is ⊕-supplemented

if and only if M is semisimple.

Proof. This is clear by [19, Proposition 3.3].

Corollary 5.2. Let R be a left V -ring and M an R-module. Then M is ⊕-

supplemented if and only if M is semisimple.
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Proof. By [3, page 236, Theorem (Villamayor)], for every left R-module,

Rad(M)=0. Therefore, every⊕-supplementedR-module is semisimple (Lemma

5.1).

Proposition 5.3. Let R be a ring. The following statements are equivalent:

(i) every ⊕-supplemented R-module is injective;

(ii) R is a left Noetherian V -ring.

Proof. (i)⇒(ii). Since every semisimple R-module is⊕-supplemented, every

semisimple R-module is injective. Thus R is an SSI-ring. By [3, Proposition 1],

R is a left Noetherian V -ring.

(ii)⇒(i). Let M be a ⊕-supplemented R-module. Since R is a left V -ring, M
is semisimple (Corollary 5.2). Thus M is an injective R-module (see [3, Prop-

osition 1]).

Corollary 5.4. Let R be a commutative ring. The following are equivalent:

(i) every ⊕-supplemented R-module is injective;

(ii) R is semisimple.

Proof. (i)⇒(ii). It is a consequence of Proposition 5.3 and [3, page 236,

Proposition 1 and its first corollary].

(ii)⇒(i) This application is obvious.

Proposition 5.5. The following assertions are equivalent for a ring R:

(i) for every R-moduleM ,M is ⊕-supplemented if and only ifM is injective;

(ii) R is semisimple.

Proof. (i)⇒(ii). Suppose thatR satisfies the stated condition. By Proposition

5.3, R is a left Noetherian V -ring. Now, let M be an injective R-module. Then

M is ⊕-supplemented and, since R is a V -ring,M is semisimple (Corollary 5.2).

Therefore R is a semisimple ring.

(ii)⇒(i). It is easy to show that every R-module is ⊕-supplemented and every

R-module is injective.

Remark 5.6. If R is a commutative local Noetherian ring having an injective

hollow radical R-module H, then the R-module M =H(N) is injective. However

M is not ⊕-supplemented (see [7, Remark 2.1(3)]). For example, if R is a local

Dedekind domain with quotient field K, then K(N) is an injective R-module

which is not ⊕-supplemented.

Our next objective is to determine the class of commutative Noetherian rings

R with the property that every injective R-module is ⊕-supplemented. First we

prove the following lemma.

Lemma 5.7. Let R be a quasi-Frobenius ring (not necessarily commutative).

Then every injective R-module is ⊕-supplemented.
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Proof. By [10, Theorem 15.9], every injective R-module is projective. Since

R is left perfect, every projective R-module is ⊕-supplemented (see [6, Propo-

sition 13]) and the result is proved.

Proposition 5.8. For a commutative Noetherian ring R, the following state-

ments are equivalent:

(i) every injective R-module is ⊕-supplemented;

(ii) R is Artinian and E(R/m) is a local R-module for each maximal idealm
of R;

(iii) R is Artinian and R/Im is a quasi-Frobenius ring for each maximal ideal

m of R, where Im =AnnR(E(R/m)).

Proof. (i)⇒(ii). By [15, page 53, corollary of Theorem 2.32] and [10, Corol-

lary 3.86], it suffices to prove that E(R/p) is a finitely generated R-module for

each prime ideal p of R. Since E(R/p) is indecomposable (see [15, page 53,

corollary of Theorem 2.32]) and E(R/p) is ⊕-supplemented, E(R/p) is hollow

[6, Proposition 2]. By Remark 5.6, E(R/p) is not radical. Thus, E(R/p) is a local

R-module.

(ii)⇒(iii). Let m be a maximal ideal of R. Since E(R/m) is a local R-module,

E(R/m) � R/Im where Im = AnnR(E(R/m)). Thus, R/Im is an injective R-

module. By [9, Theorem 203], R/Im is an injective (R/Im)-module, that is, the

ring R/Im is self-injective. Since R/Im is an Artinian ring, R/Im is a quasi-

Frobenius ring, and the result is proved.

(iii)⇒(i). Let M be an injective R-module. By [15, Theorem 4.5], we can write

M = ⊕i∈IE(R/mi) where the mi are maximal ideals of R. Now, E(R/mi) is

an (R/Imi)-module and the (R/Imi)-submodules of E(R/mi) are the same as

the R-submodules of E(R/mi), therefore R(E(R/mi)) is ⊕-supplemented (see

Lemma 5.7 and [9, Theorem 203]). By [6, Proposition 2], E(R/mi) (i ∈ I) is a

hollow R-module. By [1, Corollary 15.21], Rad(E(R/mi)) is small in E(R/mi).
Thus, E(R/mi) (i∈ I) is a local R-module. It follows by [1, Corollary 15.21] and

[6, Corollary 2] that M is ⊕-supplemented.

Proposition 5.9. Let p be a prime ideal of a commutative Noetherian ring

R such that E(R/p) is hollow. Then there is a maximal ideal m of R such that

(i) m is the only maximal ideal over p;

(ii) E(R/p) has the structure of an Rm-module;

(iii) the submodules of E(R/p) over R and over Rm are identical.

Moreover, as an Rm-module, E(R/p) is isomorphic to an injective envelope of

Rm/S−1p where S = R\m.

Proof. Suppose that E(R/p) is hollow. Since [13, Proposition 1.1] gives

that E(R/p) is m-local for some m ∈ Ω, m is the only maximal ideal over

p, E(R/p) has the structure of an Rm-module, and the Rm-submodules of

E(R/p) are exactly the R-submodules of E(R/p). It remains to show the last

assertion. By [15, Proposition 5.5], E(R/p) is injective as an Rm-module. Now,
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E(R/p) is indecomposable as an R-module and its Rm-submodules are also

R-submodules so that E(R/p) is also indecomposable as an Rm-module. Since

AssR(E(R/p)) = {p}, there is an element x ∈ E(R/p) such that AnnR(x) = p.

But it is easy to check that AnnRm(x)= S−1p with S = R\m and S−1p is a prime

ideal of Rm. Then E(R/p) is isomorphic to an injective envelope of Rm/S−1p
by [15, page 53, Corollary of Theorem 2.32].

Proposition 5.10. Let p be a prime ideal of a commutative Noetherian ring

R. Then the following are equivalent:

(i) E(R/p) is hollow local;

(ii) p is maximal and Rp is a quasi-Frobenius ring.

Proof. (i)⇒(ii). Suppose that E(R/p) is hollow local. By Proposition 5.9,

E(R/p) is m-local for some maximal ideal m of R and as an Rm-module,

E(Rm/S−1p) is hollow local, where S = R\m. Since Rm is Noetherian local,

Rm is Artinian by [9, Theorem 207]. Hence S−1p is a maximal ideal of Rm.

Thus S−1p = S−1m. Therefore p =m is maximal. Moreover, by [15, page 47,

Corollary 2], AnnRm(E(Rm/S−1m)) = 0. Then E(Rm/S−1m) � Rm. So Rm is

self-injective. Therefore Rm is a quasi-Frobenius ring.

(ii)⇒(i). Suppose that p is maximal and Rp is a quasi-Frobenius ring. Put

E = E(R/p). By [15, Proposition 4.23], E(R/p) =∑∞
n=1 AnnE(pn). Then E is p-

local. Thus E is an Rp-module and the submodules of E over R and over Rp
are identical. The proof of Proposition 5.9 shows that, as an Rp-module, E is

isomorphic to E(Rp/pRp), where pRp denotes the unique maximal ideal of Rp .

On the other hand, sinceRp is a self-injective Artinian local ring, E(Rp/pRp), as

anRp-module, is isomorphic toRp (see [10, Theorem 15.27]). Hence E(Rp/pRp)
is a local Rp-module. Consequently, E is a local R-module.

Lemma 5.11. Let R be a commutative ring. If R is Noetherian and Rm is

quasi-Frobenius for every maximal ideal m of R, then R is quasi-Frobenius.

Proof. Let m be a maximal ideal of R. Since Rm is quasi-Frobenius, then

Rm is Artinian and somRm, the maximal ideal of Rm, is a minimal prime ideal.

Thereforem is a minimal prime ideal of R. The ring R is Noetherian and every

prime ideal is maximal, hence R is Artinian. Let R = R1×···×Rt where each

Ri is Artinian and local. Since each Ri is a localization of R, then Ri is quasi-

Frobenius for each i = 1, . . . , t. It is not difficult to see that a finite product of

rings is quasi-Frobenius if and only if each factor is quasi-Frobenius (see [10,

Theorem 15.27]). Hence R = R1×···×Rt is quasi-Frobenius.

Theorem 5.12. For a commutative Noetherian ring R, the following state-

ments are equivalent:

(i) every injective R-module is ⊕-supplemented;

(ii) Rm is quasi-Frobenius for each maximal ideal m of R;

(iii) R is quasi-Frobenius.
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Proof. (i)⇒(ii). It is a consequence of Propositions 5.8 and 5.10.

(ii)⇒(iii). It is clear by Lemma 5.11.

(iii)⇒(i). See Lemma 5.7.

Proposition 5.13. For a V -ring, the following statements are equivalent:

(i) R is semisimple;

(ii) every R-module is ⊕-supplemented.

Proof. (i)⇒(ii). It is obvious.

(ii)⇒(i). Suppose that every R-module is ⊕-supplemented. By Corollary 5.2,

every R-module is semisimple. Thus R is semisimple, as required.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts
in Mathematics, vol. 13, Springer-Verlag, New York, 1974.

[2] N. Bourbaki, Éléments de Mathématique. Fasc. XXXI. Algèbre Commutative.
Chapitre 1: Modules Plats, Actualités Scientifiques et Industrielles, no.
1314, Hermann, Paris, 1965 (French).

[3] K. A. Byrd, Rings whose quasi-injective modules are injective, Proc. Amer. Math.
Soc. 33 (1972), 235–240.

[4] P. Fleury, Hollow modules and local endomorphism rings, Pacific J. Math. 53
(1974), 379–385.

[5] A. Harmancı, D. Keskin, and P. F. Smith, On ⊕-supplemented modules, Acta Math.
Hungar. 83 (1999), no. 1-2, 161–169.

[6] A. Idelhadj and R. Tribak, A dual notion of CS-modules generalization, Algebra
and Number Theory (Fez) (M. Boulagouaz and J.-P. Tignol, eds.), Lecture
Notes in Pure and Appl. Math., vol. 208, Marcel Dekker, New York, 2000,
pp. 149–155.

[7] , Modules for which every submodule has a supplement that is a direct
summand, Arab. J. Sci. Eng. Sect. C Theme Issues 25 (2000), no. 2, 179–
189.

[8] T. Inoue, Sum of hollow modules, Osaka J. Math. 20 (1983), no. 2, 331–336.
[9] I. Kaplansky, Commutative Rings, revised ed., The University of Chicago Press,

Illinois, 1974.
[10] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, vol.

189, Springer-Verlag, New York, 1999.
[11] S. H. Mohamed and B. J. Müller, Direct sums of dual continuous modules, Math. Z.

178 (1981), no. 2, 225–232.
[12] , Continuous and Discrete Modules, London Mathematical Society Lecture

Note Series, vol. 147, Cambridge University Press, Cambridge, 1990.
[13] P. Rudlof, On the structure of couniform and complemented modules, J. Pure Appl.

Algebra 74 (1991), no. 3, 281–305.
[14] B. Sarath and K. Varadarajan, Dual Goldie dimension. II, Comm. Algebra 7 (1979),

no. 17, 1885–1899.
[15] D. W. Sharpe and P. Vámos, Injective Modules, Cambridge Tracts in Mathematics

and Mathematical Physics, no. 62, Cambridge University Press, London,
1972.

[16] P. F. Smith, Finitely generated supplemented modules are amply supplemented,
Arab. J. Sci. Eng. Sect. C Theme Issues 25 (2000), no. 2, 69–79.



⊕-SUPPLEMENTED MODULES 4387

[17] P. F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21
(1993), no. 6, 1809–1847.

[18] B. Stenström, Rings of Quotients. An Introduction to Methods of Ring Theory,
Die Grundlehren der Mathematischen Wissenschaften, vol. 217, Springer-
Verlag, New York, 1975.

[19] K. Varadarajan, Dual Goldie dimension, Comm. Algebra 7 (1979), no. 6, 565–610.
[20] R. B. Warfield Jr., A Krull-Schmidt theorem for infinite sums of modules, Proc.

Amer. Math. Soc. 22 (1969), 460–465.
[21] , Decomposability of finitely presented modules, Proc. Amer. Math. Soc. 25

(1970), 167–172.
[22] O. Zariski and P. Samuel, Commutative Algebra. Vol. 1, Graduate Texts in Math-

ematics, no. 28, Springer-Verlag, New York, 1975.
[23] H. Zöschinger, Komplementierte Moduln über Dedekindringen, J. Algebra 29

(1974), 42–56 (German).
[24] , Gelfand ringe und koabgeschlossene Untermoduln [Gelfand rings and

coclosed submodules], Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 3
(1982), 43–70 (German).

[25] , Komplemente als direkte Summanden. II [Complements as direct sum-
mands. II], Arch. Math. (Basel) 38 (1982), no. 4, 324–334 (German).

A. Idelhadj: Département de Mathématiques, Faculté des Sciences de Tétouan, Uni-
versité Abdelmalek Essaâdi, B.P 21.21 Tétouan, Morocco

E-mail address: idelhadj_a@hotmail.com

R. Tribak: Département de Mathématiques, Faculté des Sciences de Tétouan, Univer-
sité Abdelmalek Essaâdi, B.P 21.21 Tétouan, Morocco

E-mail address: tribak12@yahoo.com

mailto:idelhadj_a@hotmail.com
mailto:tribak12@yahoo.com

