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Amodule M is @-supplemented if every submodule of M has a supplement which is
adirect summand of M. In this paper, we show that a quotient of a ®-supplemented
module is not in general ®-supplemented. We prove that over a commutative ring
R, every finitely generated &-supplemented R-module M having dual Goldie dimen-
sion less than or equal to three is a direct sum of local modules. It is also shown
that a ring R is semisimple if and only if the class of @-supplemented R-modules
coincides with the class of injective R-modules. The structure of @-supplemented
modules over a commutative principal ideal ring is completely determined.

2000 Mathematics Subject Classification: 16D50, 16D60, 13E05, 13E15, 16L60,
16P20, 16D80.

1. Introduction. All rings considered in this paper will be associative with
an identity element. Unless otherwise mentioned, all modules will be left uni-
tary modules. Let R be a ring and M an R-module. Let A and P be submodules
of M. The submodule P is called a supplement of A if it is minimal with respect
to the property A+ P = M. Any L < M which is the supplement of an N < M
will be called a supplement submodule of M. If every submodule U of M has
a supplement in M, we call M complemented. In (25, page 331], Z6schinger
shows that over a discrete valuation ring R, every complemented R-module
satisfies the following property (P): every submodule has a supplement which
is a direct summand. He also remarked in [25, page 333] that every module
of the form M = (R/a;) X - - - X (R/ay,), where R is a commutative local ring
and a; (1 <i <n) are ideals of R, satisfies (P). In [12, page 95], Mohamed and
Miiller called a module @-supplemented if it satisfies property (P).

On the other hand, let U and V be submodules of a module M. The sub-
module V is called a complement of U in M if V is maximal with respect to the
property VNU = 0.In [17] Smith and Tercan investigate the following property
which they called (Ci1): every submodule of M has a complement which is a
direct summand of M. So, it was natural to introduce a dual notion of (Cj;)
which we called (Dy,) (see [6, 7]). It turns out that modules satisfying (D)
are exactly the @-supplemented modules. A module M is called a completely
®-supplemented (see [5]) (or satisfies (D;,) in our terminology, see [6, 7]) if
every direct summand of M is @-supplemented.
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Our paper is divided into four sections. The purpose of Section 2 is to an-
swer the following natural question: is any factor module of a ®-supplemented
module &-supplemented? Some relevant counterexamples are given.

In Section 3 we prove that, over a commutative ring, every finitely generated
@-supplemented module having dual Goldie dimension less than or equal to
three is a direct sum of local modules.

Section 4 describes the structure of @-supplemented modules over commu-
tative principal ideal rings.

In the last section we determine the class of rings R with the property that
every @&-supplemented R-module is injective. These turn out to be the class
of all left Noetherian V-rings (Proposition 5.3). It is also shown that a ring R
is semisimple if and only if the class of @-supplemented R-modules coincides
with the class of injective R-modules (Proposition 5.5).

For an arbitrary module M, we will denote by Rad(M) the Jacobson radical
of M. The injective hull of M will be denoted by E(M). The annihilator of M
will be denoted by Anng (M). A submodule A of M is called small in M (A < M)
if A+ B # M for any proper submodule B of M. A nonzero module H is called
hollow if every proper submodule is small in H and is called local if the sum
of all its proper submodules is also a proper submodule. We notice that a local
module is just a cyclic hollow module.

2. Quotients of &-supplemented modules. By [23, corollary on page 45],
every factor module of a complemented module is complemented. Now, let
M be a @-supplemented module. In this section we will answer the following
natural question: is any factor module of M @-supplemented?

First, we mention the following result, which we will use frequently in the
sequel.

PROPOSITION 2.1 [6, Proposition 1]. The following are equivalent for a mod-
ule M:
(i) M is @-supplemented;
(ii) for any submodule N of M, there exists a direct summand K of M such
that M = N+K and N nK is small in K.

A commutative ring R is a valuation ring if it satisfies one of the following
three equivalent conditions:
(i) for any two elements a and b, either a divides b or b divides a;
(ii) the ideals of R are linearly ordered by inclusion;
(iii) R is alocal ring and every finitely generated ideal is principal.
A module M is called finitely presented if M = F/K for some finitely gene-
rated free module F and finitely generated submodule K of F. An important
result about these modules is that if M is finitely presented and M = F/G,
where F is a finitely generated free module, then G is also finitely generated (see

[2]).
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EXAMPLE 2.2. Let R be acommutative local ring which is not a valuation ring
and let n > 2. By [21, Theorem 2], there exists a finitely presented indecompos-
able module M = R™ /K which cannot be generated by fewer than n elements.
By [6, Corollary 1], R™ is @-supplemented. However M is not @-supplemented
[6, Proposition 2].

The dual Goldie dimension of an R-module, denoted by corank(gM), was
introduced by Varadarajan in [19]. If M = 0, the corank of M is defined as 0.
Let M # 0 and k an integer greater than or equal to one. If there is an epimor-
phism f: M — l_[’i(:lNi, where each N; # 0, we say that the corank(xM) > k.
If corank(xkM) = k and corank(gkM) # k + 1, then we define corank(zM) = k. If
the corank(zgM) > k for every k > 1, we say that the corank(zxM) = oo. It was
shown in [14, 19] that the corank (M) < o if and only if there is an epimor-
phism f: M — ]_[ll-‘:lHi, where H; is hollow and ker(f) is small in M.

Asin [20], amodule M has the exchange property if for any module G, where

G=MoeoC= DicrDi (2.1)

with M’ = M, there are submodules D; < D; such that G = M’ & (&;¢/D;).
Before proceeding any further, we consider another example (note that the
module considered is decomposable).

EXAMPLE 2.3. Let R be a commutative local ring which is not a valuation
ring. Let a and b be elements of R, neither of them divides the other. By taking
a suitable quotient ring, we may assume (a) N (b) = 0 and am = bm = 0, where
m is the maximal ideal of R. Let F be a free module with generators x1, x», and
x3. Let K be the submodule generated by ax; —bx, and let M = F/K. Thus,

_ Rx1 ®Rx» ® Rx3

R(ax) - bx) = (RX1 +RX?) ® RX3. (2.2)

Suppose that M is @-supplemented. There exist submodules H and N of M
such that M = HeN, Rx; + N = M, and Rx; NN is small in N (Proposition 2.1).
By the proof of [21, Theorem 2], RX7 + RX; is an indecomposable module which
cannot be generated by fewer than 2 elements. Thus corank(Rx; + Rx7) = 2
by [14, Proposition 1.7]. Hence corank(M) = 3. Since H = M/N and M/N =
Rx71/(N N Rx7), we get that H is a local direct summand of M and hence
corank(N) = 2 (see [14, Corollary 1.9]). Since R is a commutative local ring,
Endg (RX3) is a local ring by [4, Theorem 4.1]. Since RXx3 has the exchange
property [20, Proposition 1], there are submodules H' < H and N’ < N such
that M = Rx3® H' @ N'. Therefore Rx7 +Rx, = H' ® N'. Thus H' @ N’ is inde-
composable. Hence N’ = 0 or H = 0. But corank(M) = 3 and corank(N) = 2,
so M = Rx3eN and N = Rx7 + RX; is indecomposable. Since X1,X; € M, there
are &, 8 € R and y1,5, € N such that x; = ax3 + 7, and X2 = fX3 + ». Hence
X1 —ox3 € N and X, — BxX3 € N. But M = Rx3® [R(x7 — oix3) + R(X2 — BXx3) 1.
Then N = R(x1 — &Xx3) + R(X2 — Bx3). Now, M = Rx; + N and X3 € M, so
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there exists « € R such that X3 — &’ X7 € N. Note that «'X; — «¢’axX3 € N
and (1 — &’x)x3 € NN Rx3. Thus (1 — «’x)x3 = 0, that is, (1 — &d’x)x3 €
R(ax; —bx>). Hence 1 — &’ « = 0. So « is invertible and &~ = «’. Note that

a (X1 - o) — b (%2 - BX3) = (bB—ac) X5 (2.3)

Thus a(x7 — xx3) — b(x; — Bx3) #+ 0. Otherwise, (b —ax)x3 € R(ax; —bx>),
which gives b = ax and then a = b «’, which is a contradiction. Since (b —
ax)x3 € NN RXx3, then NN RX3 + 0, which is a contradiction. It follows that
M is not @-supplemented. But Rx; @ Rx» ® Rx3 is completely @-supplemented
[6, Corollary 2].

These examples show that a factor module of a @-supplemented module is
not in general @-supplemented.

Proposition 2.5 deals with a special case of factor modules of &-supple-
mented modules. First we prove the following lemma.

LEMMA 2.4. Let M be a nonzero module and let U be a submodule of M such
that f(U) < U foreach f € Endg(M). IfM = My &M, thenU = UnM; @ U NMo.

PROOF. Let 11; : M — M; (i = 1,2) denote the canonical projections. Let x
be an element of U. Then x = 111 (x) + 12(x). By hypothesis, m;(U) < U for
i=1,2. Thus mi(x) e UnM; for i = 1,2. Hence U < UNM; & U N M,. It follows
that U=UnM,oUNM,. O

PROPOSITION 2.5. Let M be a nonzero module and let U be a submodule
of M such that f(U) < U for each f € Endg(M). If M is &-supplemented, then
M /U is @&-supplemented. If, moreover, U is a direct summand of M, then U is
also &-supplemented.

PROOF. Suppose that M is @-supplemented. Let L be a submodule of M
which contains U. There exist submodules N and N’ of M suchthat M = NoeN’,
M =L+ N, and LN N is small in N (Proposition 2.1). By [23, Lemma 1.2(d)],
(N+U)/U is a supplement of L/U in M/U. Now apply Lemma 2.4 to get that
U=UnNaUnNN'. Thus,

(N+UN(N'+U) < (N+U+N)NU+(N+U+U)NnN". (2.4)
Hence,
(N+U)N(N'+U) <U+(N+UNN+UNN')NN". (2.5)

It follows that (N+U)Nn(N'+U) < U and ((N+U)/U)® ((N'+U)/U) =
M/U. Then (N + U)/U is a direct summand of M/U. Consequently, M/U is
@-supplemented.

Now suppose that U is a direct summand of M. Let V be a submodule of U.
Since M is @-supplemented, there exist submodules K and K’ of M such that
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M=KeK',M=V+K, and VNnK < K (Proposition 2.1). Thus U =V +UnK.
But U =UnKe&UnNK’' (Lemma 2.4), hence UNK is a direct summand of U.
Moreover, VN (UNK) =V NK is small in K. Then, VN (UNK) is small in UNnK
by [23, Lemma 1.1(b)]. Therefore U NK is a supplement of V in U and it is a
direct summand of U. Thus U is @-supplemented. g

COROLLARY 2.6. Let M be an R-module and P(M) the sum of all its radi-
cal submodules. If M is &-supplemented, then M /P(M) is &-supplemented. If,
moreover, P(M) is a direct summand of M, then P (M) is also &-supplemented.

PROOF. By Proposition 2.5, it suffices to prove that f(P(M)) < P(M) for
each f € Endg (M). Let N be a radical submodule of M and let f be an endo-
morphism of M and g its restriction to N. By [1, Proposition 9.14], g(Rad(N)) <
Rad(f(N)). But Rad(N) = N and f(N) = g(N), hence f(N) < Rad(f(N)).
Thus, Rad(f(N)) = f(N). This implies that f(N) < P(M), and the corollary
is proved. O

We recall that a module M is called semi-Artinian if every nonzero quotient
module of M has nonzero socle. For a module R M, we define

SaM)= > U. (2.6)
UM
U semi-Artinian

By [18, Chapter VIII, Section 2, Corollary 2.2], if R is a left Noetherian ring and
rM a semi-Artinian left R-module, then M is the sum of its submodules of
finite length.

If R is a commutative Noetherian ring and M is an R-module, then Sa(M) =
L(M), the sum of all Artinian submodules of M.

COROLLARY 2.7. Let M be a ¢-supplemented R-module. Then M/Sa(M) is
@-supplemented. If, moreover, Sa(M) is a direct summand of M, then Sa(M) is
also ®-supplemented.

PROOF. By Proposition 2.5, it suffices to prove that f(Sa(M)) < Sa(M) for
each f € Endg (M). Let U be a semi-Artinian submodule of M and let f be an
endomorphism of M and g its restriction to U. Thus U/Ker(g) = g(U). Hence
f(U) = U/Ker(g). But it is easy to check that U/Ker(g) is a semi-Artinian
module. Therefore, f(U) is semi-Artinian. O

REMARK 2.8. Let M be a @-supplemented module. It is clear that M /Rad (M)
and M/Soc(M) are also @-supplemented (see Proposition 2.5 and [1, Proposi-
tions 9.14 and 9.8)).

3. Some properties of finitely generated @-supplemented modules. A
module M is called supplemented if for any two submodules A and B with
A+ B =M, B contains a supplement of A.
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The proof of the next result is taken from [6, Lemma 2], but is given for the
sake of completeness.

LEMMA 3.1. Let M be a &-supplemented R-module. If M contains a maximal
submodule, then M contains a local direct summand.

PROOF. Let L be a maximal submodule of M. Since M is @-supplemented,
there exists a direct summand K of M such that K is a supplement of L in
M. Then for any proper submodule X of K, X is contained in L since L is a
maximal submodule and L + X is a proper submodule of M by minimality of
K.Hence X < LNnK and X is small in K by [12, Lemma 4.5]. Thus K is a hollow
module, and the lemma is proved. |

PROPOSITION 3.2. If M is a &-supplemented module such that Rad(M) is
small in M, then M can be written as an irredundant sum of local direct sum-
mands of M.

PROOF. Since Rad(M) is small in M, M contains a maximal submodule and
hence M contains a local direct summand by Lemma 3.1. Let N be the sum of
all local direct summands of M. If N is a proper submodule of M, then there
exists a maximal submodule L of M such that N < L (see [8, Proposition 9 and
Theorem 8]). Let P be a direct summand of M such that P is a supplement of
L in M. Note that P is a local module (see the proof of Lemma 3.1) and hence
it is contained in N, so M = L+P < L+ N = L. This is a contradiction. Hence
we have N = M. Now let M = > ;.; L; where each L; is a local direct summand
of M. Then,

Racllsz) N % [Li;alzla(j\lfjl)w)] G-
and each
L;+Rad(M) - L; (3.2)
Rad(M) LinRad(M)
is simple by [23, Lemma 1.1(c)]. Hence
(3.3)

M ® [Lk+Rad(M)]
Rad(M) =L Rad(M)

for some subset K c I. Thus M = > ¢ L since Rad(M) is small in M. Clearly,
the sum > o L is irredundant. O

COROLLARY 3.3. Let R be a commutative ring and M a finitely generated
R-module. If M is @-supplemented, then M = H, + H, + - - - + Hy,, where each H;
is a local direct summand of M and n = corank(M).
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PROOF. By Proposition 3.2, M = H, + H» + - - - + H,,, where each H; is a local
direct summand of M and the sum >[*, H; is irredundant. By [16, Corollary
4.6], M is supplemented. Therefore n = corank (M) by [14, Proposition 1.7] and
[19, Lemma 2.36 and Theorem 2.39]. O

REMARK 3.4. (i) The module M = (RX7 + RX;) ® RXx3 in Example 2.3 is not
@-supplemented. On the other hand, M can be written as follows: M = (Rx7 +
RX7) @ R(X1—X3); M = (RX1 +RX2) ® R(X2 —X3); and M = R(X1 —X3) + R(X2 —
X3) + Rx3. Therefore M is an irredundant sum of local direct summands of M.
However, M is not @-supplemented.

(ii) In the same example, we have that K = RXx7 + RX; is an indecomposable
direct summand of

Rx1®Rx>® Rx3 o .
= ————— = (RX] +RX>) @ RXx3. 3.4
R (ax1 _ sz) ( 1 2) 3 ( )
Then K is not an irredundant sum of local direct summands. This example
shows that, in general, a direct summand of a module which is written as an
irredundant sum of local direct summands does not have the same property.

PROPOSITION 3.5. Let M be a finitely generated &-supplemented module
such that k = corank(M) < 2. Then M is a direct sum of local modules.

PROOF. It is clear that if k = 1, then M is a local module. Now suppose
that k = 2. Since M is @-supplemented, M contains a local direct summand H
(Lemma 3.1). Let K be a submodule of M such that M = H® K. By [14, Corollary
1.9], we have corank (K) = 1 and hence K is a local module (see [19, Proposition
1.11]). Thus M is a direct sum of local modules, as required. O

Our next objective is to prove that over a commutative ring, if M is a finitely
generated @-supplemented module with corank (M) = 3, then M is a direct sum
of local modules. We first prove the following generalization of [11, Lemma
2.3].

LEMMA 3.6. LetL,,L»,...,L, be indecomposable direct summands of a mod-
ule M such that Endg (L;) is a local ving for eachi (1 <i<n).IfL; £ L; for all
i+ j, then Z?:l L; is dirvect and is a direct summand of M.

PROOF. We use induction over n. Assume that Ly + L, +- - -+ L,_; is a direct
sum and is a direct summand of M andlet L =L; &L, & ---®L,_;. There exists
a submodule N of M such that M = L @ N. By [20, Proposition 1], L, has the
exchange property. Thus, M = L, ® L' ® N" for some submodules L" and N’
of M with L’ < L and N’ < N. Let N” and L be two submodules of M such
that N=NoN'"and L=L &L". Hence M = L' ® N’ & L" & N". Therefore,
L, = L"” @ N”. This implies that L = 0 or N” = 0. Hence L' = L or N = N.
Suppose that N’ = N. Thus L, ® L’ = L. By the Krull-Schmidt-Azumaya theorem,
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every indecomposable direct summand of L is isomorphic to one of the L;,
1 <i<n-1.It follows that L, is isomorphic to one of the L;, 1 <i<n-1,
which is a contradiction. Therefore L' =L and M = L, ® L ® N’, that is, M =
Liol,®---0L,_1®L,®N’, and the lemma is proved. O

COROLLARY 3.7. Suppose that R is commutative or left Noetherian. Let L,
Ly,...,Ly be hollow local direct summands of a module M. IfL; % L; for alli + j,
then X1 | L; is direct and is a direct summand of M.

PROOF. This is a consequence of [4, Theorems 4.1 and 4.2] and Lemma 3.6.
O

PROPOSITION 3.8. Suppose that R is a commutative ring. Let M be a finitely
generated @-supplemented module such that all the hollow direct summands of
M are isomorphic. Then M is a direct sum of hollow local modules.

PROOF. By Proposition 3.2, we can write M = H; + Hy + - - - + Hy, as an ir-
redundant sum of hollow local direct summands. By hypothesis, H; = Hy =
- = H,. Thus,

Anng (H;) = Anng (Hz) = - - - = Anng (Hy,). (3.5)

Hence,

Anng (M) = () Anng (H;) = Anng (H;) foreachi (1 <i=<n). (3.6)
i-1

Therefore all hollow local direct summands of M are isomorphic to R/I, where
I =Anng(M). Let H be a local submodule of M such that H is not small in M.
Since M is @-supplemented, there exist submodules N and N’ of M such that
H+N=M,N &N =M, and HnN is small in N (Proposition 2.1). It follows
that N @ M/N = H/(H N N). Hence, N’ is a local module. This implies that
Amng(N') =1 and Anng(H/(HNN)) =1I. Thus, the set {r e R |rx € N} =1,
where H = Rx. Let v € Hn N. There exists « € R with y = ax. So ¢ € I and
hence y =0 since I = Anng (H). Therefore HNN =0 and M = H& N. It follows
that every nonsmall local submodule of M is a direct summand of M. Note
that corank(M) < o (Corollary 3.3). Applying [23, corollary on page 45] and
[8, Proposition 9], we get that M is a direct sum of local modules. O

COROLLARY 3.9. Let R be a commutative ring and M a finitely generated
@-supplemented module with corank (M) = 3. Then M is a direct sum of local
modules.

PROOF. Let Fy be an irredundant set of representatives of the local direct
summands of M (Fj is not empty by Lemma 3.1). By Corollary 3.7, Card(Fy) < 3.
If Card(Fy) = 3, then M is a direct sum of local modules (Corollary 3.7). If
Card(Fy) = 2 and Fy = {L1,L»}, then there exists a submodule L3 of M such that
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M =1L;eL,®Ls (Corollary 3.7). But corank(M) = 3. Therefore corank(L3) = 1
(see [14, Corollary 1.9]) and hence L3 is a local module. If Card(Fy) = 1, then
M is a direct sum of local modules by Proposition 3.8. ]

REMARK 3.10. (i) If M is a finitely generated &-supplemented module with
corank(M) < 2, then M is completely @-supplemented (see [6, Proposition 6]
and Proposition 3.5).

(ii) If R is a commutative ring and M a finitely generated &-supplemented
module with corank(M) = 3, then M is completely @-supplemented (see [6,
Corollary 6] and Corollary 3.9).

4. @-supplemented modules over commutative principal ideal rings. In
this section, the structure of @-supplemented modules over a principal ideal
ring is completely determined.

Let R be a commutative Noetherian ring. Let Q be the set of all maximal
ideals of R. As in [24, page 53], if m € Q and M is an R-module, we denote the
me-local component of M by K,,,(M) = {x € M | x = 0 or the only maximal ideal
over Anng (x) is m}. We call M m-local if K,, (M) = M or, equivalently, if m is
the only maximal ideal over each p € Ass(M). In this case, m is an R;,-module
by the following operation: (v /s)x := ¥x" with x = sx’ (r € R, s € R\m). The
submodules of M over R and over R,, are identical.

For K(M) = {x € M | Rx is complemented}, we always have a decomposi-
tion K(M) = @K (M) and for a complemented module M, we have M =
K (M) [24, Theorems 2.3 and 2.5].

A principal ideal ring is called special if it has only one prime ideal p + R
and p is nilpotent [22, page 245].

THEOREM 4.1. Let R be a commutative local principal ideal ring (not neces-
sarily a domain) with maximal ideal m.

(i) If m is nilpotent, then every R-module is ®-supplemented.

(ii) If m is not nilpotent, then R is a domain and g M is a ®-supplemented R-
module if and only if M = R® QP & (Q/R) @ B(1,...,n), where Q is the quotient
field of R and B(1,...,n) denotes the direct sum of arbitrarily many copies of
R/m,...,R/m", for some positive integer n.

PROOF. (i) Suppose that m is nilpotent. By [1, Theorem 15.20], R is an
Artinian principal ideal ring. Thus, every R-module is &-supplemented by [7,
Theorem 1.1].

(ii) Suppose that m is not nilpotent. Then R is not a special principal ideal
ring. By [22, Chapter IV, Section 15, Theorem 33], R is a principal ideal domain
and the result follows from [12, Proposition A.7]. O

The proof of the following result can be found in [7, Proposition 2.1].

PROPOSITION 4.2. Let R be a commutative Noetherian ring and M an R-
module. The following assertions are equivalent:
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(i) M is &-supplemented;
(ii) M =K(M) and K, (M) is &-supplemented for all m € Q.

COROLLARY 4.3. LetR be a commutative principal ideal ring (not necessarily
a domain) and M an R-module. The following conditions are equivalent:
(i) M is @-supplemented;
(ii) (1) thering R/p is local for all p € Ass(M);

(2) ifm € Q such thatmR,, is not nilpotent, then Ky, (M) = R%, ®Q(Rn)?
® [Q(Rm)/Rm ] ® By (1,...,my,) (in Mod -R,y,), where Q (Ry,) is the
quotient field of Ry, and By, (1,...,ny,) denotes the direct sum of ar-
bitrarily many copies of Ry, /MRy, ...,Ry [ (MR,,)"™, for some pos-
itive integer ny,.

PROOF. See Proposition 4.2, [13, Proposition 2.2(b)], and Theorem 4.1. O

PROPOSITION 4.4 (see [7, Corollary 2.2]). LetR be a commutative Noetherian
ring and M an R-module. The following assertions are equivalent:
(i) M is completely ®-supplemented;
(ii) M =K(M) and K, (M) is completely ®-supplemented for all m € Q.

COROLLARY 4.5. Let R be a commutative principal ideal ring (not necessarily
a domain) and M an R-module. Then M is ®-supplemented if and only if M is
completely @-supplemented.

PROOF. By Proposition 4.4 and the proof of Theorem 4.1, it suffices to prove
the result for an R-module M over a local principal ideal domain R with maxi-
mal ideal m = 0. If M is ®@-supplemented, then M = R® Q% & (Q/R)°®B(1,...,
n), where Q is the quotient field of R and B(1,...,n) denotes the direct sum of
arbitrarily many copies of R/m,...,R/m" (Theorem 4.1). By [7, Theorem 2.1],
QY@ (Q/R)¢ and R* @ B(1,...,n) both are @-supplemented. By [6, Corollary
2], R%® B(1,...,n) is completely ®-supplemented. Now consider the module
QY@ (Q/R)¢. Since Q and Q /R are injective, Endg (Q) and Endg (Q /R) are local
rings (see [1, Lemma 25.4]). By [1, Corollary 12.7] and [12, Proposition A.7], Q? &
(Q/R)¢ is completely @-supplemented. Hence Q? @ (Q/R)* ®R*®B(1,...,n) is
completely @-supplemented (see [7, Corollary 2.1]). O

5. Some rings whose modules are &-supplemented. A ring R is called a
left V-ring if every simple left R-module is injective. The ring R is called an
SSI-ring if every semisimple left R-module is injective.

LEMMA 5.1. Let M be a module withRad(M) = 0. Then M is ®-supplemented
if and only if M is semisimple.

PROOF. This is clear by [19, Proposition 3.3]. O

COROLLARY 5.2. Let R be a left V-ring and M an R-module. Then M is &-
supplemented if and only if M is semisimple.



©-SUPPLEMENTED MODULES 4383

PROOF. By [3, page 236, Theorem (Villamayor)], for every left R-module,
Rad(M) =0. Therefore, every @-supplemented R-module is semisimple (Lemma
5.1). 0O

PROPOSITION 5.3. Let R be a ring. The following statements are equivalent:
(i) every @-supplemented R-module is injective;
(ii) R is a left Noetherian V -ring.

PROOF. (i)=(ii). Since every semisimple R-module is ®#-supplemented, every
semisimple R-module is injective. Thus R is an SSI-ring. By [3, Proposition 1],
R is a left Noetherian V-ring.

(ii)=(i). Let M be a @-supplemented R-module. Since R is a left V-ring, M
is semisimple (Corollary 5.2). Thus M is an injective R-module (see [3, Prop-
osition 1]). 0

COROLLARY 5.4. Let R be a commutative ring. The following are equivalent:
(i) every @-supplemented R-module is injective;
(ii) R is semisimple.

PROOF. (i)=(i). It is a consequence of Proposition 5.3 and [3, page 236,
Proposition 1 and its first corollaryl].
(ii)=(i) This application is obvious. 0

PROPOSITION 5.5. The following assertions are equivalent for a ring R:
(i) for every R-module M, M is &-supplemented if and only if M is injective;
(ii) R is semisimple.

PROOF. (i)=(ii). Suppose that R satisfies the stated condition. By Proposition
5.3, R is a left Noetherian V-ring. Now, let M be an injective R-module. Then
M is @-supplemented and, since R is a V-ring, M is semisimple (Corollary 5.2).
Therefore R is a semisimple ring.

(ii)=(). It is easy to show that every R-module is @-supplemented and every
R-module is injective. 0O

REMARK 5.6. If R is a commutative local Noetherian ring having an injective
hollow radical R-module H, then the R-module M = H™ is injective. However
M is not @-supplemented (see [7, Remark 2.1(3)]). For example, if R is a local
Dedekind domain with quotient field K, then K™ is an injective R-module
which is not @-supplemented.

Our next objective is to determine the class of commutative Noetherian rings
R with the property that every injective R-module is ®-supplemented. First we
prove the following lemma.

LEMMA 5.7. Let R be a quasi-Frobenius ring (not necessarily commutative).
Then every injective R-module is ®-supplemented.
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PROOF. By [10, Theorem 15.9], every injective R-module is projective. Since
R is left perfect, every projective R-module is @-supplemented (see [6, Propo-
sition 13]) and the result is proved. 0

PROPOSITION 5.8. For a commutative Noetherian ring R, the following state-
ments are equivalent:
(i) every injective R-module is ®-supplemented;
(ii) R is Artinian and E(R/m) is a local R-module for each maximal ideal m
of R;
(iii) R is Artinian and R /I, is a quasi-Frobenius ring for each maximal ideal
m of R, where I,,, = Anng (E(R/m)).

PROOF. (i)=(ii). By [15, page 53, corollary of Theorem 2.32] and [10, Corol-
lary 3.86], it suffices to prove that E(R/p) is a finitely generated R-module for
each prime ideal p of R. Since E(R/p) is indecomposable (see [15, page 53,
corollary of Theorem 2.32]) and E(R/p) is @-supplemented, E(R/p) is hollow
[6, Proposition 2]. By Remark 5.6, E(R/p) is not radical. Thus, E(R/p) is a local
R-module.

(ii)=(iii). Let m be a maximal ideal of R. Since E(R/m) is a local R-module,
E(R/m) = R/I,, where I,, = Anng(E(R/m)). Thus, R/I,, is an injective R-
module. By [9, Theorem 203], R/I,, is an injective (R/I,,)-module, that is, the
ring R/I,, is self-injective. Since R/I,, is an Artinian ring, R/I,, is a quasi-
Frobenius ring, and the result is proved.

(iii)=(i). Let M be an injective R-module. By [15, Theorem 4.5], we can write
M = ®;c;E(R/m;) where the m,; are maximal ideals of R. Now, E(R/m;) is
an (R/I;)-module and the (R/I,;)-submodules of E(R/m;) are the same as
the R-submodules of E(R/m;), therefore g (E(R/m;)) is ®-supplemented (see
Lemma 5.7 and [9, Theorem 203]). By [6, Proposition 2], E(R/m;) (i € I) is a
hollow R-module. By [1, Corollary 15.21], Rad(E(R/m;)) is small in E(R/m;).
Thus, E(R/m;) (i € I)is alocal R-module. It follows by [1, Corollary 15.21] and
[6, Corollary 2] that M is @-supplemented. O

PROPOSITION 5.9. Let p be a prime ideal of a commutative Noetherian ring
R such that E(R/p) is hollow. Then there is a maximal ideal m of R such that
(i) m is the only maximal ideal over p;
(ii) E(R/p) has the structure of an R,,,-module;
(iii) the submodules of E(R/p) over R and over Ry, are identical.
Moreover, as an Ry,-module, E(R/p) is isomorphic to an injective envelope of
Ry /S 'p where S =R\m.

PROOF. Suppose that E(R/p) is hollow. Since [13, Proposition 1.1] gives
that E(R/p) is m-local for some m € Q, m is the only maximal ideal over
p, E(R/p) has the structure of an R,,-module, and the R,,-submodules of
E(R/p) are exactly the R-submodules of E(R/p). It remains to show the last
assertion. By [15, Proposition 5.5], E(R/p) is injective as an R,,-module. Now,



©-SUPPLEMENTED MODULES 4385

E(R/p) is indecomposable as an R-module and its R;,-submodules are also
R-submodules so that E(R/p) is also indecomposable as an R,,,-module. Since
ASSg(E(R/p)) = {p}, there is an element x € E(R/p) such that Anng(x) = p.
But it is easy to check that Anng,, (x) = S~'p with S = R\m and S~'p is a prime
ideal of R,,. Then E(R/p) is isomorphic to an injective envelope of R,, /S 'p
by [15, page 53, Corollary of Theorem 2.32]. O

PROPOSITION 5.10. Let p be a prime ideal of a commutative Noetherian ring
R. Then the following are equivalent:

(i) E(R/p) is hollow local;

(ii) p is maximal and R, is a quasi-Frobenius ring.

PROOF. (i)=(ii). Suppose that E(R/p) is hollow local. By Proposition 5.9,
E(R/p) is m-local for some maximal ideal m of R and as an R,,-module,
E(Ry /S 'p) is hollow local, where S = R\m. Since R,, is Noetherian local,
R, is Artinian by [9, Theorem 207]. Hence S~'p is a maximal ideal of R,,.
Thus S~'p = S~'m. Therefore p = m is maximal. Moreover, by [15, page 47,
Corollary 2], Anng,, (E(Rm/S™'m)) = 0. Then E(R,,,/S™'m) = Ry. SO Ry, is
self-injective. Therefore R,, is a quasi-Frobenius ring.

(ii)=(i). Suppose that p is maximal and R, is a quasi-Frobenius ring. Put
E =E(R/p). By [15, Proposition 4.23], E(R/p) = >;,_; Anng(p™). Then E is p-
local. Thus E is an R,-module and the submodules of E over R and over R,
are identical. The proof of Proposition 5.9 shows that, as an R,-module, E is
isomorphic to E(R,/pRy), where pR,, denotes the unique maximal ideal of R,,.
On the other hand, since R, is a self-injective Artinian local ring, E(R,/pR;), as
an R,-module, is isomorphic to R, (see [10, Theorem 15.27]). Hence E(R, /pRyp)
is a local R,-module. Consequently, E is a local R-module. O

LEMMA 5.11. Let R be a commutative ring. If R is Noetherian and Ry, is
quasi-Frobenius for every maximal ideal m of R, then R is quasi-Frobenius.

PROOF. Let m be a maximal ideal of R. Since R,, is quasi-Frobenius, then
R, is Artinian and so mR,,, the maximal ideal of R,,, is a minimal prime ideal.
Therefore m is a minimal prime ideal of R. The ring R is Noetherian and every
prime ideal is maximal, hence R is Artinian. Let R = Ry X - - - X Ry where each
R; is Artinian and local. Since each R; is a localization of R, then R; is quasi-
Frobenius for each i = 1,...,t. It is not difficult to see that a finite product of
rings is quasi-Frobenius if and only if each factor is quasi-Frobenius (see [10,
Theorem 15.27]). Hence R = Ry X - - - X R; is quasi-Frobenius. O

THEOREM 5.12. For a commutative Noetherian ring R, the following state-
ments are equivalent:
(i) every injective R-module is ®-supplemented;
(ii) Ry, is quasi-Frobenius for each maximal ideal m of R;
(iii) R is quasi-Frobenius.
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PROOF. (i)=(ii). It is a consequence of Propositions 5.8 and 5.10.
(ii)=(iii). It is clear by Lemma 5.11.
(iii)=(@). See Lemma 5.7. O

PROPOSITION 5.13. For a V-ring, the following statements are equivalent:
(i) R is semisimple;
(ii) every R-module is ®-supplemented.

PROOF. (i)=(ii). It is obvious.
(ii)=(@). Suppose that every R-module is &-supplemented. By Corollary 5.2,

every R-module is semisimple. Thus R is semisimple, as required. O
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