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ABSTRACT. Suppose N is a Banach space of norm I" and R is the set of real

numbers. All integrals used are of the subdlvlslon-refinement type. The

main theorem ETheorem 3 gives a representation of TH where H is a function

from RxR to N such that H(p+, p+), H(p, p+), H(p-, p-), and H(p-,p) each exist

for each p and T is a bounded linear operator on the space of all such func-

tlons H. In particular we show that

TH (1)/bfHd + (xi_l, + + +
xi_I)-H (xi_I Xi_l) 8 (xi_I)a

i=l

+  (xi,x )-.Cxi,xi)
i=l

where each of , , and @ depend only on T, Is of bounded variation, @ and

@ are 0 except at a countable number of points, fH is a function from R to N

depending on H and {xl} i=l denotes the points p in a b. for which

H(p,p+)-H(p+,p+)#0 or EH(p-,p)-H(p-,p-) #0. We also define an interior
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interval function integral and give a relationship between it and the standard

interval function integral.

i. INTRODUCTION.

Let N be a Banach space of norm I" and R the set of real numbers. The

purpose of this paper is to exhibit a representation of TH where H is a function

from RxR to N such that H(p+,p+), H(p, p+), and H(p-,p-), and H(p-,p)each exist

for each p and T is a bounded linear operator on the space of all such functions H.

Functions H for. which each of the four preceding limits exist have been used

extensively in the study of both sum integration and multiplicative integration,

(for example see 2J). In particular we show that

x+. l)-H + +rH (1)fbfHd + H(Xi-l’ l-a (xi-i Xi-l) (xi-I)
i=l

+ H(xi,xi)-H(x,x[)] 0 (Xi_l,Xi)
i=l

where each of , , @ depend only on T, e is of bounded variation, 8 and @ are 0

except at a countable number of points, fH is a function from R to N depending on H,

OOand {xi i=I denotes the points p in [a b for which H (p p+) -H (p+ p+) # 0 or

[H(p-,p )-H(p-,p- # 0. We also define an interior interval function integral

and give a relationship between it and the standard interval function integral.

2. DEFINITIONS.

If H is a function from RxR to N, then H(p+,p+) lim + H(x,y) and similar
x,y+p

meanings are given to H(p,p+), H(p-,p-), and H(p-,p). The set of all functions

for which each of the preceding four limits exist will be denoted by OL0. If

H is a function from RxR to N then H is said to be (i) of bounded variation on

the interval [a,b and (2) bounded on [a,b] if there exists a number M and a

n
subdivision D of [a,b2 such that if D’ {xi}i=0 is a refinement of D then
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n
(I) F, IH(Xi_l,Xi) < M and (2) if 0<i<__n, then IH(Xi_l,Xi) < M, respectively.

i=l

Further, H is said to be integrable on [a,b] if there is a number A such that

for each > 0 there is a subdivision D of [a b such that if D’ {xi }n is

n
a refinement of D, then Y, H(Xi_l,Xi)_ A < and A is denoted by bH when

i=l
a

D’
such an A exists. In our development we will also find a slight modification

of the preceding definition useful. If H(Xi_l,Xi) is replaced by H(ri,si)G(Xi_l,Xi),

xi_I < r
i

< s
i

< xi, in the approximating sum of the preceding definition then

the number Ais denoted by (IH)/bHGa and termed the interior integral of H with

respect to G on a,bJ. Also, if each of f and is a function from R to N,

then the interior integral of f with respect to exists means there is a number

A such that if > 0 then there is a subdivision D of [a,b] such that if

D’ {xi}n < t < x
i-0

is a refinement of D and for 0<i<n,_ xi_I i i’
n
Y. f(ti)(xi)-(Xi_l)]- A < and A is denoted by (1)fbfd.

i=l
a

D’
If is a function from R to N, (p+) lim (x), (p-) lim (x), and

x+p/ x+p-

d denotes the function H from RxR to N such that for x<y, H(x,y) (y)-(x).

If each of H, HI, H2, is a function from RxR to N, then lim Hn H uniformly
n-o

[a,b] means if > 0 there is a positive integer N and a subdivisionon

}ni=0D 1{x
i

of [a,b such that if n > N and x__l+/- < r < s _< x.1 for some 0<i<n,_

then IH(rs)-Hn(r,s) < . If H is a function from RxR to N, then H is bounded on

means a }i=0[a b] there is number M and a subdivision D {x
i

of [a b] such that

if 0<i_< and xi_l _< r < s _< xi, then IH(r,s) < M. The norm of H on [a,b with

respect to D, lHl ID is then defined as the greatest lower bound of the set of

all such M’s.
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T is a linear operator on OL0 means T is a transformation from OL0 to N such

that if each of HI and H2 are in OL0 then

r[klHI + k2H2] kITHI + k2rH2
for kl, k

2
in R. T is bounded on [a,b] means there is a number M such that

ITHI MIIHII D for some subdivision D of a,b.

For convenience we adopt the following conventions for a function from RxR

to N and m to N for some subdivision D {xi }ni=0 of [a,b]:
(i) H(a-,a) H(a-,a-) H(b,b+) H(b+,b+) 0,

(2) H(Xi_l,Xi) Hi, 0<i<_n,

(3) (xi)-(Xi_l) Ai,
n

(4) Z H(Xi_l,Xi) ZDHi.
i=l
D

3. THEOREMS.

begin by establishing a relationship between /bHda and (IH)fbHdWe will
a a

which will require the following lemmas.

LEMMA i. If H is in OL0 and a is a function from R to N of bounded variation

on [ab3 then bHd exists.
a

This lemma is a special case of THEOREM 2 of 2].

LEMMA 2. Suppose H is in OL0, a,b] is an interval, > 0, and S
1

and S
2
are

sets such that p is in S
1

if nd only if p is in a,b] and IH(p,p+)-H(p+,p+) I and

p is in S
2

if and only if p is in [a,b] and IH(p-,p)-H(p-,p-)I e. Then, each of S
1

and S
2

is a finite set. 2, lemma page 498].

We note that it follows from LEMMA 2 that if S is the set such that p is in S

if and only if H(p,p+)-H(p+,p+) # 0 or H(p-,p)-H(p-,p-) # 0 then S is countable.

LEMMA 3. If H is in OL0 and a is a function from R to N of bounded variation on

a,b] then (i) if p is in a,b] each of (p+) and (p-) exists and (2) if {x
i i=l

is a sequence of numbers such that if p is in [a,b] and H(p,p+)-H(p+,p+) # 0
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or H(p-,p)-H(p-,p-) # 0, then there is an n such that P=Xn, then

+ + +)][(x)- )? exists(i) Y. [H(xi,xi)-H(xi,xi (x
i

i=l

(2)

INDICATION OF PROOF. It follows from the bounded variation of that for

p in [a,@ each of (p+) and (p-) exists.

Since H is in OL0, it follows from the covering theorem that H is bounded

on [a,b] and that there is a number MI such that for each positive integer i,

+ +IH(xi,x)-H(xi,xi) < MI,

and, furthermore, for n a positive integer and 0 < i < n, let x > x such that
Pi i

n +Z s(xi)-(xpi )] < i. Hence,
i=l

n + + x)7 (x)_(xi)]Y. H (xi, xil-H (xi,
i’l

_< MI [ Yn (x)- )] + I )-(xi)
i=l

(XP
i i=l

(XP
i

< MI (i) + MI D l(xi)-e(Xi-l)l’

where D is a subdivision of [a b] containing x
i

and x as consecutive points
Pi

in D for each 0 < i < n. Hence, since is of bounded variation there is a number

M such that

n + + x)] [(x)- M.Y [H(xi,xi)-H(xi (xi)] <
i=l

Therefore,

i=l
[H(xi,xi)-H(xi,x [a(x )-(xi) exists. In a similar manner it may be

shown that

[H(xi,xi)-H(xi,xi) [(xi)-(xi)] exists.
i=l

THEOREM i. If H is in OL0 and is a function from R to N of bounded

variation on [a,b] then (IH)fbHda exists.
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A+PROOF If g > 0 then it follows from LEMMA 2 that each of the sets and

p PAg to which belongs if and only if is in [a,b and IH(p,p+)-H(p+ P+)I > E

IH(p-,p)-H(p-,p-)l > E respectively, is a finite set. Let A+ {c }II_or
g i

m
2A {di}i__l, and A+ and A- denote the sets to which p belongs if and only if

p is in [a,b] and H(p,p+)-tt(p+,p+)0 or H(p-,p)-I-I(p-,p-)0, respectively. Since

each of A+ and A- is a countable set then let A+ + A- {yi }’i=i"
Since a is of bounded variation on -fa,b, then for each ci, 0 < i < m

1
and

di, 0 < i < m2
there is an e. > c. and an f. > d. such that if e. > r. > c. and

I i i i i I i

+ g
and fi-< si < di’ then l(ci)-a(ri) <

v1ml
and la(d)-(si) < g

16m2
From LEMMA 3, it follows that there is a positive integer N such that if n > N, then

(i) [H(Yi,y)-H(Yi,
i=l

yl (y 8
i=l

and

i=l

E [H(yi,yi)-H(yi,yi [(yi)- (yi < g.
i=l

Note that for some Yi s, H(y,yi)-H(y,y or (yi,yi)-H(Yl,Yl may be zero

Since, from LE i, bHd exists, then there is a number M and a subdivision
a

}nDI of a, such that if D xi i=0
is a refinement of DI, then

(3) i <M,
D’

(4) fbHda Z HiAi
<

4’a D’
+ + +and (5) if 0 < i ! n, then [H(Xi_l,X_l)-H(Xi_l,Xi_l) < M and

Further, snce H is in OLO, using the covering theorem we may obtain a subd[vsion

2 of a,b such that f D’ {x}n0 is a refinement of D2, 0 < _< n, and
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xi_1 < r < s < xi, then

(6) [H(r s)-H(x x)[ <
64M

(7) [H(r s)-H(xi_I xi_I)]< 6M

(8) IH(xi_I X:_l)-H<xi_I xi) <
g

64

and (9) ]H(x’xi)-H(Xi-l’Xi)l <
64M

N
Let D DI+D2+A:+A+ i {e + 2 {f + 7. {yi }, D’={xi }n be a refine-

ment of D, and for each 0 < i _< n, xi_1
< rj_I < sj < x

i.
Choose m > N such that

for each xi, 0 < i _< n, in D’-(A/+A-) there exists a positive integer z < m such

that Yz X..m Hence, for xi, 0 < i _< n, in D’ such that neither xi_I nor x.m is

in (A++A-) it follows from (6)-(9) that
32M

+ (+ +
If Wi=H(Yi_l,Yi_l)-H Yi_l,Yi_l and Q={YI’ Y2’ Ym} for 0 < i _< m then

+ + +m + (Yi-i) Z IN ,x )-H xi_Ii=ZiWi [(Yi-i)- (xi-i i-i (xi-i
D’- fA:+(A+-A+)]

[Z Wl[a(y:_l)-(Yi_l)] + Y. Wl[a(Y:_l)-a(Yi_l)
A+ Q-A

+ +;,
D o

Z CH(x. + + + _.)]Ail
D’.

+
< F, [Wi[- [(y_l)-(Yi)[ + Q_A+IWil. [(Yi_l)-(Y

+ +

D’ (A+-A+

<MZ
+

3
16

+ E Z
+ [(y )-(Yi_l)[ +

16MmI 16M -I 16M
Q-Ag D’" +)

Hence
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m
Z Wi[a + + + + 3e(Yi_l)-(Yi_l)- Z H(x ,Xi_l)-H(xi_l,xi_I) Ail <

16
i=l D’ "A+ +/--+/-

and in a similar manner it may be shown that

(ii) Zi[(y)-(yi)J y’ [H(x,x)-H(x,xi) Ail <
i-I D’ "A-

3E

where Z
i H(yi,y)-H(y,yi).

Using inequalities (I0) and (ii) we are now able to complete the proof of the

theorem. In the following manipulations W
i

and Z
i

are as defined for (i0) and (ii)

+ + +
and Pi=H(Xi_l,Xi_l)-H(Xi_l,Xi_l and Qi=H(xi,xi)-H(xi,xi

D’ j i a
i=l

i -i Zi[(Y_)-(Yi)]["

+ m E E E< Z (Hj-Hi)Ai- Z Wi[(Yi_l)-(Yi_l)- Z Zi[(y)-(yi)]l + + + i-D’ i=l i=l

3 3 3<_ D’Z (Hi-Hi)Ai-D, "EA+PiAi-D "EA-QiAi + + + -< F’!Hj’-Hil Ail + E[Hj-Hi-PilAai + E[Hj-Hi-Qil’IAil + 3__g
4

D -D’-(A++A-) D "+ D’-A-

< "M + "M + -M
32M 32M 32M

< E.

Hence, we have a relationship established between (IH)fbHdaa and /bHdaa which will be

used in the proof of the principal theorem.

THEOREM 2. If {Hi’i=0 is a sequence of functions from SxS to N, such that for

each i, H
i

is in OL0, lim Hn=H0 uniformly on ab, and T is a bounded linear

operator on OL0 then lim THn=TH0.n-o

The proof of this theorem is straightforward and we omit it.

THEOREM 3. Suppose H is in OL0 T is a bounded linear operator on OL0

Then

+ + +TH (1)f fHd + Z [H(Xi_l,Xi_l)-H(Xi_l,Xi_l)] 8(xi_I)
i=l

+ Z [H(xi,xi)-H(xi,xi)] O(Xi_l,Xi)
i=l
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where each of , B, and @ depend only on T, a is of bounded variation, B and @

are 0 except at a countable number of points, fH is a function from R to N de-

}pending on H and {x
i i=l

denote the points in a,b for which

/ /

H(xi,xi)-H(xi,x #0 or H(x,xi)-H(x,x) #0, i=1,2 n.

PROOF. We first define a sequence of functions converging uniformly to a

given function H in OL0 and then apply THEOREM 2 to establish THEOREM 3. We

first define functions g and h for each pair of numbers t,x, a < t < b, a < x < b

such that

g(t,x) =II’ if t--x

if t#x

if a< t < x
and h(t,x)

if x< t <b,

and using these functions and the operator T define functions , B, Y, and

such that

(x)=TH(’,x); B(x)=Tg( ",x); y(x)=Tg(x, "); (x,y)=Tg(-,x)g(y,’); and

O(x y) =y (y)- (x y) for x and y in a,b].
Clearly, is of bounded variation On [a,b] and we see from

2Z l@(Xi_l,Xi) Z iD’ D’

lsgn@iTg (- ,Xi_l)g(xl,’)
D’

< MI Z sgnig(’,Xi_l)g(xi,’)I DD’

for D’ a refinement of a subdivision D of la,b], it follows that Z l(Xi_l,Xi)
exists and in a similar manner that each of Z IB(xi) and Z (xi) exists.

i=l i=l

Hence, Y l@[Xi_l,Xi) exists.
i=l

Each of our approximating functions H will be defined in terms of a sub-
n

division D of [a,b] determined in the following manner.
n
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Since is of bounded variation on a,b7 and H is in OL0 then from THEOREM

(IH)fbHda exists and there is a subdivision Kn of [a,b] such that if K’={xi }mi=I1

is a refinement of K then (IH)fbHd-Z H(r
i

s )Ail < i where for 0 < i < m
n’ a K’ i n

xi_I < ri < s.1 < Xo.1 It follows from the covering theorem and the existence of

m
the limits H(p,p+) and H(p+p+) that there is a subdivision In {xi}i=0 of a,b]

such that if xi_I < x < r < s < y < xi, 0 < i _< m, then IH(x,y)-H(r,s)l <--in
Further let J denote the set such that p is in J if p is in a b] and

n n

IH(p p+)_H(p+,p+)l > i
--or IH(p-,p)-H(p-,p-)I > and D K + J + I For

--n --n n n n n

each positive integer n, let H be a function from RxR to N determined by
n

D {x }m in the following manner:
n i i=l

m +H (x y)= Y H(r
i si)[h(x xi)-h(x Xi_l) [H(xi_I Xi_l)-H(ri si)] [g(x xi)n

i-i i=l

m
+ Z [H(x,xi)-H(ri,si)] g(xi,Y)

i=l

m
Z [H(x,xi)-H(ri,si)] g(x,xi_l)g(xi,Y)
il

for each (x,y) such that xi_I _< x < y _< xi, for some 0 < i _< m, and for each

[Xi_l,X 0 < i _< m, xi_I < r.1 < s.l < x..l
i

It is evident that lim H H uniformly on [a,b] for if e > 0, _--< g,
n n

n-o

D- D {xi }mn i=0’
and x < x < r < s < y < x for some 0 < p < m, then

p-1 p

Hn(Xp_l,Xp) H(Xp_l,Xp), Hn(xxp) H(X,Xp), Hn(xp_l,y) =’H(xp_l,y), and

H (x,y) H(r,s). Hence lim H H uniformly on a,b].
n n-o n

Since lim H H uniformly on [a,b] applying THEOREM 2 we have
nn-o
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TH lim TH
n n

lira 7 H(ri,si)KTH(-,xi) TH(-,xI_I)]n-o Dn

where the existenc of each of the infinite sums is assured by LEMMA 3 and the

equality of the last two expressions follows from the definition of Dn.

All that remains to complete the proof of THEOREM 3 is to show that IlHde
may be represented by (I)bfHd where fH is a function from R to N. If we let

fH be the function such that for each p in [a,b] fH(p) H(p+p+), then it

follows that (I);51_de exists and is (IH);bHde.
a H a
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