COMPLETE RESIDUE SYSTEMS IN THE RING OF MATRICES OF RATIONAL INTEGERS

JAU-SHYONG SHIUE
Department of Mathematical Sciences
National Chengchi University
Taipei, Taiwan
Republic of China

and

CHIE-PING HWANG

Department of Mathematics
National Central University
Chungli, Taiwan
Republic of China
(Received April 1, 1977 and in revised form August 29, 1977)

[^0]1. INTRODUCTION.

Let Z denote the ring of rational integers and $Z(i)$ be the ring of

Gaussian integers. Jordan and Potratz [1] have exhibited several representations for the complete residue system (in short, C.R.S.) mod.r. in the ring of Gaussian integers. Also it is well known that the ring of Gaussian integers is isomorphic to the ring of 2×2 matrices of the form $\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right)$, a, b in Z. This raises the question of characterizing the C.R.S. mod. G, where G is any $n \times n$ matrix, in the ring of $n \times n$ matrices of which we denote by Mat $_{n}(Z)$.
2. THE COMPLETE RESIDUE SYSTEM IN Mat ${ }_{n}(Z)$.

First of all, we define $A \mid B$ mean there is matrix C such that $B=C A$, and $A \equiv B$ mod. U means that $U \mid A-B$. Now we can give a definition of the C.R.S. mod. U in the ring of $\operatorname{Mat}_{n}(Z)$.

DEFINITION. Let U be in Mat $_{n}(Z)$ with $\operatorname{det} U \neq 0$. Then a subset J of Mat (Z) is called a C.R.S. mod. U if and only if for any A in $\operatorname{Mat}_{n}(Z)$ there exists uniquely a matrix B in J such that $A \equiv B \bmod . U$.

LEMMA 1. Let $G=\operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ with $g_{i} \neq 0, i=1,2, \ldots, n$. Let $E_{i j}$ be the matrix units, then
$I_{i k}=\left\{a \varepsilon Z: G \mid \sum_{m=i}^{n} \sum_{j=1}^{n} a_{m j} E_{m j}\right.$ where $a_{m j}$ in $\left.Z, a_{i 1}=a_{i 2}=\ldots=a_{i k-1}=0, a_{i k}=a\right\}$ are the principal ideals generated by a positive integer g_{k}, where $1, k=1,2, \ldots, n$.

PROOF. It is clear the $I_{i k}$ are ideals in Z. But Z is a P.I.D., therefore $I_{i k}$ are principal ideals generated by a positive integer $d_{i k}$. Since $g_{k} E_{i k}=E_{i k} G$, then g_{k} is in $I_{i k}$, i.e., $d_{i k} \mid g_{k}$. On the other hand, for $d_{i k}$ in $I_{i k}$ we have $\sum_{m=i}^{n} \sum_{j=1}^{n} a_{m j} E_{m j}=\left(t_{i k}\right) G$ for some $\left(t_{i k}\right)$, where $a_{m j}$ is in Z, $a_{i 1}=a_{i 2}=\ldots=a_{i k-1}=0, a_{i k}=d_{i k}$. It follows that $d_{i k}=t_{i k} g_{k}$, i.e., $d_{i k}=\left|g_{k}\right|$. This completes the proof.

LEMMA 2. Let $G=\operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ with $g_{k} \neq 0, k=1,2, \ldots, n$. Then $J=\left\{\left(r_{i k}\right): 0 \leq r_{i k}<\left|g_{k}\right|, i, k=1,2, \ldots, n\right\}$ forms a complete residue system mod. G.

PROOF. (1) For any $A=\left(a_{i k}\right)$ in Mat ${ }_{n}(Z)$, there exist $p_{i k}, r_{i k}$ in Z such that $a_{i k}=p_{i k}\left|g_{k}\right|+r_{i k}$, where $0 \leq r_{i k}<\left|g_{k}\right|$. Therefore A- $\left(p_{i k} \cdot\left|g_{k}\right|\right)=\left(r_{i k}\right)$. But $\left|g_{k}\right| \cdot E_{i k}=\left|g_{k}\right| \cdot g_{k}^{-1} E_{i k} G$, and therefore $G \mid A-\left(r_{i k}\right)$. This shows that $A \equiv\left(r_{i k}\right) \bmod . G$.
(2) If $\left(r_{i k}\right) \equiv\left(s_{i k}\right) \bmod . G$, where $0 \leq r_{i k}, s_{i k}<\left|g_{k}\right|$, then $G \mid\left(r_{i k}-s_{i k}\right)$, i.e., $r_{i 1}-s_{11}$ is in I_{11} (by Lemma 1). This implies that $g_{1} \mid\left(r_{11}-s_{11}\right)$, and so $r_{11}=s_{11}$, for $0 \leq\left|r_{11}-s_{11}\right|<\left|g_{1}\right|$. It follows that $r_{12}-s_{12}$ is in I_{12}. Therefore $g_{2} \mid\left(r_{12}-s_{12}\right)$ and $r_{12}=s_{12}$, for $0 \leq\left|r_{12}-s_{12}\right|<\left|g_{2}\right|$. Continuing in this way, we must have $r_{i k}=s_{i k}$, for all $\mathrm{i}, \mathrm{k}=1,2, \ldots, \mathrm{n}$.

THEOREM 1. If G is a $n \times n$ matrix with $\operatorname{det} G \neq 0$, and if U and V are unimodular $n \times n$ matrices such that $U G V=\operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{n}\right)$, then $J=\left\{\left(r_{i k}\right) V^{-1}: 0 \leq r_{i k}<\left|g_{k}\right|, i, k=1,2, \ldots, n\right\}$ forms a complete residue system mod. G.

PROOF. (1) By Lemma 2, for any $n \times n$ matrix A, there exists a matrix $\left(r_{i k}\right)$ with $0 \leq r_{i k}<\left|g_{k}\right|$ such that $A V \equiv\left(r_{i k}\right)$ mod. UGV., i.e., $A \equiv\left(r_{i k}\right) V^{-1} \bmod . G$.
(2) Let $\left(r_{i k}\right) V^{-1} \equiv\left(s_{i k}\right) V^{-1} \bmod . G$, where $0 \leq r_{i k}, s_{i k}<\left|g_{k}\right|$. It follows that $\left(r_{i k}\right) \equiv\left(s_{i k}\right)$ mod. UGV. Therefore $\left(r_{i k}\right)=\left(s_{i k}\right)$.

COROLLARY 1. If J forms a C.R.S. mod. G, and U and V are unimodular $n \times n$ matrices, then \{URV : R in J \} forms a C.R.S. mod. GV.

COROLLARY 2. If G is a $n \times n$ matrix with $\operatorname{det} G \neq 0$, then the cardinality of the C.R.S. mod. G is $|\operatorname{det} G|^{\text {n }}$.
3. THE COMPLETE RESIDUE SYSTEM IN Mat ${ }_{2}(Z)$.

By restricting the order of the matrix we may relax the condition on the diagonable matrix.

LEMMA 3. Let $U=\left(\begin{array}{ll}u_{11} & u_{12} \\ u_{21} & u_{22}\end{array}\right) \in \operatorname{Mat}_{2}(Z)$ with $\operatorname{det} U \neq 0$, then
(1) $I_{0}=\left\{a \varepsilon Z: U \left\lvert\,\left(\begin{array}{ll}a & \alpha \\ \beta & r\end{array}\right)\right.\right.$ for some $\left.\alpha, \beta, r \in Z\right\}$ and
$I_{0}^{\prime}=\left\{\left.\begin{array}{ll}a & \varepsilon \\ Z & U\end{array} \right\rvert\, \begin{array}{ll}0 & 0 \\ a & \delta\end{array}\right)$ for some $\left.\delta \varepsilon Z\right\}$ are nonzero principal ideals
of Z generated by a positive integer $d=$ g.c.d. $\left(u_{1}, u_{2}\right)$. Moreover $I_{0}=I_{0}^{\prime}$.
(2) $I_{1}=\left\{\begin{array}{ll}a & \varepsilon\end{array} \quad U \left\lvert\,\left(\begin{array}{ll}0 & a \\ \beta & r\end{array}\right)\right.\right.$ for some $\left.\beta, r \varepsilon Z\right\}$ and
$I_{1}^{\prime}=\left\{a \varepsilon Z: U \left\lvert\,\left(\begin{array}{ll}0 & 0 \\ 0 & a\end{array}\right)\right.\right\}$ are nonzero principal ideals of Z generated by a positive integer $\frac{|\operatorname{det} U|}{d}$. Moreover, $I_{1}=I_{1}^{\prime}$.

PROOF. (1) a εI_{o} implies $U \left\lvert\,\left(\begin{array}{ll}a & \alpha \\ \beta & r\end{array}\right)\right.$ for some $\alpha, \beta, r \varepsilon Z$, and then $U \left\lvert\,\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}a & \alpha \\ \beta & r\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ a & \alpha\end{array}\right)\right.$, i.e., a $\varepsilon I_{0}^{\prime}$. This shows that $I_{0} \subseteq I_{0}^{\prime}$. On the other hand, $b \in I_{o}^{\prime}$ implies $U \left\lvert\,\left(\begin{array}{ll}0 & 0 \\ b & \delta\end{array}\right)\right.$ for some $\delta \varepsilon Z$ and then $\mathrm{U} \left\lvert\,\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ b & \delta\end{array}\right)=\left(\begin{array}{ll}b & \delta \\ 0 & 0\end{array}\right)\right.$, i.e., $b \varepsilon I_{0}$. Therefore $I_{o}=I_{0}^{\prime}$. It is clear that I_{0} is an ideal of Z. Now $\operatorname{detU} \varepsilon I_{o}$, for $U \left\lvert\,\left(\begin{array}{cc}\operatorname{det} U & 0 \\ 0 & \operatorname{det} U\end{array}\right)\right.$. Thus I_{0} is a nonzero ideal of Z. But Z is a P.I.D., therefore I_{0} is an ideal generated by a positive integer d. Since $U \mid U$ implies $U \left\lvert\,\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) U=\left(\begin{array}{ll}U_{21} & U_{22} \\ 0 & 0\end{array}\right)\right.$, we have $U_{11}, U_{12} \varepsilon I_{0}$, and then $d\left|U_{11}, d\right| U_{21}$. By $d \varepsilon I_{0}$, we have $U^{-} \left\lvert\,\left(\begin{array}{ll}0 & 0 \\ d & \delta\end{array}\right)\right.$, i.e., $\left(\begin{array}{ll}0 & 0 \\ d & \delta\end{array}\right)=\left(\begin{array}{ll}t_{11} & t_{12} \\ t_{21} & t_{22}\end{array}\right) U \quad$ for some $\left(\begin{array}{ll}t_{11} & t_{12} \\ t_{21} & t_{22}\end{array}\right) \varepsilon \mathrm{Mat}_{2}(Z)$. Therefore $d=t_{21} U_{11}+t_{22} U_{21}$. If $x \mid U_{11}$ and $x \mid U_{21}$, then $x \mid d$. Thus $d=$ g.c.d. $\left(U_{11}, U_{21}\right)$.
(2) a εI_{1} implies $U \left\lvert\,\left(\begin{array}{ll}0 & a \\ \beta & r\end{array}\right)\right.$ for some $\beta, r \varepsilon Z$ and then $\mathrm{U} \left\lvert\,\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & a \\ \beta & r\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & a\end{array}\right)\right.$, i.e., a $\varepsilon I_{1}^{\prime}$. Thus $I_{1} \subseteq I_{1}^{\prime}$. Conversely, if $b \in I_{1}^{\prime}$, then $U \left\lvert\,\left(\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right)\right.$ and so $U \left\lvert\,\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right)=\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)\right.$, i.e., b εI_{1}. It is also clear that I_{1} is an ideal of Z. Now $\frac{\operatorname{detU}}{d} \varepsilon I_{1}$ for all U such that $\left(\begin{array}{cc}0 & 0 \\ 0 & \frac{\operatorname{det} U}{d}\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ \frac{-u_{21}}{d} & \frac{u_{12}}{d}\end{array}\right) U$, and then I_{1} is a nonzero ideal of Z. But Z is a P.I.D., and then I_{1} is an ideal generated by a positive integer g. Now $\frac{\operatorname{det} U}{d} \varepsilon I_{1}$ implies $\frac{\operatorname{detU}}{d} \varepsilon I_{1}$, i.e., $g \left\lvert\, \frac{|\operatorname{detU}|}{d}\right.$. By $g \varepsilon I_{1}$, we have $U \left\lvert\,\left(\begin{array}{ll}0 & 0 \\ 0 & g\end{array}\right)\right.$, i.e., det $U \left\lvert\,\left(\begin{array}{ll}0 & 0 \\ 0 & g\end{array}\right)\left(\begin{array}{cc}u_{22} & -u_{12} \\ -u_{21} & u_{11}\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ -g u_{21} & g u_{11}\end{array}\right)\right.$, and then $\operatorname{detU}\left|\mathrm{gU}_{21}, \operatorname{detU}\right| \mathrm{gU}_{11}$.

By the proof of (1), we have $d=t_{21} U_{11}+t_{22} U_{21}$, and then
$g d=t_{21}\left(\mathrm{gU}_{11}\right)+\mathrm{t}_{22}\left(\mathrm{gu}_{21}\right)$ or $\left.\frac{|\operatorname{det} U|}{\mathrm{d}} \right\rvert\, \mathrm{g}$. Therefore $\mathrm{g}=\frac{|\operatorname{det} \mathrm{U}|}{\mathrm{d}}$. This . completes the proof of (2).

THEOREM 2. Let $U=\left(\begin{array}{ll}u_{11} & u_{12} \\ u_{21} & u_{22}\end{array}\right) \varepsilon \operatorname{Mat}_{2}(Z)$ with $\operatorname{detU} \neq 0$, let $\mathrm{d}=\mathrm{g} . \mathrm{c} . \mathrm{d} .\left(\mathrm{u}_{11}, \mathrm{u}_{21}\right) . \quad$ Then $\mathrm{J}=\left\{\mathrm{R}=\left(\begin{array}{ll}\mathrm{r}_{11} & \mathrm{r}_{12} \\ \mathrm{r}_{21} & \mathrm{r}_{22}\end{array}\right) \varepsilon \mathrm{Mat}_{2}(\mathrm{Z}): 0 \leq \mathrm{r}_{11}\right.$, $\left.r_{21}<d, 0 \leq r_{12}, r_{22}<\frac{|\operatorname{det} U|}{d}\right\}$ is a complete residue system (mod. U) in $\mathrm{Mat}_{2}(\mathrm{Z})$.

PROOF. (1) From $d \varepsilon I_{0}, \frac{|\operatorname{det} U|}{d} \varepsilon I_{1}$, we have
$U\left|\left(\begin{array}{cc}d & \alpha \\ \beta & r\end{array}\right), U\right|\left(\begin{array}{cc}0 & 0 \\ d & \eta\end{array}\right), U\left|\left(\begin{array}{cc}0 & \frac{|\operatorname{det} U|}{d} \\ \varepsilon & \delta\end{array}\right), U\right|\left(\begin{array}{cc}0 & 0 \\ 0 & \frac{|\operatorname{det} U|}{d}\end{array}\right)$, i.e.,
there exists $T_{i} \in \operatorname{Mat}_{2}(z), i=1,2,3,4$ such that
$\left(\begin{array}{cc}d & \alpha \\ \beta & r\end{array}\right)=T_{1} U,\left(\begin{array}{cc}0 & \frac{|\operatorname{det} U|}{d} \\ \varepsilon & \delta\end{array}\right)=T_{2} U,\left(\begin{array}{ll}0 & 0 \\ d & n\end{array}\right)=T_{3} U,\left(\begin{array}{cc}0 & 0 \\ 0 & \frac{|\operatorname{det} U|}{d}\end{array}\right)=T_{4} U$.
For any matrix $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \varepsilon \operatorname{Mat}_{2}(Z)$, there exists $p_{11}, r_{11} \varepsilon Z$ such that $a_{11}=p_{11} d+r_{11}$ where $0 \leq r_{11}<d$. Thus $A-p_{11} T_{1} U=\left(\begin{array}{ll}r_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$, for some $\mathrm{b}_{12}, \mathrm{~b}_{21}, \mathrm{~b}_{22} \varepsilon \mathrm{Z}$. Moreover, $\mathrm{b}_{12}=\mathrm{P}_{12} \frac{|\operatorname{detU}|}{\mathrm{d}}+\mathrm{r}_{12}$ for some $p_{12}, r_{12} \in Z, 0 \leq r_{12}<\frac{|\operatorname{det} U|}{d}$. Then $A-p_{11} T_{1} U-p_{12} T_{2} U=\left(\begin{array}{ll}r_{11} & r_{12} \\ c_{21} & c_{22}\end{array}\right)$ for some $c_{21}, c_{22} \varepsilon Z$. Again $c_{21}=p_{21}-d+r_{21}$ for some $p_{21}, r_{21} \varepsilon Z$,
$0 \leq r_{21}<d$. Then $A-p_{11} T_{1} U-p_{12} T_{2} U-p_{21} T_{3} U=\left(\begin{array}{ll}r_{11} & r_{12} \\ r_{21} & r_{22}\end{array}\right)$ for some
$d_{22} \varepsilon$ Z. Finally $d_{22}=p_{22} \frac{|\operatorname{det} U|}{d}+r_{22}$ for some $p_{22}, r_{22} \varepsilon Z, 0 \leq r_{22}<\frac{|\operatorname{det} U|}{d}$,
implies $A-p_{11} T_{1} U-p_{12} T_{2} U-p_{21} T_{3} U-p_{22} T_{4} U=\left(\begin{array}{ll}r_{11} & r_{12} \\ r_{21} & r_{22}\end{array}\right)$ or
$U \left\lvert\, A-\left(\begin{array}{ll}r_{11} & r_{12} \\ r_{21} & r_{22}\end{array}\right)\right.$, where $0 \leq r_{11}, r_{21}<d, 0 \leq r_{22}, r_{12}<\frac{|\operatorname{det} U|}{d}$.
This proves that for any matrix $A \varepsilon \operatorname{Mat}_{2}(Z)$ there exists $R \varepsilon J_{2}$ such that $A \equiv R(\bmod . U)$.
(2) Assume that $\left(\begin{array}{ll}r_{11} & r_{12} \\ r_{21} & r_{22}\end{array}\right) \equiv\left(\begin{array}{ll}s_{11} & s_{12} \\ s_{21} & s_{22}\end{array}\right)$ (mod. U) where
$0 \leq r_{11}, r_{21}, s_{11}, s_{21}<d, 0 \leq r_{12}, r_{22}, s_{12}, s_{22}<\frac{|\operatorname{detU}|}{d}$.

This implies
$\mathrm{U} \left\lvert\,\left(\begin{array}{ll}\mathrm{r}_{11}-s_{11} & \mathrm{r}_{12^{-s} 12} \\ \mathrm{r}_{21}-s_{21} & \mathrm{r}_{22^{-s_{22}}}\end{array}\right)\right.$, i.e., $\mathrm{r}_{11}-\mathrm{s}_{11} \varepsilon \mathrm{I}_{0}$, or $\mathrm{d} \mid \mathrm{r}_{11}-\mathrm{s}_{11}$. Now $0 \leq\left|r_{11}-s_{11}\right|<d, \quad r_{11}=s_{11}$. It follows that $U \left\lvert\,\left(\begin{array}{ll}0 & r_{12}-s_{12} \\ r_{21}^{-s_{21}} & r_{22^{-s}}\end{array}\right)\right.$, i.e., $\quad r_{12}-s_{12} \varepsilon I_{1}$, or $\left.\frac{|\operatorname{det} U|}{d} \right\rvert\,\left(r_{12}-s_{12}\right)$. But $0 \leq\left|r_{12}-s_{12}\right|<\frac{|\operatorname{det} U|}{d}$, so that $r_{12}=s_{12}$.

It follows that
$\mathrm{U} \left\lvert\,\left(\begin{array}{ll}0 & 0 \\ r_{21}-s_{21} & r_{22}-s_{22}\end{array}\right)\right.$, i.e., $r_{21}-s_{21} \varepsilon I_{o}$ or $d \mid\left(r_{21}-s_{21}\right)$.
Also $0 \leq\left|r_{21} \mathbf{s}_{21}\right|<d$, so that $r_{21}=s_{21}$. This implies that $U \left\lvert\,\left(\begin{array}{ll}0 & 0 \\ 0 & r_{22^{-s}}\end{array}\right)\right.$,
i.e., $r_{22}-s_{22} \varepsilon I_{1}$ or $\left.\frac{|\operatorname{det} U|}{d} \right\rvert\,\left(r_{22}-s_{22}\right) . \quad$ Finally $0 \leq\left|r_{22}-s_{22}\right|<\frac{|\operatorname{det} U|}{d}$,
so that $r_{22}=s_{22}$, i.e., $\left(\begin{array}{ll}r_{11} & r_{12} \\ r_{21} & r_{22}\end{array}\right)=\left(\begin{array}{ll}s_{11} & s_{12} \\ s_{21} & s_{22}\end{array}\right)$. This proves that any two elements in J_{2} are incongruent.

COROLLARY 3. Let $U \in \mathrm{Mat}_{2}(Z)$ with $\operatorname{det} U \neq 0$. Then the cardinality of the complete residue system (mod. U) is $|\operatorname{detU}|^{2}$.

REMARK. If we consider the ring of 3×3 matrices, the corresponding results will read as follows, the proofs will be as in Lemma 3 and Theorem 2, with possible minor changes.

LEMMA 4. Let $u=\left(u_{i j}\right) \varepsilon$ Mat $_{3}(Z)$ with detU $\neq 0$. Then

$$
\begin{aligned}
& I_{0}^{\prime}=\left\{\begin{array}{llll}
a & \varepsilon & Z & :
\end{array} \left\lvert\,\left(\begin{array}{lll}
0 & 0 & 0 \\
a & \alpha_{21} & \alpha_{22} \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{array}\right)\right. \text { for some } \alpha_{i j} \varepsilon \mathrm{Z}\right\} . \\
& \left.\left.I_{0}^{\prime \prime}=\left\{\begin{array}{llll}
a & \varepsilon & Z & :
\end{array}\right] \left\lvert\, \begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
a & \alpha_{32} & \alpha_{33}
\end{array}\right.\right) \text { for some } \alpha_{32}, \alpha_{33} \varepsilon \quad Z\right\}
\end{aligned}
$$

are nonzero principal ideals of 2 generated by the positive integer $g_{0}=$ g.c.d. $\left(u_{11}, u_{21}, u_{31}\right)$. Moreover, $I_{0}=I_{0}^{\prime}=I_{0}^{\prime \prime}$.

$$
\begin{aligned}
& \left.I_{2}^{\prime}=\left\{\begin{array}{lll}
a & \varepsilon & Z
\end{array}\right]\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & a \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{array}\right) \text { for some } \alpha_{1 j} \varepsilon Z\right\}, \\
& I_{2}^{\prime \prime}=\left\{a \varepsilon Z: U\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & a
\end{array}\right)\right\}
\end{aligned}
$$

are nonzero principal ideals of Z generated by the positive integer $g_{2}=\frac{|\operatorname{detU}|}{g^{\prime}}$, where $g^{\prime}=$ g.c.d. $\left(\operatorname{cofu}_{13}, \operatorname{cofu}_{23}, \operatorname{cofu}_{33}\right)$, and cof $u_{i j}$ is the cofactor of the element $u_{i j}$. Moreover, $I_{2}=I_{2}^{\prime}=I_{2}^{\prime \prime}$.
(3) $I_{1}=\left\{\begin{array}{lll}a & \varepsilon & Z\end{array} \left\lvert\,\left(\begin{array}{lll}0 & a_{1} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33}\end{array}\right)\right.\right.$ for some $\left.\alpha_{i j} \varepsilon Z\right\}$
$I_{1}^{\prime}=\left\{\begin{array}{llll}a & \varepsilon & Z & : U\end{array} \left\lvert\,\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & a & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33}\end{array}\right) \quad\right.\right.$ for some $\left.\alpha_{i j} \varepsilon z\right\}$
$I_{1}^{\prime \prime}=\left\{\begin{array}{lll}a & \varepsilon & Z\end{array}: U \left\lvert\, \begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \alpha_{33}\end{array}\right.\right) \quad$ for some $\left.\alpha_{33} \varepsilon z\right\}$
are nonzero principal ideals of Z generated by the positive integer $g_{1}=\frac{g^{\prime}}{g_{0}}$. Moreover, $I_{1}=I_{1}^{\prime}=I_{1}^{\prime \prime}$.

THEOREM 3. Let $U=\left(\begin{array}{lll}u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33}\end{array}\right) \varepsilon$ Mat $_{3}(Z) \quad$ with detU $\neq 0$, let
$g_{0}=$ g.c.d. $\left(u_{11}, u_{21}, u_{31}\right), g^{\prime}=$ g.c.d. $\left(\operatorname{cofu}_{13}, \operatorname{cof} u_{23}, \operatorname{cof} u_{33}\right)$. Then $J_{3}=\left\{R=\left[r_{i j}\right] \varepsilon \operatorname{Mat}_{3}(Z): 0 \leq r_{i j}<g_{j-1} \quad i, j=1,2,3\right\} \quad$ is a complete residue system (mod. U) where $g_{1}=\frac{g^{\prime}}{g_{0}}, g_{2}=\frac{|\operatorname{det} U|}{g^{\prime}}$.

REFERENCE

1. Jordan, J. H. and C. J. Potratz. Complete Residue Systems in the Gaussian Integers, Math. Mag. 38 (1965) 1-12.

[^0]: ABSTRACT. This paper deals with the characterizations of the complete residue system mod. G, where G is any $n \times n$ matrix, in the ring of $n \times n$ matrices.

 KEY WORDS AND PHRASES. Complete residue system, ring of Gaussian integers, representations for the complete residue system.

 AMS(MOS)SUBJECT CLASSIFICATION (1970) CODES. 12F05, 12 B35.

