
Internat. J. Math. & Math. Sci.
VOL. 19 NO. 4 (1996) 759-766

759

LATI’ICES OF FUZZY OBJECTS

ARTURO A.L. SANGALLI

Department of Mathematics, Champlain Regional College
P.O. Box 5003, Lennoxville, Quebec, Canada JIM 2A1

(Received October 27, 1994 and in revised form March 8, 1995)

ABSTRACT. The collection of fuzzy subsets of a set X forms a complete lattice

that extends the complete lattice la(X) of crisp subsets of X. In this paper, we

interpret this extension as a special case of the "fuzzification" of an arbitrary

complete lattice A. We show how to construct a complete lattice F(A, L) --the L-
fuzzificatio of A, where L is the valuation lattice-- that extends A while

preserving all suprema and infima. The "fuzzy" objects in F(A, L) may be

interpreted as the sup-preserving maps from A to the dual of L. In particular,
each complete lattice coincides with its 2-fuzzification, where 2 is the two-

element lattice. Some familiar fuzzifications (fuzzy subgroups, fuzzy subalgebras,
fuzzy topologies, etc.) are special cases of our construction. Finally, we show that
the binary relations on a set X may be seen as the fuzzy subsets of X with

respect to the valuation lattice (X).
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1. INTRODUCTION.
The theory of fuzzy sets began with Zadeh’s definition [1] of a fuzzy subset

of a set X as a map from X to the unit interval I (= the set of real numbers from 0
to 1). Since is a complete lattice for the natural order _<, the collection of all

fuzzy subsets of X is also a complete lattice with respect to the order defined
pointwise, i.e. f _< g if f(x) _< g(x) for all x X. We denote by PI(X) the lattice of all

fuzzy subsets of X.
The set of (crisp) subsets of X ordered by inclusion also forms a complete

lattice 9(X) whose elements may be identified in the usual way with the maps
from X to whose values are either 0 or --the characteristic functions of

subsets of X. Under this identification, the lattice 91(X) is an extension of X)
that preserves all suprema and infima. In this sense, 1at(X) may be considered as

a kind of "fuzzification" of 9(X).
In this paper we show how going from 9(X) to 91(X) may be generalised in

two directions. Firstly, X) may be replaced by an arbitrary complete lattice A,
such as the lattice of subgroups of a given group, the ideals of a ring or the

closed sets in a topological space. We then construct a complete lattice F(A, I)
the "fuzzification" of the given complete lattice A-- that plays the role of II(X).
This fuzzification is such that there is a lattice embedding A ---> F(A, I)



760 A. A. L. SANGALLI

preserving all suprema and infima. Moreover, the usual definitions of fuzzy
subsets, fuzzy subgroups (Rosenfeld [2]), fuzzy topology (Lowen [3]), etc. are

special cases of our construction. Thus, we obtain a uniform procedure for

fuzzifying concepts such as "subalgebra". "closed set" and others having the

property that the crisp objects form a complete lattice.
The second generalisation consists in replacing by an arbitrary complete

lattice L called the valuation lattice. For each complete lattice A we then obtain

its L-fuzzification F(A, L). This is a complete lattice that extends A while

preserving all suprema and infima. As an example, we show that the IX)-
fuzzificatio of 9(X), i.e. F(X), :P(X)), is isomorphic to the dual of the lattice of

binary relations on the set X. Thus, the binary relations on a set X may be seen

as the fuzzy subsets of X with respect to the valuation lattice X).
If L 2 (= the two-element lattice), the embedding A ---> F(A, 2) is an

isomorphism, so that each complete lattice "is" its own 2-fuzzification.

2. CLOSURE SPACES AND RESIDUATED MAPS
In order to proceed with the generalisations, we must look at (X) in a

different way, not merely as the set of all maps from X to I. Both X and are in

fact what we call below "closure spaces ", and the elements of 9I(X) are precisely
the "continuous maps from X to I. Also, these maps are in one-to-one

correspondence with the "residuated" maps (defined below) from the complete
lattice X) to the complete lattice I. Thus, we can describe the fuzzification of

I(X) in terms of either continuous maps between closure spaces or residuated

maps between complete lattices.

Definition 2.1. A closure space (Achache and Sangalli [4]) is a pair (S,
where S is a set and $" is a collection of subsets of S, called closed subsets, with

the property that the intersection of any family of closed subsets is a closed

subset.
In particular S (= intersection of the empty family) is closed. Thus, $. is a

complete lattice with respect to inclusion of subsets, where infima coincide with

intersections but suprema are not in general equal to unions.

Examples of closure spaces are:

(1) (X, (X)), for any set X.
(2) S is the base set of a group G and 1:" the collection of all subgroups of G.

(3) S is the base set of an universal algebra ,A and $. the subalgebras of ,,..
(4) (T, F), where (T, U) is a topological space and $. is the collection of all

sets closed in the topology U.
If (S, 1:’) is a closure space, then each subset X of S has a closure X-, defined

as the smallest closed set containing X (e.g., in example (2) above, X- the

subgroup generated by X). The closure of the singleton {x} will be denoted x-.
Definition 2.2. A continuous map between two closure spaces (S1, $.1) and

($2, $’2) is a map f: SI ---> $2 such that the inverse image f-l(x) of each closed

subset X is closed. The set of all such maps will be denoted Cont((Sl, $.1), ($2, Y2)).
If (P, _<) is a partially ordered set and p e P, then (p] {x e P: x _< p} is the

principal ideal generated by p and [p) {x P: p _< x} the principal filter
generated by p.
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Definition 2.3. A map f P---> Q between ordered sets is called
residuated if for all q c Q there exists p P such that f-I(q] (p]. Res(P. Q)
denotes the set of residuated maps from P to Q.

If P and Q are complete lattices, then the following are properties of

residuated maps (see [51 for the proofs).
(a) f P ---> Q is rcsiduated iff f is isotone (i.e. order-preserving) and there

exists an isotone map f# Q ---> P satisfying: for all p P, for all q Q, f(p) -< q
p _< f#(q). This map f# is called the residual of f and f#(q) is the unique p P
such that f-l(q] (p]. if P* denotes the dual of P. i.e. P* (P, _>). then f# Res(Q*,
P*).

(b) f: P ---> Q is rcsiduatcd iff f preserves all suprcma.
(c) Rcs(P, Q) is a complctc latticc, with f _< g iff fix) _< g(x) for all x P. and

(sup fj)(x)= sup(fj(x)), for each family {fj: J} of rcsiduatcd maps.

3. THE ADJUNCTION BETWEEN F AND L
The precise relationship between closure spaces and residuated ,naps is

best expressed in the language of category theory using the notion of an

adjunction. We shall do so in the sequel and refer the reader to [6] for the
relevant definitions (of category, functor, adjunction, etc.) and results.
Nevertheless, the reader not familiar with --or not interested in-- categories
may still get the gist of it from Theorem 3.1.

Since identity maps and compositions of residuated [respectively.
continuous] maps are residuated [continuous], there is a category L whose
objects are complete lattices and whose morphisms are residuated maps and a

category F with closure spaces as objects and continuous maps as morphisms.
Every complete lattice L becomes a closure space (L, P(L)) by taking as its

closed sets the collection P(L) of all principal ideals of L. This correspondence
defines a functor D: L---> F. Since every morphism in L from L to L2 is also a

morphism in F from D(LI) to D(L2) and conversely, the functor D embedds L as a
full subcategory of F. The following characterisation of D(L_) is proved in [4]
(Proposition 4): "D(L_) is the full subcategory of F whose objects are the closure
spaces with the property that each closed subset X is of the form x- for a unique
x E X".

The existence of a left adjoint to D follows from:
Lemma 3.1. Let (S, 19 be a closure space and L a complete lattice. Let rls"

S ---> =" be the map that associates to x S its closure, i.e. rlS(X) x-. Then, for

each continuous map v: (S, F) ---> (L, P(L)), there exists exactly one residuated
mapv"F ---> Lsuchthat v" rlS=V.

Proof. The map v" is defined by v’(X) sup v(X), for all X 1=’. The

verification that v" preserves suprema makes use of the following
characterisation of the set Cont((S, :1=), (L, P(L))) ([4], Proposition 3)"

"A map v: S ---> L is continuous iff for all X
_

S, sup v(X) sup v(X-)". Let
{Xl: k K} _1r. Then v’(supke K Xk) v’((LJk e K Xk)-) sup v((Uk e K Xk)-) sup
v(U.ke K Xk) sup {v(a): a e Uke KXk} supke K supv(Xk) supke K v’(Xk).

Now let x e S. Then x v-l((v(x)]). Since v is continuous, v-l((v(x)]) F. By
definition of closure, we then have x-

_
v-l((v(x)]). This means that, for all y e
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x-, v(y) _< v(x). Hence v(x) _< sup {y: y x-} _< v(x) and therefore sup v(x-)= v(x),
i.e. v" orlS v.

To check uniqueness, suppose that h" r ---> L preserves suprema and
satisfies h qS v. Let X F (this implies X sup{x-" x : X}). Then we have h(X)

h(sup{x-: x X})= sup{ h(qs(X)) x X} sup { v(x) x X} sup v(X). Hence h

v’. 0 (The symbol 0 indicates the end of a proof).
Remark (for readers familiar with category theory): the map qS defined

above is a continuous map from (S, to the closure space
Then, Lemma 3.1 merely states that the pair (S, rls) is a universal morphism

from (S, 1:’) to D. It is well-known that the existence of such a morphism for each

object of F implies the existence of a left adjoint C" F ---> L to the functor D (C is

defined on objects by C((S, 1:3) t’. For a morphism h: (S l, ’1) ---> ($2, 1:’2) of F,
C(h): 1"1 ---> 1"2 is the closure of the image, i.e. for all X 1"1, C(h)(X) h(X) ). The

map I in the next theorem arises when this adjunction is reformulated in terms

of hom sets.

Theorem 3.1. The map I: Cont((S. t3, (L, P(L))) ---> Res(lr, L), defined by
fi(v)(X) sup v(X) --for all continuous v: S ---> L and all X I:’-- is a bijection
,hose inverse 0t is given by a(r)(x) r({x}), where r Res(1", L) and x S.
Moreover, since both ct and I preserve order, they are isomorphisms of complete
lattices.

Proof. It follows from Lemma 3.1 that I(v) Res(l:’, L), and it is easy to

check that I is a bijection with inverse a. Cont((S, , (L, P(L))) is a subset of the

complete lattice of all maps from S to L. To prove that it is itself a complete
lattice, it is sufficient to show that the supremum (computed pointwise) of a

family {fj j J} of continuous maps from S to L is continuous. It is easy to

verify the equation

(supjCj fj)-I((a]) fqj fj-l((a]), for all a A. (3.1)

Now, each fj-l((a]) is a closed subset of S, for fj is continuous; hence, the

right-hand side of equation (3.1) is also a closed subset of S, being the

intersection of a family of closed subsets. Finally, it is routine to check that both
a and I preserve order.<>

4. THE FUZZIFICATION
Recall that L* denotes the dual of the lattice L. Let A be an arbitrary

complete lattice and let 2 denote the two-element lattice. For each a e A, the

map fa: A ---> 2 defined by fa(x) 0 iff x < a is residuated, so each element of A

may be seen as a residuated map from A to 2. Conversely, each residuated map
from A to 2 is determined in this way by some a A. Thus, the correspondence

f(_): A ---> Res(A, 2) is a bijection that reverses order and whose inverse is also

order-reversing. Therefore, we have shown:
Lemma 4.1. f(_) is a lattice isomorphism from A to Res(A, 2)*.
Let L be a complete lattice. Notice that both Res(A, 2) and Res(A, L) are

complete lattices (Property (c), section 2). The map : Res(A, 2) ---> Res (A, L) is

defined as follows: if f is a residuated map from A to 2, then (f) is f viewed as a

map from A to L (more precisely, (f) is the composition of f with the unique
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lattice homomorphism 2 ---> L that preserves 0 and I). It is shown in [7] lhat ,
is a lattice embedding that preserves all suprema and infima. Hence, 1: Res(A,

2)* ---> Res(A, L*)* also preserves all suprema and infima. Now, by Lemma 4.1,

A is isomorphic to Res(A, 2)*. Thus, Res(A, L*)* is an extension of A that

preserves all suprema and infima. We call it the L-fuzzification of A.
Definilion 4.1. Let L be a complete lattice called the valuation lattice and

let A be a given complete lattice. The L-fu==fication of A, denoted F(A, L), is the

complete lattice Res(A, L*)*.
We have proved above:
Theorem 4.1. The L-fuzzification of a complete lattice A is an extension of

A that preserves all suprema and infima.

Theorem 4.2. Every complete lattice A is isomorphic to its 2-fuzzification.
Proof. Let indicate lattice isomorphism. Then, since 2 2*, we have F(A,

2) Res(A, 2*)* Res(A, 2)* A, where the last isomorphism follows from

Lemma 4.1.

5. APPLICATIONS
in this section we show that many lattices of fuzzy objects (fuzzy subsets,

fuzzy closed sets, fuzzy subalgebras, etc.) arise as special cases of our

construction., i.e. they are (isomorphic to) the fuzzification of the complete lattice

of crisp objects (subsets, closed sets, subalgebras, etc.).
FUZZY SUBSETS

Theorem 5.1. The complete lattice l(X)of fuzzy subsets of a set X is

isomorphic to the I-fuzzification of (X).
Proof. By Theorem 3.1, we have that Res((X), I*) is isomorphic to Cont((X,

P(X)), (I*, P(I*))). Now, this latter lattice is identical with Cont((X, P(X)), (I, F(I)))*,
where F(1) denotes the family of principal filters of I. By taking the dual on both

sides we get that
Res((X), I*)* Cont((X, X)), (I, F(I))) (5.1)

Finally, the left-hand side of (5.1) is by definition F(](X), I) while the right-

hand side is the set of all functions from X to (= I(X)).0

FUZZY SUBGROUPOIDS

Let U b a groupoid, i.e. a set equipped with a binary operation. A fuzzy
subgroupoid (Novak [8]) of U is a map f: U ---> L, where L is the valuation lattice,

such that for all x, y U,

fix) ^ fly) _< f(xy). (5.2)

Let S(U) denote the complete lattice of (crisp) subgroupoids of U and F(L)
thc collcction of principal filters of L. As in (5.1) above, it is easy to scc that

Cont((U, S(U)), (L, F(L))) is isomorphic to the L-fuzzification F(S(U), L) of S(U).
Theorem 5.2. f." U ---> L is a fuzzy subgroupoid of U if and only if f

Cont((U, S(U)), (L, F(L))).
Proof. To show that f is a continuous map, it suffices to check that f-l[q) is

a subgroupoid of U for all q L. Let x, y f-l[q), i.e. q _< fix) and q_< fly). Then q
_< f(x) ^ fly). From this follows q _< f(xy) (by transitivity, from (5.2)). Hence xy

f-I[q).
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To prove the converse, notice that f(x) ^ f(y) _< f(x) and fix) ^ fly) -< fly).
This implies x, y e f-Ill(x) ^ f(y)). Since f-I[f(x) ^ f(y)) is a subgroupoid (for f is

continuous), we get xy f-I[f(x) ^ f(y)), i.e. f(x) ^ fly) <_ ffxy). <>

FIZZY StBAI,(;EBRAS

Let A <A, f) be an (universal) algebra, i.e. f is a set of finitary operations

on the set A. Each n-ary operation f in f induces an n-ary operation f on the set

A of all functions from A to 1, as follows:
f(ml mn)(X) SUpyf-l({x}) minj{mj(yj)}, where y (Yl Yn). (This

definition generalises the operation that assigns to the (crisp) subsets A An
of A, the subset {f(ai an) aj Aj, j n}).

A fuzzy subset m A is said to be a fuz,,3’ subalgebra of A (Murali [9]) if

f(m,m m) _< m, for all f 1.

The fuzzy subalgebras of an algebra A form a complete lattice. It is shown

in |10] that this lattice is a continuous lattice. For the definition and a thorough

study of continuous lattices see [11], where it is shown that a lattice L is

continuous iff it is isomorphic to a subset of X which is closed under arbitrary
infima and suprema of directed families.

Theorem 5.3. The lattice of fuzzy subalgebras of an algebra A is

isomorphic to the l-fuzzification of the complete lattice S(A) of (crisp)

subalgebras of A.
Proof. The proof makes use of Theorem 3.1, according to which

Res(S(A), I*) Cont((A, S(A)), (I*, P(I*))). (5.3)
Now, the right-hand side of (5.3) is identical with the lattice Cont((A, S(A)), (I,

F(I)))*, where F(I) denotes the collection of principal filters of I. By taking the

dual on both sides of (5.3) we get Res(S(A), I*)* Cont((A, S(A)), (I, F(I))). This

means that the I-fuzzification of S(A) --i.e. Res (S(A), I*)*-- is isomorphic to the

lattice of continuous functions from (A, $(A)) to (I, F(I)). Thus, in order to prove
the theorem, it is enough to check that m: A ---> is a fuzzy subalgebra of A iff it

is a continuous function from (A, S(A)) to (I, F(1)), i.e. iff for every real number r

in I, the set {a e A: r < m(a)} is closed under all the operations in fl. A proof of

this appeared in [7] (Theorem 5.1).<>

FUZZY TOPOLOG ES

Let T be a topological space and let Y be the complete lattice of closed (in
the topology) subsets of T. Then (T, ’) is a closure space. If L is the valuation

lattice we have, by Theorem 3.1, the lattice isomorphism Cont((T, Y), (L, P(L)))

Res(F, L). As in the previous examples, it follows from this that

Res(Y, L*)* Cont((T, F), (L, F(L))) (5.4)
Now, let U be the smallest topology on L such that every principal filter (of

the lattice L) is closed in U. Then the fight-hand side of (5.4) is exactly the set of

continuous (in the topological sense) functions from T to L endowed with the

above,topology. Hence, the fuzzification of a given topology r is nothing else than

the fuzzy topology 0(r) introduced in [3].
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6. REI,ATIONS SEEN AS F|IZZY SI!BSETS
Given a set X, let R(X) be the set of all binary relations on X, i.e. subsets of

X X. Then R(X) is a complete lattice under inclusion. We now show that the

P(X)-fuzzification of la(X) is isomorphic to the dual of the lattice R(X). Thus. a

binary relation on a set X may be seen as a P(X)-fuzzy subset of X. Moreover. lhis

one-to-one correspondence is such that the lattice structure is (dually)
preserved.

Let yX denote the collection of all maps from the set X to the set Y. There

is a bijection r: la(X)X ---> R(X) which sends f: X ---> X) to the binary relation
r(f) on X defined by x r(f) y y : f(x), for all x, y X. The inverse bijection
associates to the relation p on X, the map X ---> la(X) that sends x to {y X" x p y].

There is also a bijection s: x)la(X) ---> X)X which associates to f its

"restriction to singletons" --more precisely, s(f)(x) f({x}). (The bijection s is

"natural" in the sense of category theory since it arises from an adjunction" the

power-set functor la: S ---> L__, where S is the category of sets, is left adjoint to the

forgetful functor from complete lattices to sets --i.e. X) is the "free" object
generated by X in the category L_).

The composition of the above bijections produces the bijection R" Res(X),
:P(X)) ---> I(X) that associates to a given residuated map f: X)---> P(X), the
relation R(f) on X defined by" x R(f) y y e if{x}). It is straightforward to verify
that the bijection R preserves and reflects order and, therefore, that it is an

isomorphism of lattices.
The l(X)-fuzzification of P(X) is, by definition, the complete lattice

Res(la(X),X)*)*. Since IX)* is isomorphic to X), we have proved"
Theorem 6.1. For every set X, the :P(X)-fuzzification of I:(X) is dually

isomorphic to the complete lattice of binary relations on X.
A quantale |12] is a complete lattice Q together with an associative product

(denoted "&") which distributes over arbitrary suprema. For example, the lattice

R,(X) is a quantale with respect to the composition of relations. This structure on

I(X) has been applied implicitly by Hoare and He [13] in the case where X is a

set of states of a machine to construct the weakest prespecification of a program
with respect to another.

From an argument similar to the above it follows that the quantale 0(H)of
linear relations on a Hilbert space H may be seen as the H)-fuzzification of the

complete lattice F_,(H) of all closed linear subspaces of H.
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