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ABSTRACT. A viscous incompressible fluid is contained between two parallel disks with

arbitrarily shrinking width h(r). The solution is obtained as a power series in a single
nondimensional parameter (squeeze number) S, for small values of S in contrast to the

"multifold" series solution obtained by Ishizawa in terms of an infinite set of nondimensional
parameters. The gap width h(r) is obtained for different states: when the top disk moves with

constant velocity, constant force or constant power.
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1. INTRODUCTION.
The problem of unsteady squeezing of a viscous incompressible fluid between two parallel

disks in motion normal to their own surfaces independent of each other and arbitrary with

respect to time is a fundamental type of unsteady flow which is met frequently in many

hydrodynamical machines and apparatus. The similarity solution obtained by Wang [1], when a

viscous fluid is squeezed between two parallel disks which are spaced a distance a/’l- tit apart,
is restricted to a special time dependent motion, namely, the distance of separation of the disks is

taken to be av/1- t/T. It is unlikely that the distance would behave as av/1 -t/T in reality, since

the pressures are found to approach infinity as t--,T. Also, the solution presented by Ishizawa [2]
for the unsteady laminar flow of an incompressible fluid in a narrow gap between two parallel
disks of varying width h(r) is a "multifold" series of an infinite set of nondimensional time-

dependent parameters p_h d___h h_a d2___h h_ d3.._h The present paper studies the arbitrarydr’ 2 dt v3 dt3
symmetric squeezing of a viscous incompressible fluid from a gap between two parallel disks of

varying width 2ah(r),r= t/T, which in general, does not lead to similarity solutions and the

solution is obtained as a power series in a single nondimensional parameter (squeeze number)
S a2/2vT for small values of S, where v is the kinematic viscosity, 2a is the width of the gap

between the disks at 0 and T is a characteristic time. The gap width h(r) is obtained when

the top disk moves with constant velocity, constant force or constant power.

2. MATHEMATICAL FORMULATION.
Let the position of the two disks be at Z +/- ah(r), where r t/T is a normalized time. We

assume that the length 2L of the channel is much larger than the gap width 2ah(r) at any time

such that the end effects can be neglected. Let u and w be the velocity components in the r and

directions respectively. The axisymmetric flow of a viscous incompressible fluid between the

parallel disks is governed by the unsteady Navier-Stokes equations.

ut+uur+WUz: -pr+u(urr+lur+Uzz--) (2.1)

u (2.3)Ur+-+ wz=O
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The boundary conditions are

hr on ah(r)u=0,w= T (2.4)

The use of the transformations
w 0, u.. 0 on z=0 (2.5)

in (2.2) yields

from which it follows that

-hr
7 a-(r)’ u 2Th(r) r f7 (rh r), w hr f(7, r)

Phr 0 Pa2 h2r -O (f2)P7 (f7) pahwt--

PTr 0

(2.6)

(2.7)

(2.s)

Substituting (2.6)in (2.1), we obtain

{ 2h2hrrf7phrr
S2a2h3T hr+2hhrf7-2h2for+2hhr7f77+hhrf72- 2hhrff771 + f777) Pr (2.9)

which along with (2.8) implies phrr
Pr 2a2h3T

so that

S( 2h2hrr‘7h------+2hhrf7-2h2fTr+2hhrTfTrl+hhrf72-2hhrff77 -I-f777 A(r)

From (2.7), (2.8) and (2.10) we obtain the pressure as

Phrf7 i .pa2hr2 (f2_ 1)
phrA(r)P(7, r) PO + hT j

pahwtdT
2T2 -4a2h32 (r2- L2) (2.12)

ah

where Po is the pressure at the top edge of the upper disk, p the density, A(r),f(7,r) are functions

to be determined. In terms of the function f(7, r), the boundary conditions are

f(O,r)=O,y(1,r)= 1,Y77(0,r) 0, fT(1,r) 0 (2.13)

When h(v)= lx/l--r the equation (2.11) reduces to the similarity ordinary differential equation

S[TI"+ 3f"- ff"] f" (2.14)

given by Wang [1].
3. SERIES SOLUTION FOR SMALL SQUEEZE NUMBERS.

When S < < 1, we expand the unknown functions in terms of the squeeze number S as

f(7, r) f0(7 r) + Sfl(7 7") -I- $2f2(7, ’r) + (3.1)

A(r) a0(r + Sal(r + S2A2(r) + (3.2)

The equation (2.11) yields successively

f0777 A0(r

777
f07 hhr(2f07 2r/f077 2fof077)

f2777 A2(r)+2h2(r fl +flTr)-hhr(2fl +27f +
7 7 177 2/Or/flr 2foflrp 2flfOr/7 (3.3)

The solutions are

f0 (1/2)(3r/- r/3), A0 3

fl(7 r)= -(75- 273 + 7) 2-1----/30(77 + 21q5- 4573 + 237)

8o 4./,Al(r) ---- 3h2hrr,-r.= --hhr
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! 6571 2047+ 2hhr ]0{)800 a 148050 (3.4)

Thus, given the motion h(r), we can obtain the velocities and pressure from (2.6), (2.12), (3.1)
and (3.2).
The pressure force exerted by the walls of the disks on the fluid is

ah(r) L
F 2r r(p-PO)r dr dz 4---d ’ A(r) (3.5)

ah(v) 0

and the power imparted by the walls of the disks on the fluid is

ah(r)
R=2r -J -Jr(p-p0)y=l (-w)y=ldrdz=

rpL4 hr2 A(r) (3.6)
4T2 h2

ah(r) 0

In what follows, we shall consider the cases: (i) constant velocity squeezing, (ii) constt force

squeezing nd (iii) constant power squeezing and obtain inversely the channel width, since my

biological and mechanical devices are mostly limited to any of the three cases mentioned above.

4. CONSTANT VELOCITY SQUEEZG.
Suppose the top disk is moving vertically with constt velocity V. Then the time scMe is

T a/V. Thus, h(r)= r where the top sign is for squeezing. From equation (3.5), the force is

4aT + + .-  )+o(sal
where r.

Suppose that a constant force F is applied to the top disk. We wish

unknown gap width h(r). he characgerisfic time T is defined by

The equation (a.g) becomes

3h2 hrA(r (5.1)
Since S is small, we set

h() h0( + SI( + Sn2() + (5.2)

and solving the resulting equations, we obtain the solutions as

ho=a-1
h1= T(a-4-a -2)

h2 3187607 -7 3725 -5 -3 558532 -2 (5.3)3948000
a + a + + 9212000 c

where c (1:1= r) with top sign for squeezing.

6. CONSTANT POWER SQUEEZING.
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In the case of constant power squeezing, we define the time scale by

/3pL4
T= v 7

and so, from equation (3.6) we obtain

3h2 A(r)hr2,h(O)= (6.1)

An expansion similar to (5.2) yields
h0 ezp( r)

11 3r) ezp(=rfi[( )1

4357 ezp( : r) (6.2)h2 98700666--8 ezp( : 5r) + 2190 ezp( : 3r) + 230300

where the top sign is for squeezing.

7. CONCLUSION.
The highly nonlinear unsteady axisymmetric flow equations (2.1)-(2.3) offer a solution in the

case of arbitrary squeezing of a channel by the use of transformation equations (2.4). The

resulting nonlinear partial differential equation (2.11) in two independent variables , and r is

solved for arbitrary squeezing h(r) by an expansion in terms of a single nondimensional parameter

S, for small values of S. When S 0, the solution is

fo (1/2)(3q r/3)
which is exactly the quasi-steady poiseuille flow between two parallel disks. The higher order

terms are corrections due to inertial effects.

We have obtained the gap width for three different states. The following table compares the

eading terms (S 0) of distance, force of squeezing and power of squeezing. We observe that

these motions are basically different.

Squeezing with Squeezing with Squeezing with
constant velocity constant force constant power

distance between disks (1 r) (1 + r) r

force on top disk (1 r) 2 r

power on top disk (1 r)- 2 (1 + r) 2
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