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ABSTRACT. Suppose f:C—X where C is a closed subset of X. Necessary and sufficient
conditions are given for f to have a fixed point. All results hold when X is complete metric

space. Several results hold in a much more general setting.
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1. INTRODUCTION.

Fixed point theorems for non-self maps are unusual. We surely require that C N f(C) is non-
empty. f(z)=z+1 for X in [0,1] is a linear isometry from the compact space [0,1] into the
compact space [0,2] but f is fixed point free. The mapping f(z)= z+% for z in [1,00) is a
continuous mapping from [1,00) into [0,00). It is fixed point free but | f(z)— f(y)| < |z —y|
forz #y.

THEOREM (Brouwer [1]). If E is a non-empty convex compact subset of E" and f: E-E is
continuous, then f(z) = z for some z in E.

2. RESULTS.

THEOREM 1. Let C be a closed subset of a complete metric space X and suppose f maps
C onto X or f maps C into X with C C f(C). K for some k> 1, d(f(z), f(y)) >k d(z,y) for
every z,y in C, then f has a unique fixed point in C.

PROOF. C(Clearly, f is one-to-one. Let g = f ! restricted to C. Now g maps C into C.
For z,y in C, d(z,y) = d(f(gz), f(gy)) = k d(g(z), 9(y)) or d(g(z),9(y)) < i— d(z,y) and 0 < % <l g
has a unique fixed point from Banach’s fixed point theorem. But f(z,) = f(g(z)) =z I
z; = f(z,), then g(z,) = g(f(z,)) = 2, and ¢, = z,.

The above result suggests that one should consider non-self maps that satisfy C C f(C). It is
well known that a continuous function from an arc onto a containing arc must have a fixed point.
[0,1] or any homeomorphic image is called an arc. Thus Brouwer’s theorem extends to the case
CC f(C) for n=1. In [7], Sam Nadler showed that for n>2 Brouwer’s theorem does not
extend. For n>2, let A and B be closed balls in E" with A C B and A # B. He showed that
there exists f and g such that:

(a) f:A—B where f is continuous, onto, f(0A) = B, and f is fixed point free,

(b) g:A—B where g is continuous, onto, g ~}(8B) = dA, and g if fixed point free.
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THEOREM 2. Let C be a closed bounded, and convex subset of a uniformly convex Banach
space and suppose f maps C onto X or f maps C into X with C C f(C). If for every z,y in C
I f(x)=fw) Il 2 llz—y]l, then f has a fixed point in C.

PROOF. Clearly, f is one-to-one. Let g= f~! restricced to C and observe that
[lg(z)—g(¥)|l < ||lz—y]|| where g:C—C. From Kirk’s theorem [6], g has a fixed point z; in C.
Clearly, f(zq) = z,.

The following is an example of a mapping f that takes a closed, bounded, and convex subset
C of a Banach space X into X where C C f(C), || f(z)— f(y)]| = |z —y]| for all z,y € C, and f
has no fixed points.

EXAMPLE 1. Let X be the space of sequences which converge to zero with
|z|| =sup|z,| for zin X. Let C={z€ X:||z|| =1 and z,=1}. C is closed, bounded, and
convex. Define f:C—X by f(z) =y wherey,=2,,,n=0,1,2,- - -. || f(z)—f)|| = llz—y]|
and f is linear. To see that C C f(C) consider the following. For z € C, define r to be the
sequence where rg=1and r,=2,_,,n=1,2,3,---. Thenr€C, and f(r)=2s0C C f(C). If
s={1,0,0,- - -},s€C but f(s)={0,0,0,---}¢C. Hence C # f(C). If f(z) =z for some z in
C, then z,=2z,,, for n=0,1,2,---. Since z,=1,z,=1 for all n and z ¢ C. Therefore. f
does not have a fixed point in C.

The following example shows that Banach’s fixed point theorem does not generalize to non-
self maps.

EXAMPLE 2. Let X=C(R,R) with | f|l = sup | f(t)] for feX. Let

={feX:f(t)=0 for all t<0 and lim f(t) > 1}. Cis a ‘Qosed and convex subset of X.
Define T:C—X by (Tf)(t) = § ft+1). To see that C C T(C) consider the following. For f in
C set g(t)=2f(t—1). g(t)=0 for t<0 since t—1<0 and f(t)=0 for all ¢<0.
Lim g(t) = lim 2 f(t—1)22. Thus g€C and (Tyg)(t) = f(t). Hence C CT(C). Let f(@) be
defined as 0 1ft<0 tif0<t<l, and 1if t>1. Then f€C. Now (Tf)(t)is 0if t < -1, 1 5
(t+1) #f —1<t<0, and } if ¢>0. Therefore, Tf¢C and C#T(C). For
£,9€C, | Tf-Tgll =}l f-gll. Y Tf=f for some f€C, then f(t)=3 f(t+1) and it
follows that f(n)=0 for all integers n. Hence lim f(t)#1 and f ¢ C. Therefore T does not
have a fixed point in C. Note that T is linear, one-to-one, and T(C) is closed.

We now turn to finding necessary and sufficient conditions for a non-self map to have a fixed
point. Then it becomes clear that C C f(C) is a natural assumption.

Let (X,t) be a topological space and d: X x X—[0,00) such that d(z,y) =0 if and only if
z=y. X is said to be d-complete if"%l:ld(zm:c,, +1) <oco implies that the sequence {z,} is
convergent in (X,t). These spaces include complete (quasi) metric spaces and d-complete
(symmetric) semi-metric spaces. In [2] and [3] several basic metric space fixed point theorems
were extended to this setting. f:X—X is w-continuous at z if z,—z as n—oo implies
(@)~ 1(2) as noo.

The following definition was given by G. Jungck in [5].

DEFINITION 1. Two maps f and g are compatible if, for any sequence {z,} such that limp
f(z,) = lim g(z,) =t it follows that limx d(f(g2,),9(f,)) =0. Commuting maps are compatible
but the converse is false.

DEFINITION 2. Given a map f, a map g is compatible with f, if for any sequence {z,}
such that lim f(z,) = lim g(z,) = t it follows that lim f(g(z,)) = g(t).

REMARK 1. If f and g are w-continuous and (X,d) is a metric space, then, using definition
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2, f is compatible with g is equivalent to g is compatible with f. In this case, we say that f and

g are compatible.
PROQF. Assume f and g are w-continuous and that limf(z,) = limg(z,) = t implies lim
f(g(z,)) = g(t). If we are in a metric space,
d(f(92,),9(fz,)) < d(f(92,), 9(t)) + d(g(t), 9(fz,))
d(g(fz,), f(t)) < d(g(fz,), f(g2,)) + d(f(gz,), £(2)).
It follows that f is compatible with g implies that g is compatible with f. Interchanging g and f

and

above gives the converse.

It also follows from the above argument that if f and g are w-continuous and (X,d) is a
metric space, then the two definitions of compatibility are equivalent.

REMARK 2. If (X,t) is a d-complete topological space, g is w-continuous, and f and ¢
commute, then g is compatible with f using definition 2. We use definition 2 for d-complete
topological spaces.

Theorem 3 and its corollaries are generalizations of theorems due to Hicks and Rhoades [4]
which are generalizations of theorems due to Jungck [5].

THEOREM 3. Let (X,t) be a Hausdorff d-complete topological space and suppose f:C—X
where f is w-continuous and C is a closed subset of X. Then f has a fixed point in C if and only
if there exists a €(0,1) and a w-continuous function ¢g:C—C such that ¢(C)C f(C),g is
compatible with f on f~(C) and

(1) d(g(z), 9(v)) < ad(f(z), f(y)) for all z,y € C.

Indeed, if (1) holds, f and ¢ have a unique common fixed point.

PROOF. If f(a)=a for some a € C, set g(z)=a for every € C. If z € f~Y(C), f(z)eC
and g(f(z)) =a = f(a) = f(9()) If z€C,g(z)=a= f(a) gives ¢(C)C f(C). Also,
0 =d(a,a) = d(g(z), 9(y)) < ed(f(z), f(y)) for all 7,y € C.

Suppose there exists a € (0,1) and a w-continuous function g:C—C such that g(C) C f(C), ¢
is compatible with f on f~Y(C) and d(g(z),9(y)) < ed(f(z), f(y)) for all z,y € C. Let z,€C.
9(xo) = f(x,) for some z, € C since g(C) C f(C). Construct a sequence {z,} with {z,} C C and
f(z,)=g(z,_,)forn=1,23,- - .. Since

d(f(2n)s f(2n +1)) = d(9(z0 - 1):9(20)) < ad(f(Za -1), f(a));

it follows that d(f(z,), f(z,41)) <"~ Yd(f(zy), f(zs))- Hence"o)il)1 d(f(z,), f(zn 1)) <oo. The
space is d-complete so there exists p€ X with lim f(z,) =_p. f(z,) =g(z,_,) EC gives
p€cl(C)=C. Now f is w-continuous gives f(g(z,_,))—f(p) as n—oo. Since g is compatible
with f on f~YC) and pe f~}(C) we get lim f(g(z,)) = g(p). The space is Hausdorff so
f(p) = g(p) and p € f~(C). Consider the sequence y,, = p for all n. Then f(y,)—f(p) as n—oo,
9(ya)—9(p) as n—oo, and compatibility give f(g(p))= f(9(yn))—9(f(p)) as n—oo. Thus,
f(g(p)) = 9(f(p))- Therefore,  f(f(p)) = f(9(p)) = 9(f(p)) = 9(9(p))  together  with
d(9(p), 9(9p)) < ad(f(p), f(9p)) = ad(g(p),9(gp)) implies  g(p) = g(9(p))- Hence
9(p) = g(g(p)) = f(9(p)) and g(p) is a common fixed point of f and g.

If z=f(z)=g(z), then d(z,9(p))=d(g(z),9(9p)) < ad(f(z), f(gp)) = ad(z,9(p)) gives

z = g(p).
COROLLARY 1. Let (X,t) be a Hausdorff d-complete topological space and C be a closed
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subset of X. Suppose f:C—X and ¢:C—C, where f and g are w-continuous, commute on
f~YC), and g¢(C)C f(C). If there exists a€(0,1) and a positive integer k such that
d(g*(z), g*(y)) € ed(f(z), f(y)) for all z,y € C, then f and g have a unique common fixed point.

PROOF. Clearly, ¢g* commutes with f on f~!(C) and ¢*(C) C ¢(C) C f(C). Applying the
theorem to g* and f gives a unique p € C such that p = g*(p) = f(p). Since f and g commute on
f=X(C) and p€ f~Y(C),9(p) = ¢(f(p)) = f(9(p)) = ¢*(g(p)) or ¢(p) is a common fixed point of f
and g* Uniqueness of the common fixed point of f and ¢* gives g(p)=p= f(p) If
g = g(q) = f(q) then ¢*(g) = f(g) and ¢ = p.

COROLLARY 2. Let n be a positive integer and let a > 1. Suppose C is a closed subset of
a Hausdorff d-complete topological space and f:C—X with C C f(C). If d(f"(z),f"(¥))
> ad(z,y) for all z,y in (f"~!)~}(C), then f has a fixed point in C.

PROOF. For n=1, this follows from corollary 1 by letting g =1I. f" is one-to-one.
C C f(C) implies C C f{(C). Let h be the restriction of (f")~! to C. h:C—C and
d(h(z), h(y)) _<_%[— d(z,y) for all z,y € C. From corollary 1 with k =1,h = g* = g and f =1, there
exists a unique =z, such that A(zy) = zo. Hence f(zo) = f**(zo) = f*(f(zp)) or
R(f(zo)) = (F™) ~*(f(zo)) = f(xo). Uniqueness of the fixed point for k gives x5 = f(z,). If f(y) =y
then f*(y) =y and y = h(y). Again, uniqueness of the fixed point for h gives z, = y.
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