J-RINGS OF CHARACTERISTIC TWO THAT ARE BOOLEAN

D. J. HANSEN and JIANG LUH

Department of Mathematics North Carolina State University Raleigh, North Carolina 27695-8205, U.S.A.

YOUPEI YE

East China Institute of Technology Nanjing, China

(Received July 27, 1993)

ABSTRACT. This paper is concerned with determining all integers n, with $n \ge 2$, such that if R is a ring having the property that $x^n = x$ and 2x = 0 for each $x \in R$, then R is boolean. The solution to the above problem extends previous results obtained by Shiue and Chao in [5] and that of MacHale in [4].

KEY WORDS AND PHRASES. J-ring, boolean ring. 1992 AMS SUBJECT CLASSIFICATION CODES. 16A38.

1. INTRODUCTION.

A ring R is called a J-ring if there exists an integer $n \ge 2$ such that $x^n = x$ for each $x \in R$. It is well known that a J-ring is commutative, see [3].

Shiue and Chao showed in [5] that if R is a J-ring, where $n = 2^{q(m+1)} + 2^m$, with $1 \le q$ and $1 \le m$, then it is the case that R is of characteristic two and, in addition, $x^2 = x$ for each $x \in R$, that is, R is boolean. Recently, MacHale proved that if R is a ring of characteristic two and n is a nonnegative integer such that $x^{2^n+1} = x$, for each $x \in R$, then R is also boolean. In this paper, we will extend both of the above results by determining all integers n, with $n \ge 2$, such that if R is a ring having the property that $x^n = x$ and 2x = 0, for each $x \in R$, then $x^2 = x$ for each $x \in R$. It should be noted that, in a related paper, Batbedat [2] used sheaf theory to obtain some structure theorems for a ring R satisfying $a^{n+1} = a$ for each $a \in R$. His results were used to determine all values of $n \le 50$ for which R is boolean.

2. A PRELIMINARY RESULT.

THEOREM 1. Let n denote an integer ≥ 2 . Then $2^t - 1 \nmid n - 1$ for each integer $t \geq 2$ if and only if for each ring R such that $x^n = x$ and 2x = 0 for each $x \in R$ implies that R is boolean.

PROOF. Suppose $2^t - 1|n - 1$ for some integer $t \ge 2$. Let R denote the Galois field GF (2^t) . If $x \in R$, with $x \ne 0$, then $x^{2^t-1} = 1$ and thus $x^{n-1} = 1$ since $2^t - 1|n - 1$. Hence $x^n = x$. Since $0^n = 0$, we thus have that $x^n = x$ for each $x \in R$. It is well known that $GF(2^t)$ is of characteristic 2. Consequently, $R = GF(2^t)$ is a ring such that $x^n = x$ and 2x = 0 for each $x \in R$, however R is not boolean. Next assume that $2^t - 1 \nmid n - 1$ for each $t \ge 2$. Suppose to the contrary that there exists a nonboolean ring R such that $x^n = x$ and 2x = 0 for each $x \in R$. Then there exists an $a \in R$ such that $a^2 \ne a$. Consider $\langle a \rangle$, the subring of R generated by a. First, note that $\langle a \rangle$ is finite and commutative. Also, $\langle a \rangle$ is semi-simple since, for each $x \in \langle a \rangle$, x^{n-1} is idempotent and the Jacobson radical of $\langle a \rangle$ does not contain non-zero idempotent elements. Hence, by the Wedderburn-Artin theorem, $\langle a \rangle$ is a direct sum of finitely many Galois fields of characteristic 2, say, $\langle a \rangle = \sum_{i=1}^{m} \bigoplus GF(2^{t_i})$. Clearly, $2^{t_i} - 1 \mid n - 1$ for $i = 1, 2, \cdots, m$ and thus $t_i = 1$ for $i = 1, 2, \cdots, m$ since $2^t - 1 \nmid n - 1$ for each $t \ge 2$. Hence $a^2 = a$ and this is a contradiction. Therefore if R is a ring of characteristic two such that $x^n = x$ for each $x \in R$, then R is boolean. 3. A SPECIAL CLASS OF MATRICES.

Let k denote an integer ≥ 2 . For each such k, define the matrix M_k to be the matrix with k columns whose rows are of the form $[k - t_1, k - t_2, \dots, k - t_k]$, where each t_1, t_2, \dots, t_k is a non-negative integer such that $t_1 \geq t_2 \geq \dots \geq t_k$ and $2^{t_1} + 2^{t_2} + \dots + 2^{t_k} = 2^k$. Furthermore, if $r = [k - t_1, k - t_2, \dots, k - t_k]$ and $r' = [k - t'_1, k - t'_2, \dots, k - t'_k]$ are two rows in M_k , then r is a above r' if and only if either $k - t_1 < k - t'_1$ or $k - t_i = k - t'_i$ for $i = 1, 2, \dots, m$ and $k - t_{m+1} < k - t'_{m+1}$.

The following lemma and theorem will give an inductive method for constructing the above type of matrices.

LEMMA 2. Let k denote an integer ≥ 2 . Let each of t and t_1, t_2, \dots, t_k denote a nonnegative integer such that $2^{t_1} + 2^{t_2} + \dots + 2^{t_k} = 2^t$, where $t_1 \geq t_2 \geq \dots \geq t_k$. Then $t_{k-1} = t_k$.

PROOF. Clearly $t > t_i$ for $i = 1, 2, \dots, k$. From $2^{t_1} + 2^{t_2} + \dots + 2^{t_k} = 2^t$, we obtain $2^{t_1-t_k} + 2^{t_2-t_k} + \dots + 2^{t_{k-1}-t_k} + 1 = 2^{t-t_k}$. Since 2^{t-t_k} is even, then at least one of $t_i - t_k, 1 \le i \le k-1$, is zero, say, $t_j - t_k$. Then $t_j = t_k$ which implies that $t_{k-1} = t_k$ since $t_j \ge t_{k-1} \ge t_k$.

LEMMA 3. Let k denote an integer ≥ 2 . If l is an integer, with $2 \leq l \leq k$, and if each of t_1, t_2, \dots, t_l is a nonnegative integer such that $2^{t_1} + 2^{t_2} + \dots + 2^{t_l} = 2^k$, then $t_i > 0$ for all $i, 1 \leq i \leq l$.

PROOF. The proof is by induction on k. Let S denote the set such that $k \in S$ if and only if $k \ge 2$ and $2^{t_1} + 2^{t_2} + \cdots + 2^{t_l} = 2^k$ implies that $t_i > 0$ for $1 \le i \le l$, where $2 \le l \le k$. For k = 2, the only equation, since l = 2, is $2^{t_1} + 2^{t_2} = 2^2$ and this implies that $t_1 = t_2 = 1$. Thus $2 \in S$. Let $k \in S$. Next, let $2 \le l' \le k + 1$ and suppose $t'_1 \ge t'_2 \ge \cdots \ge t'_{l'} \ge 0$ such that $2^{t'_1} + 2^{t'_2} + \cdots + 2^{t'_{l'}} = 2^{k+1}$. Now, suppose there exits a t'_i which is zero. Then either all of the t'_i 's are zero, and thus l' would be even in that case or there exists a j such that $t'_j > 0$ with $t'_{j+1} = 0$ and this would imply that there exists again an even number of t'_i 's equal to zero. Hence, in either ease, we can group the $2^{o's}$ in pairs and obtain either $(2^o + 2^o) + (2^o + 2^o) + \cdots + (2^o + 2^o) = 2^{k+1}$ or $2^{t'_1} + 2^{t'_2} + \cdots + 2^{t'_j} + (2^o + 2^o) + \cdots + (2^o + 2^o) = 2^{k+1}$. Since $2^o + 2^o = 2$, we have either $2^1 + 2^1 + \cdots + 2^1 = 2^{k+1}$ or $2^{t'_1} + 2^{t'_2} + \cdots + 2^{t'_j} + 2^1 + \cdots + 2^1 = 2^{k+1}$ and this gives, on dividing both sides by 2, either $2^o + 2^o + \cdots + 2^o = 2^k$ or $2^{t'_1-1} + 2^{t'_2-1} + \cdots + 2^{t'_j-1} + 2^o + \cdots + 2^o = 2^k$. Note that the number of terms on the left in either equation is now $\le k$. Hence we have arrived at a contradiction since $k \in S$ implies that all of the exponents in either equation must be positive. Therefore $k + 1 \in S$ and this completes the induction argument.

COROLLARY 4. $M_2 = [1, 1].$

PROOF. For k = 2, we consider $2^{t_1} + 2^{t_2} = 2^2$. From Lemma 2, we have that $t_1 = t_2$. Thus $2^{t_1+1} = 2^2$ which implies that $t_1 = 1$. Since $t_2 = t_1$, we have that $t_2 = 1$. Hence $M_2 = [k - t_1, k - t_2] = [2 - 1, 2 - 1] = [1, 1]$. THEOREM 5. Suppose $M_k = [s_{ij}^{(k)}]$. Then the rows of M_{k+1} are precisely the rows obtained from the rows of M_k by replacing one entry $s_{ij}^{(k)}$ by the 1×2 matrix $[s_{ij}^{(k)} + 1, s_{ij}^{(k)} + 1]$, and following this by a suitable rearrangement of the entries.

PROOF. First, we will show that a row obtained from the i^{th} row of M_k by replacing the entry $s_{ij}^{(k)}$ by $[s_{ij}^{(k)} + 1, s_{ij}^{(k)} + 1]$ is, follwed by a suitable rearrangement of the entries, a row in the matrix M_{k+1} , that is, $[s_{i1}^{(k)}, \dots, s_{i,j-1}^{(k)}, s_{ij}^{(k)} + 1, s_{ij}^{(k)} + 1, s_{i,j+1}^{(k)}, \dots, s_{ik}^{(k)}]$ follwed by rearranging the numbers in ascending order will be a row in M_{k+1} . To see that this is the case, consider, from the definition of M_{k+1} , the sum $\sum_{q=1}^{j-1} 2^{k+1-s_{iq}^{(k)}} + 2^{k+1-(s_{ij}^{(k)}+1)} + 2^{k+1-(s_{ij}^{(k)}+1)} + \sum_{q=j+1}^{k} 2^{k+1-s_{iq}^{(k)}} = \sum_{q=1}^{j-1} 2^{k+1-s_{iq}^{(k)}} + 2^{k+1-s_{iq}^{(k)}} = 2 \sum_{q=1}^{k} 2^{k-s_{iq}^{(k)}} = 2 \cdot 2^k = 2^{k+1}$. Hence, from the definition the definition of M_{k+1} is a plane and what we stated a here.

definition of M_{k+1} , we have confirmed what we stated above

Next, we need to show that each row of M_{k+1} is obtained from a certain row of M_k by the above described replacement. Let $r_i = [s_{i1}^{(k+1)}, s_{i2}^{(k+1)}, \cdots, s_{i,k+1}^{(k+1)}]$ be the i^{th} row of M_{k+1} . Then, from the definition of M_{k+1} and Lemma 3, $\sum_{q=1}^{k+1} 2^{k+1-s_{iq}^{(k+1)}} = 2^{k+1}$ and $1 \le s_{i1}^{(k+1)} \le s_{i2}^{(k+1)} \le \cdots \le s_{ik}^{(k+1)} \le s_{i,k+1}^{(k+1)} \le k$. By Lemma 2, $k+1-s_{ik}^{(k+1)} = k+1-s_{i,k+1}^{(k+1)}$ or $s_{ik}^{(k+1)} = s_{i,k+1}^{(k+1)}$. Thus $2^{k+1} = \sum_{q=1}^{k+1} 2^{k+1-s_{iq}^{(k+1)}} + 2^{k+2-s_{ik}^{(k+1)}}$. Since $k+1-s_{iq}^{(k+1)} \ge 1$ for $q = 1, 2, \cdots, k$, we thus have that $2^k = \sum_{q=1}^{k-1} 2^{k-s_{iq}^{(k+1)}} + 2^{k+1-s_{ik}^{(k+1)}} = \sum_{q=1}^{k-1} 2^{k-s_{iq}^{(k+1)}} + 2^{k-(s_{ik}^{(k+1)}-1)}$.

Hence, after a suitable rearrangement of the entries, $[s_{i1}^{(k+1)}, \dots, s_{i,k-1}^{(k+1)}, s_{ik}^{(k+1)} - 1]$ will be a row in M_k , that is, $[s_{i1}^{(k+1)}, \dots, s_{i,k-1}^{(k+1)}, s_{ik}^{(k+1)} - 1] = [s_{p\sigma(1)}^{(k)}, \dots, s_{p,\sigma(k-1)}^{(k)}, s_{p,\sigma(k)}^{(k)}]$ for some p and some permutation σ on the set $\{1, 2, \dots, k\}$.

for some p and some permutation σ on the set $\{1, 2, \dots, k\}$. By noting that $s_{ik}^{(k+1)} = s_{p,\sigma(k)}^{(k)} + 1$ and $s_{ik}^{(k+1)} = s_{i,k+1}^{(k+1)}$, we can thus conclude that r_i is obtained from the p^{th} -row of M_k by replacing the entry $s_{p,\sigma(k)}^{(k)}$ by the matrix $[s_{p,\sigma(k)}^{(k)}+1, s_{p,\sigma(k)}^{(k)}+1]$ and followed by a suitable rearrangement of the entries.

As a result of Corollary 4 and Theorem 5, we can easily exhibit the matrices M_k . For example, $M_2 = [1, 1], M_3 = [1, 2, 2], M_4 = \begin{pmatrix} 1 & 2 & 3 & 3 \\ 2 & 2 & 2 & 2 \end{pmatrix}$, and $M_5 = \begin{pmatrix} 1 & 2 & 3 & 4 & 4 \\ 1 & 3 & 3 & 3 & 3 \\ 2 & 2 & 2 & 3 & 3 \end{pmatrix}$.

LEMMA 6. Let each of m, m' and t denote a positive integer. Then $2^m \equiv 2^{m'} \mod(2^t - 1)$ if and only if $m \equiv m' \mod t$.

PROOF. Assume $m \ge m'$. Suppose $m \equiv m' \mod t$. Then, m = m' + kt for some integer $k \ge 0$. Thus $2^m - 2^{m'} = 2^{m'+kt} - 2^{m'} = 2^{m'}(2^{kt} - 1)$. Now $2^t - 1|2^{kt} - 1$ and so $2^m \equiv 2^{m'} \mod(2^t - 1)$. Conversely, suppose $2^m \equiv 2^{m'} \mod(2^t - 1)$. Then $2^t - 1|2^m - 2^{m'} = 2^{m'}(2^{m-m'} - 1)$. Since gcd $(2^t - 1, 2^{m'}) = 1$, we thus have that $2^t - 1|2^{m-m'} - 1$. Hence t|m - m' and therefore $m \equiv m' \mod t$.

THEOREM 7. Let $n = 2^{m_1} + 2^{m_2} + \cdots + 2^{m_k}$, where $k \ge 2$, and each m_i is a nonnegative integer. Also, let t denote an integer ≥ 2 . Then $2^t - 1|n - 1$ if and only if

$$t|gcd(m_{\sigma(1)} + s_{i1}^{(k)}, m_{\sigma(2)} + s_{i2}^{(k)}, \cdots, m_{\sigma(k)} + s_{ik}^{(k)})$$

for some i and some permutation σ on the set $\{1, 2, \dots, k\}$, where $[s_{i1}^{(k)}, s_{i2}^{(k)}, \dots, s_{ik}^{(k)}]$ is the i^{th} row of M_k .

PROOF. Suppose there exists a row *i* in M_k and a permutation σ on the set $\{1, 2, \dots, k\}$ such that gcd $(m_{\sigma(1)} + s_{i1}^{(k)}, m_{\sigma(2)} + s_{i2}^{(k)}, \dots, m_{\sigma(k)} + s_{ik}^{(k)}) = d$ is divisible by the integer $t, t \geq 0$

2. Let q denote a positive integer such that $qt \ge k$. Then $m_{\sigma(j)} \equiv qt - s_{ij}^{(k)} \mod t$ for $j = 1, 2, \dots, k$. Hence, by Lemma 6, we have that $n-1 = 2^{m_{\sigma(1)}} + 2^{m_{\sigma(2)}} + \dots + 2^{m_{\sigma(k)}} - 1 \equiv 2^{qt-s_{i1}^{(k)}} + 2^{qt-s_{i2}^{(k)}} + \dots + 2^{qt-s_{ik}^{(k)}} - 1 \mod (2^t - 1)$. Now, from the definition of the matrices M_k , we have that $2^{k-s_{i1}^{(k)}} + 2^{k-s_{i2}^{(k)}} + \dots + 2^{k-s_{ik}^{(k)}} = 2^k$. Multiplying both sides by 2^{qt-k} gives $2^{qt-s_{i1}^{(k)}} + 2^{qt-s_{i2}^{(k)}} + \dots + 2^{qt-s_{ik}^{(k)}} = 2^{qt}$. Hence $n-1 \equiv 2^{qt} - 1 \mod (2^t - 1)$. Since $2^t - 1|2^{qt} - 1$, we thus have that $2^t - 1|n-1$.

Next, assume $2^t - 1|n-1$, where t is an integer ≥ 2 . Also, suppose $n = 2^{m_1} + 2^{m_2} + \cdots + 2^{m_k}$, where each m_i is a nonnegative integer. We want to show that $t|gcd(m_{\sigma(1)} + s_{i1}^{(k)}, \cdots, m_{\sigma(k)} + s_{ik}^{(k)})$ for some permutation σ and some row i of M_k . We will proceed by induction on k.

Suppose k = 2 and $n = 2^{m_1} + 2^{m_2}$. Let $m_1 \equiv m'_1 \mod t$ and $m_2 \equiv m'_2 \mod t$, where $0 \leq m'_1, m'_2 \leq t-1$. Then, by Lemma 6, $n \equiv 2^{m'_1} + 2^{m'_2} \mod (2^t-1)$. If $m'_1 \neq m'_2$, then $2^{m'_1} + 2^{m'_2} - 1 \leq 2^{t-1} + 2^{t-2} - 1 < 2^{t-1} + 2^{t-1} - 1 = 2^t - 1$ and this is a contradiction since $2^t - 1|2^{m'_1} + 2^{m'_2} - 1$. Hence $m'_1 = m'_2$ and $0 \equiv n-1 \equiv 2^{m'_1+1} - 1 \mod (2^t-1)$. Thus $2^t - 1|2^{m'_1+1} - 1$ which implies that $t|m'_1+1$. Since $1 \leq m'_1+1 \leq t$, we can conclude that $m'_1+1=t$. Thus $m'_1 = m'_2 = t-1$ and consequently $m_1+1 \equiv m_2+1 \equiv 0 \mod t$. Therefore $t|gcd(m_1+1,m_2+1) = gcd(m_1+s^{(2)}_{11},m_2+s^{(2)}_{12})$ from the definition of M_2 .

Now suppose $k > 2, n = 2^{m_1} + 2^{m_2} + \dots + 2^{m_k}$, and $2^t - 1|n-1$, where $t \ge 2$. Let $m_i \equiv m'_i \mod t$ for $i = 1, 2, \dots, k$, where $0 \le m'_i \le t - 1$. We claim that the numbers m'_i cannot be all distinct. For, suppose that they were all distinct. Then $2^{m'_1} + 2^{m'_2} + \dots + 2^{m'_k} - 1 \le 2^{t-1} + 2^{t-2} + \dots + 2^{t-k} - 1 < 2^t - 1$. Now, by Lemma 6, $m_i \equiv m'_i \mod t$ implies that $2^{m_i} \equiv 2^{m'_i} \mod (2^t - 1)$ for $i = 1, 2, \dots, k$. Thus $2^t - 1|2^{m'_1} + 2^{m'_2} + \dots + 2^{m'_k} - 1$ and this contradicts the above statement that $2^{m'_1} + 2^{m'_2} + \dots + 2^{m'_k} - 1 < 2^t - 1$. Hence there exists an ℓ such that $m'_\ell = m'_{\ell+1}$. For convenience, we will assume $\ell = k - 1$. Then $2^{m'_1} + 2^{m'_2} + \dots + 2^{m'_k} - 1 = 2^{m'_1} + 2^{m'_2} + \dots + 2^{m'_{k-2}} + 2^{m'_{k-1}+1} - 1$. Now, by the induction hypothesis there is a permutation σ on the set $\{1, 2, \dots, k - 1\}$ and a row i in M_{k-1} such that $t|gcd(m'_{\sigma(1)} + s^{(k-1)}_{i_1}, \dots, m'_{\sigma(k-1)}] = m'_{\sigma(k-1)} \mod t$, we thus see that $t|gcd(m_{\sigma(1)} + s^{(k-1)}_{i_1}, \dots, m_{\sigma(j)} + 1 + s^{(k-1)}_{i_j}, \dots, m_{\sigma(k-1)} + s^{(k-1)}_{i_k,k-1}]$ Now recalling that $m'_{k-1} = m'_k$ implies that $m_{k-1} + 1 + s^{(k-1)}_{i_j} \equiv m_k + 1 + s^{(k-1)}_{i_j} \mod t$, we finally obtain that $t|gcd(m_{\sigma(1)} + s^{(k-1)}_{i_1}, \dots, m_{k-1} + 1 + s^{(k-1)}_{i_j}, m_k + 1 + s^{(k-1)}_{i_j}, \dots, m_{\sigma(k-1)} + s^{(k-1)}_{i_k,k-1}]$. This completes the proof since $\{m_{\sigma(1)}, \dots, m_{k-1}, m_k, \dots, m_{\sigma(k-1)}\}$ is a rearrangement of $\{m_1, m_2, \dots, m_k\}$ and $[s^{(k-1)}_{i_1}, \dots, s^{(k-1)}_{i_j-1}, 1 + s^{(k-1)}_{i_j}, s^{(k-1)}_{i_j+1}, \dots, s^{(k-1)}_{i_k,k-1}]$ is, on being rearranged in ascending order, a certain row of the matrix M_k which is obtained from the i^{th} row of M_{k-1} by replacing the j^{th} entry by the 1×2 matrix $[1 + s^{(k-1)}_{i_j}, 1 + s^{(k-1)}_{i_j}]$.

4. MAIN RESULT.

THEOREM 8. Let k denote an integer ≥ 2 and let $n = 2^{m_1} + 2^{m_2} + \cdots + 2^{m_k}$, where each m_i is a nonnegative integer. Also, let C denote the set such that $R \in C$ if and only if R is a ring of characteristic two and $x^n = x$ for each $x \in R$. Then the following two statements are equivalent.

- 1) Each member in C is boolean.
- 2) $gcd(m_{\sigma(1)} + s_{i1}^{(k)}, m_{\sigma(2)} + s_{i2}^{(k)}, \cdots, m_{\sigma(k)} + s_{ik}^{(k)}) = 1$ for each permutation σ on the set $\{1, 2, \cdots, k\}$ and for each row $[s_{i1}^{(k)}, s_{i2}^{(k)}, \cdots, s_{ik}^{(k)}]$ in M_k .

PROOF. Suppose each member in C is boolean. Then, by Theorem 1, there does not exist an integer $t \ge 2$ such that $2^t - 1|n - 1$. Hence, by Theorem 7, if $t \ge 2$, then $t \nmid gcd(m_{\sigma(1)} + s_{i1}^{(k)}, \dots, m_{\sigma(k)} + s_{ik}^{(k)})$ for each σ and each *i*. Thus $gcd(m_{\sigma(1)} + s_{i1}^{(k)}, \dots, m_{\sigma(k)} + s_{ik}^{(k)}) = 1$ for each *i* and σ .

Conversely, if $gcd(m_{\sigma(1)} + s_{i1}^{(k)}, \cdots, m_{\sigma(k)} + s_{ik}^{(k)}) = 1$ for each *i* and σ , then, by Theorem 7,

 $2^t - 1 \nmid n - 1$ for each integer $t \ge 2$. Hence, by Theorem 1, R is boolean for each $R \in C$.

5. EXAMPLES ILLUSTRATING THEOREM 8.

LEMMA 9. Let R denote a ring and let $x \in R$ such that $x^n = x$ for some integer $n \ge 2$. If each of h and k is a positive integer such that $h \equiv k \mod (n-1)$, then $x^h = x^k$.

This result can be obtained easily by induction, see [1].

LEMMA 10. Let R denote a J-ring of characteristic two and suppose n is a positive integer ≥ 2 . The following two statements are equivalent.

1) $x^n = x$ for each $x \in R$.

2) $x^{2n-1} = x$ for each $x \in R$.

PROOF. Suppose (1) holds. Then (2) is immediate by Lemma 9. Next, suppose $x^{2n-1} = x$ for each $x \in R$. Then $x^{2n} = x^2$ and thus $(x + x^n)^2 = x^2 + x^{2n} = 0$ since R is of characteristic two. Hence $x^n = x$ since a J-ring does not contain non-zero nilpotent elements.

THEOREM 11. Let R denote a ring of characteristic two. Suppose each of s and t is a positive integer with $s \neq t$ and gcd(s,t) = 1. If $x = x^{2^{s}} = x^{2^{t}}$ for each $x \in R$, then R is boolean.

PROOF. We may assume that s > 1. Then $x = x^{2^{s}} = xx^{2^{s}-1} = x^{2^{t}}x^{2^{s}-1} = x^{2^{t}+2^{s}-1} = x^{2(2^{t}-1}+2^{s}-1)^{-1}$ for each $x \in R$. Hence, by Lemma 10, $x = x^{2^{t}-1}+2^{s}-1$ for each $x \in R$. Now $M_{2} = [1,1]$ and gcd(t-1+1,s-1+1) = gcd(t,s) = 1. Consequently, by Theorem 8, we have that R is boolean.

The following examples illustrate the use of some of the preceding theorems.

EXAMPLE 1. Let R denote a ring of characteristic two such that $x^{595} = x$ for each $x \in R$. Since 595 = 2(298) - 1 and $x^{595} = x$ for each $x \in R$ is equivalent, by Lemma 10, to $x^{298} = x$ for each $x \in R$, we can thus apply our results to $x^{298} = x$. Now $298 = 2^1 + 2^8 + 2^5 + 2^3$. Using the matrix M_4 and applying Theorem 8, we obtain $gcd(1 + s_{11}^{(4)}, 8 + s_{12}^{(4)}, 5 + s_{13}^{(4)}, 3 + s_{14}^{(4)}) = gcd(1 + 1, 8 + 2, 5 + 3, 3 + 3) = gcd(2, 10, 8, 6) = 2 \neq 1$. Hence R is not necessarily boolean.

EXAMPLE 2. Let *m* denote a nonnegative integer. Let *R* denote a ring of characteristic two and suppose $x^n = x$ for each $x \in R$, where $n = 2^m + 2^{m+1} + 2^{m+2}$. Take $M_3 = [1, 2, 2]$. Now gcd(m+1, m+1+2, m+2+2) = 1, gcd(m+2+1, m+1+2, m+2) = 1, and gcd(m+1+1, m+2+2, m+2) = gcd(m+2, m+4). Thus, by Theorem 8, *R* is boolean if gcd(m+2, m+4) = 1, that is, if *m* is odd, and not necessarily boolean if *m* is even.

REFERENCES

- AYOUB, R. and AYOUB, C. On commutativity of rings, <u>Amer. Math. Monthly</u>, <u>71</u>, (1964), 267-271.
- BATBEDAT, A. Anneaux d'order n, <u>Rev.Roumaine</u> <u>Math.Pures</u> <u>Appl.</u>, <u>16</u>, (1971), 1305-1311.
- JACOBSON, N. <u>Structure of rings</u>, Amer. Math. Soc. Colloq. Publ., New York, <u>37</u>, (1956).
- 4. MACHALE, D. A remark on boolean rings, Mathematics Magazine, 63, (1990), 248-249.
- 5. SHIUE, J. S. and CHAO, W.M. On boolean rings, Yokohama Math. J., 24, (1976), 93-96.