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ABSTRACT. Some biorthogonal polynomials of Hahn and Pastro are derived using a polynomial
modification of the Lebesgue measure dO combined with analytic continuation. A result is given
for changing the measures of biorthogonal polynomials on the unit circle by the multiplication of

their measures by certain Laurent polynomials.

KEY WORDS AND PHRASES: Biorthogonal polynomials, a formula of Christoffel, change of

weight, unit circle, determinant.

1991 AMS SUBJECT CLASSIFICATION CODES: Primary: 42C05 Secondary: 33A65

le INTRODUCTION
In [9], Pastro introduced a pair of polynomial sets which are biorthogonal on the unit circle

with respect to the weight function

f,z(z;q2)
(q2;q)(R) (abq2;q)(R) (qz ;qZ)(R) (qz-1;q )(R)

(aq2;q)(R)(bq;q)(R)(qaz;q)(R)(qbz_;q2)(R)
z ei

where

(t;q),, H(1-a), (t;q). H(1-a).
-0 -0

To be precise, he showed that if .(z)} and q.(z)} are defined by

p.(z) p.(z,a,b (;q)(b;q)"
-0 (q;q) (q;q).

_ (q-z)

and

q.(z)-q.(z,a,b)-p.(z,E
then

p.(z)q.(z)fl(z;qO
(;q).
(q;q),

q-6,,, z-e (1.1)

Pastro sume the parameters a and b are real but as -Salam and Ismail note 1] they do not have

to be. ese polynomials generalize those of key (a b, both real), and Szegfi (a b 0), see

[10]. A weit equivalent to z;q) was considered earlier by Hahn [4] in the case of real coef-

ficients.

Throughout this paper we assume that q is real and, for convergence of the infinite products,
< - nsidering the denominator of (z;q) we also want [q[ < 1 and[qbz-[ 1, that is

<l l <l l
Wealso require that [ < 1 andl < . Hote that these restrictions, besides euring convergence

and existence, make both sides of equation (1.1) analytic in the parameters a and b. is we will

need in ction 3.
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In section 2 we state, in determinant form, a pair of polynomial sets which are biorthogonal on

the unit circle with respect to the measure

dv(O).z-"(z_at)(z-oa)...(z-cq)dO z.e’
assuming that no a is zero and that 0 m h.

In Section 3 we show how these yield Pastro’s polynomials in the special case a q2,, b

The full result follows by analytic continuation.

Pastro also gave in [9] explicit examples of Laurent orthogonal polynomials, making concrete

the earlier work of Jones and Thron [7] in which such "polynomials" were introduced. (They are

not actually polynomials, they contain both positive and negative powers of their variable.) More

than this, he states an interesting connection between biorthogonal polynomials and orthogonal

Laurent polynomials.

There is a well-known formula of Christoffel for modifying the measure da(x) by polynomial

multiplication. That is, let

o(x (x x)(x x2). .(x x,)

be a polynomial which is non-negative on [a,b and let {q,(x)} be the polynomials orthogonal with

respect to the new measure p(x)dcx(x) on [a,b]. Then the polynomials {q,,(x)} can be represented

in terms of the polynomials {p,(x)} by

p(x)q,(x c,det

for suitable constants c,,.

p.(x,) p./(x,)

Both this formula of Christoffel and a related formula of Uvarov carry over to polynomials

orthogonal on the unit circle. See Godoy and Marcellan [3] or Ismail and Ruedemann [6]. The

natural question is, does this formula of Christoffel have an analogue for biorthogonal polynomials

on the unit circle? In Section 4 we show how a trivial modification of the result in [6] yields a result

for biorthogonal polynomials, at least for certain cases. Unfortunately, we only allow certain

modifications and must assume that certain determinants do not vanish. Actually, this assumption

of nonzero determinants is common to biorthogonality (see the work of Baxter [2]).
In the remainder of this paperwe adopt the following notation. For p,(z) a polynomial ofdegree

r we define p(z) z" ,(z-1). For nonzero complex numbers t, ct" denotes 1/. Finally, z denotes

eie in the integrals presented.

2. A PAIR OF BIORTHOGONAL POLYNOMIAL SETS
In this section we consider a pair of polynomial sets which are biorthogonal on the unit circle

with respect to the measure

dv(O).z-"(z_ctl)(z_%)...(z_ah)dO z.ei

assuming that no ctj is zero and that 0 m -: h. First we need two lemmas.

LEMMA 1. Assume that 0<rn h and define n(z)by
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det

z’/" z’-I z" -= z 1
m-1

C (Z (Z 0. 1

C/- -1 {L-2 Ct2

Then if p._ (z) is a polynomial of degree at most n 1 we have

xp.(z)p._,(z)[z-’(z -a)(z -c)...(z -a)o o.

LEMMA 2. Still assuming that 0 rn h we define 9.(z) by

( -<)( ;)...( -,:),.()-

det

Z" +k Z" +h-1 Z" +h-m Z
k-m-1 Zk-m-2 Z l

+h +h-1 +h-m -m-1 -m-2 et 1(1 (,1 (ll (ll (ll

4.-, ;.-,-, ;..,-. ?-.-, ?-.-
(2.2)

3. APPLICATION TO THE POLYNOMIALS OF PASTRO
In this section we will consider the weight

(qz;q2)(R)(qz-’;q2)
w(z)

(aqz;q)(R)(bqz_;q)(R)
z e

and derive Pastro’s biorthogonal polynomials using Theorem 1 above and the same idea behind

Ismail’s [5] proof of Ramanujan’s lapl-summation. Namely, we choose appropriate values for the

where no % is zero and ct. 1/-. Then if p._ x(z) is a polynomial of degree at most n 1 we have

p. ,(z ,.(z [z-(z a,) (z c). .(z a)]ao o

THEOREM 1. Let the polynomial sets {ap,,(z)} and {,(z)} be defined as in the above two

lemmas. Assume, moreover, that for each n, ap.(z) and ,(z) are of precise degree n. (This is

equivalent to assuming certain subdeterminants in equations (2.1) and (2.2) are nonzero.) Then,

provided that for each n we have,

,[z-(z ct,) (z ,)...(z a,)]a0 ,, 0,

these polynomial sets are biorthogonal on the unit circle with respect to the measure

dv(O)-z-(z-aO(z-ag...(z-a,)dO, z-e’
where 0 s m s h and no ct is zero.
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parameters a and b, and then use analytic continuation to get the full result.

For the choice of a -q2, and b -qZ, we have

(qz;q2)(R)(qz-;q2)(R)
w(z)

(q2, z;q2)(R)(q2, lz-;q2)(R)

(qz;q), (qz-;q

[(1 -qz)(1 q3z)...(1 -q2,-lz)] [(1 -qz-)(1 -q3z-)...( q2-z-)]

q’(-1)’z-’[(z q42" ’) (z q 42" -a). .(z q-a) (z q-’)][(z q (z qa). ..(z qZ,-,)]

Note that the zeros of w(z) increase by factors of q’ and, moreover, the conjugation w(z) merely

switches the roles of r and s. We are now ready to apply our lemmas.

Let h r + s and m s in Lemma 1 and let

qZ,-a, _qZ,-cq q4’-),cz-q’’-), .,a ct,/,

Define p.(z) by

Z Z
+4-1 Z Z4-1 Z4-2 Z 1

+r+4-1 -I -2

1
.(z) -z)det (3.1)

a,. a;:/4 a a,+4 a+4 ct,+, 1

where (z) denotes the Vandermonde determinant, or difference product, on

{Z,q-(2,-1), q-(2, a) ,q2 -3, q2- 1}.
Let ht denote the complete symmetric function on {z,q-a’-),q-a’-3), q2,-a,q2,-} and let j

denote the complete symmetric function on {q-a,-X),q-a,-a) ,q2-3,q2,-x}. We set he- jo- 1 and

h_ j. 0 for k > O.

Note that
h, zh, -1 +.h (3.2)

for all integers k.

By use of the Jaeobi-Trudi identity, equation (3.4) in [8], we may write

W.(z aet

h hi ...h,_l h,/4 h,/4/1 ...h,/,/4
h_ h ...h4_ h h,/4 ...h

h..+ ...h h,/ h,+ ...h

h..,+ ...h_ h, h,/l ...h,
h_, ...h_ h,_ h,, ...h
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Thus

,,(z)- det

and using (3.2) repeatedly we get

where

h. h, h, /2 ...h.
h, h, h, ...h,

h._, h h .-. }

p,(z)-A,.,z" +A....F"-x + +A,.F +A,.

I

I

detl.j,A

-/,) J.-,/ J.-,/2 ""J.
The problem now is to evaluateA.,t in general We have r + s zeros in our weight function butA.,t
is only a (r + 1) by (r + 1) determinant. We "fill out" A.,t and use the Jacobi-Trudi identity in reverse.

A Jl "L -2 L -k -1 L "L +1 "L
J-x Jo ""J,-, L -* /,-2 L +,-1 ""L "".

J-, J-,/l ""J-2 J,-t-1 J, J,,.1 ""J,/,-1

That is,

A,. det

J--r
Now setting

o, -(2a" I)[0+ 1 +... + (s-2) +(n -k +s- l)+(n +s)+(n +s + I) +... +(n +r +s I)],

we find

A., q’(1, q2,q4 qa,-2, qa,, - /.-i), q2,, /,), qa. i), qa. b
(q--1),q42,-s), ...,qZ,-S, q2,-1)

and straightforward but rather tedious calculations yield

A,.,/I -1 (1-qa"-*))(1-qz(+’/l))
A,,,, "q

(1- qa" -* /’-1)) (1 qZ(* 1))"
Thus

so that

A.,t
.q-1 (q2;q2) -t

(q2;q2) -/-I (q2,q2;q2)
(q2,;q2). -(qZ’;q2) _t_

(q2;q2)t
(q2;q2) ])
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where a q2" and b qZ,. At this point we know that for a suitable constant c.

V,(z) c,ko (aq?;q2)(b;q2)"-k )
(q:’;q)k (q;q?)._

(q-lz

To sum things up, if we define as Pastro does,

p,,(z,a,b i (aq;q2)’ (b;q2)"-’
(q-z)

-0 (q:,;q2)t (q;q,),, -,

then

z-ei

for our particular choice of a and b.

We could use Lemma 2 to find the other set of polynomials required for biorthogonality but,
as noted previously, the conjugation of the weight function w(z) merely switches the roles of r and

s and hence those of a and b as well. Thus the polynomials q,,(z,a,b): p,,(z,b,a) satisfy

z-e

At this point we have the biorthogonality of the polynomial sets {p,(z)} and {q,(z)}. We still

must compute the value of

p,,(z)q,,(z)w(z)dO.

In fact this poses no great problem. It is fairly easy to see that the monic versions of the polynomials
in Theorem 1, call them {W,,(z)} and {,(z)}, satisfy- %(z) .(z) [z-(z a,)(z ag...(z a,)]dO

Now if we let

det

det

(1/& i +k-1 I /I m-1 .-2 1

a q42,- 1), t q-2"-3),..., ct q-3, (r q2S-
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the right hand side of the previous equation becomes a power ofq times a quotient of Vandermonde

determinants. To be precise, let P,(z) and Q,,(z) denote the monie versions of Pastro’s p,(z) and

q,,(z) respectively. Then

P.()Q.(z)[z"(z-q4-)(z-q-’-)’"(z-qZ’-)(z-qZ’-)]dO

so

(_l)2’-q

..,+ (I q2, 2, 2) (i q2, 2, +4)...(i q2, 2, 7.,)
(-1)’q

(I q2, ) (I q2,, /4)...(I q2, 7.,)

2nr,
P"(z)Q"(z)(qz;q2)’(qz-1;q2)’dO (1 q2"/2"+2))(1-q(2"/2"/4))’"(1-q’/2"/2")

(I q2 2) (i q2 /4)...(i q2, 2,)

and

P,,(z)q,,(z)(qz;q2),(qz-;q’),dO"

(q:,;q2),, q"]
Finally, define

f,d,z;q)
(q2;q:’)(R)(abq-;q2)(R)(qz;q2)(R)(qz-;q :’)(R)

a q2,.

(aq2;q 2)(R) (be/2;q2),, (qaz ;q2)(R) (qbz-;q:)(R),

We get

2.
P"()q"(z) P(z;q2)dO "q- (q,q2;q2).

(q2;q2) (q2;q2),

(qZ,q2;q2),, ][(1 2"/2"/2)(1 2,,/2,./4).
(q2;q2),, q’][

q q ""(1
(1 q 2) (1 q2, /4)...(1 q’ 2,)

(q2;q -)(R) (q2, 2

(q2,.2;q 2)(R) (q2 2;q 2)(R)

q (q2,+2,+2 2,;q ),,(q2;q2),,

(l-q2+2’+2)(l-q2"+2"/4) (I-q2"/2’/2")I

(abq;q’),, - q qZ,
(q2;q2),,

q where a- b-

The full result follows by analytic continuation. Actually, two analytic continuations are needed:

first with respect to the parameter a with b fixed at a qZ,, then with respect to the parameter b.

4. MODIFICATION OF MEASURES BY LAURENT POLYNOMIALS

In this section we start with a measure dv(O) which is not necessarily positive on z e. From

Baxter [2] we know that if certain Toeplitz determinants are nonzero then there exists a unique pair

of polynomial sets which are biorthogonal on the unit circle. We will call this pair {,,(z)} and

{,,(z)}. That is, for any polynomial p,,_l(z) of degree at most n we have
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and that for each n,

..(z)o,_(z)dv(O)- O,_(z)av(0)- 0,

,(z),(z)av(O),,O.

What we want to do is multiply the complex measure dv(O) by a Laurent polynomial and get

determinant formulas for the new biorthogonal polynomials, {ap,(z)} and {,(z)}, in terms of the

old polynomials, {,,(z)} and {,(z)}. Actually, we are going to restrict ourselves to two types of

Laurent polynomials, those of the forms R(z) z-’G,,(z) and R l(z) z-(" 1)G (z), where

G,(z) and Gz,, (z) are polynomials having precise degrees 2m and 2m + 1 respectively. Further-

more, we shall require that neither G,,(z) or G l(z) have z as a factor. We have two eases: the

even case and the odd case.

THEOREM 2. (even case) Let {V.(z)} be given by

’() ’() ...’-’’() <) ) ..."
1

(z.(z)-t (4.)

’) ’<)...-’<) ) <)...<))
where the zeros of G(z) are {a, }, (z) denotes , .,(z), and (z) denotes , .,(z). t

{,(z)} be given by

z z) z z)

(z.(z)-t (.2)

Here we are assuming that the zeros of G(z), {a, }, are paiise distinct, ffor zeros of

multiplicity s,s > 1, we replace the coesponding rows in the determinant by the derivatives of

order 0,1, 2, s 1 of the polynomials in the first row, evaluated at that zero.) Furthermore, we

shall assume that ,(z) and ,(z) are both ofprecise deee n. is is equivalent to assuming ceain

subdeteinants in equations (4.1) and (4.2) are nonzero.

Then for any polynomial p,_ (z) of deee at most n 1 we have

and, assuming that

W,(z) ,(z)z-’O.(z)av(O) ,, o,
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then the polynomial sets {p,,(z)} and {,,(z)} are biorthogonal on the unit circle with respect to the

measure z-"Gz,,(z )dv(O).

THEOREM 3. (odd ease) Set h 2m + and let {,,,(z)} be given by

G(z)V.(z) aet

’() a,’(a,) "^" .."

(4.3)

where the zeros of Gh(z) are {cq, ct2 ct,}, (z) denotes (I),, /,,,(z), and 6(z) denotes ,, /,,,(z). Let

((o)

{,,(z)} be given by

(4.4)zG(z)p,(z det

Unlike the previous three determinants in (4.1) to (4.3), here in (4.4) (z) denotes ,, /,,/l(z), and

(z) denotes l(z). We are assuming that the zeros of zGh(z), {0,ch,(h ct,}, are pairwise
distinct. (We take care of zeros of multiplicity s,s > 1 as usual.) Furthermore, we shall assume that

xp,,(z) and ,,(z) are both of precise degree n. This is equivalent to assuming certain subdeterminants

in equations (4.3) and (4.4) are nonzero.

Then for any polynomial p,,_ l(z) of degree at most n 1 we have

fV.(z)p._,(z)z’/)G. (z)dv(O)- fip.(z)p._(z)z’/)r-.. /(z)a(o)- o

and, assuming that

)G.(z).(z)z .(zv(O)O

then the polynomial sets {,(z)} and {.(z)} are biorthogonal on the unit circle with respect to the

measure z"")G.(zv(O). e unusual form of the determinant in (4.4) comes about as we are

writingzG*. in the form z" zG dz)] so that the same idea behind Theorem 2 applies in a

sense.

5. PROOFS

PROOF OF (2.1). We want to show that if ap,,(z) is defined as in equation (2.1) then for any

polynomial p,,_ (z) of degree at most n we have
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xl,.(z)p._,(z)[z’(z -ct,)(z -)...(z -ct)]ao o.

However, multiplying both sides of (2.1) by z-" and then expanding the determinant along the first

row we find that
+h-m

.(z)[z’(z-ct)Cz-c)...Cz-ct)]- E cz + E c,,z
-1

As each of the terms in the above sums are orthogonal to any p,, (z) the result follows immediately.

PROOF OF (2.2). We want to show that if ,,(z) is defined as in equation (2.2) then for any

polynomial p,_ x(z) of degree at most n we have

fp._,(z) .(z) [z-’Cz ct,) (z a)...(z ct)]ao o.

Conjugating both sides of this equation we see it is equivalent to showing that

,c- o._,Cz ,.cztz-"--’c -,)c -)...Cz -,’)o o

and (2.2) follows as an instance of (2.1) with m replaced by h -m and the at’s replaced by ct,’s.

PROOF OF (4.1). We want to show that if ap,,(z) is defined as in equation (4.1) then for any

polynomial p,,_ (z) of degree at most n 1 we have

,,(z) p._ ,(z) z’G,Cz)av(0) 0.

We only have two types of polynomials in the first row of the determinant in (4.1). We consider

each separately. Let p,,_ (z) be any polynomial of degree at most n 1.

(i) Then, for the polynomials zl,, /,,,(z), where 0,1,2 m, we have

"z’’z"(z
p,,_(z)dv(O)- ,,/,,,(z)z’-’p,,_a(z)dv(O)-O.

(ii) For the polynomials zt: /,(z) we have

z"
p,,_(z)dv(O)- zt-"z"/’,,,/,,,(1/z)p,,_(1/z)dv(O)

I z’/ ,.,/.(z)z"- p._ (llz)av(O)

[...(z)[z’"o;_,Cz)lv(O
-0

for --1, 0,1,2 m 1. Hence from (i), (ii) and (4.1) we see that
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but this is simply

.(z p. (z z-"G(z)dv(0) 0.

[Note: for the polynomials zt /,,(z) we will use the choice --1 in our proof of (4.3). Also, in

(4.1) we may allow 0 values for some %’s. In fact, we make use of this choice in (4.4). The only

reason we are restricting their values here to be nonzero is because of the et.’s in (4.2).]
PROOF OF (4.2). For ,,(z) as defined by (4.2) we want to show that

.Cz) p._,Cz)z-’C,.Cz)av(0) o.

Equivalently, we wish to show that

fZv.(z) p._ (z)z-’.(z) av(O) o

and this we get simply by applying (4.1) to the modification of the measure dv(O) by the Laurent

polynomial z-’G,(z). Note that having dr(O) rather than dr(O) simply switches the roles of z)
and z)in (4.1).

PROOF OF (4.3). We want to show that if ap,,(z) is defined as in equation (4.3) then

.(z) p._(z)z" "a. (z)av(O) O

Considering the first row of the determinant in (4.3) we see that this is equivalent to showing that

z./
o._(z)av(O)-

,./.(z)
z"

p._(z)av(O)-O

for 1,2 m + 1 and that

p. _l(Z) dv(O) O

for -0,1,2, m. However, these statements are equivalent to (i) and (ii) in our proof of (4.1).
PROOF OF (4.4). Finally, we want to show that if .(z) is defined as in equation (4.4) then

.(z) o.- (z)z" ".,(zv(O) o

that is, we want

Here the problem is that

.(z)Co._(z))(z". (z))(av(o)) o

z-’/’)Gz.+ ,(z) (constant) z4" /’)G,/ l(z)

so that we cannot use (4.3) to get (4.4). In fact,

z4"/l)Gz/(z) (constant) z G/(z)
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However, we get around this by applying (4.1) to the modification ofdr(O) by z4’’ )H2t,,,. (z)where

U:,,, /,,(z):

[This is what accounts for the unusual form of (4.4).]

6. REMARKS

We have found we may modify the Lebesgue measure dO on the unit circle by multiplication

by any Laurent polynomial whose zeros we know, provided certain determinants were nonzero.

When we passed to the more general problem, as we did in section 4, of multiplying an unknown

measure dv(O) by Laurent polynomials, we restricted which Laurent polynomials we could use. This

made the proofs for that section straightforward. However, this restriction is unsatisfying--at least

to the author--but at the present time it is still unresolved.
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