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ABSTRACT. In this paper we show that a direct decomposition of modules M N,

with N homologically independent to the inJective hull of H, is a CS-module if

and only if N is injective relative to H and both of M and N are CS-modules.

As an application, we prove that a direct sum of a non-singular semisimple

module and a quasi-continuous module with zero socle is quasi-continuous. This

result is known for quasi-inOective modules. But when we confine ourselves to

CS-modules we need no conditions on their socles. Then we investigate direct

sums of CS-modules which are pairwise relatively inective. We show that every

flnite direct sum of such modules is a CS-module. This result is known for

quasi-continuous modules. For the case of infinite direct sums, one has to add

an extra condition. Finally, we briefly discuss modules in which every two

direct summands are relatively inective.
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INTRODUCTION.

Let R be a ring and M be a right R-module. The module M is a CS-module

(for complement submodules are direct summands) provided every submodule of M

is essential in a direct summand of M ,or equivalently, every closed submodule

of M is a direct summand. This is the terminology of Chatters and Hajarnavis

[2], one of the first papers to study this concept

Later other terminology, such as extending module, has been used in place

of CS. CS-modules are generalizations of (quasi) continuous modules, which, in

turn, are generalizations of injective and quasi-injective modules.

All modules will be unital right modules over a ring R with unit.

A submodule N of a module M is closed in M, if it has no proper essential

extensions in M. X e M and Y e M signify that X is an essential submodule,

and Y is a direct summand, f M. The injective hull of a module M will be

denoted by E(M). A module M is quasi-continuous if it is a CS-module and has

the following property (C): for all X, Y Ke M, with X Y O, one has
3

X Y M. M is continuous if it is a CS-module and satisfy (C): if a sub-
2

module N of M is isomorphic to a direct summand of M, then N is a direct

summand of M.
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For modules M, N and for any f Hom(M,E(N)), let X =-{ m M:f(m) N },
and define the submodule B of M N by B m + f(m) m X }. It is clear

that X is an essential submodule of M and that X B kerr If -’M (R) N Mf f f
is the projection then IB is a monomorphism and X (B

f f
LEMMA |. Let M, N be R-modules. Then for every f Hom(M,E(N)), B and N

are complements, of each other, in M (R) N. If Hom(N,E(M)) O, then N is the

unique complement of B in M (R) N.

PROOF. It is clear that B N O. Now let L be a submodule of M N

such that L N O, and that B L. Let and = be the natural projections

of M N onto M and N respectively. Then B L, once we show that

(I) f(1), for all L To this end, let 0 f)(1) for some L.
By the essentiality of E(N) over N, there exists r R, such that

0 # (It) f(Ir) N. But (It) f(Ir) Ir [=(It) + f=(Ir)] N L= 0

which is a contradiction.

For the second part of the lemma, let Y be a submodule of M N such that

Y B O. If X # 0 then the restriction of f to Y n X provides a non-f f f
zero element of Hom(N,E(M)), which contradicts our assumption. Then Y n X O,

f

and thus Y M 0 (due to Xf e M). It follows that Iy is a monomorphism,
and thus {Y) 0 {otherwise it leads to a contradiction). Therefore Y N.

LEMMA 2. Let M and N be modules. Then N is M-injectlve if and only if

M N B N; for every f Hom(M E(N))
f

PROOF. N is M-inJective if and only if X M, and M N B N if and
f f

only if Xf= M; for every fe Hom(M,E(N)).

REMARK 3. It is known that a module M is quasl-contlnuous if and only if

M X Y, for any submodules X, Y which are complements of each other. An
immediate consequence of Lemma 1, and Lemma 2, is that if M N is quasi-

continuous, then M and N are relatively Injective ([I0], Proposition 2.1).

The uniqueness, in the second part of Lemma I, is used in Proposition 9

to obtain a generalization of the result given in Kamal and Mller [7].

LEMMA 4. {[3], Proposition 1.5) Let A and B be submodules of a module M,

with A B. If A is closed in B and B is closed in M, then A is closed in M.

COROLLARY 5. Every direct summand of a CS-module is a CS-module.

PROOF. Is obvious.

LEMMA 6. Let M and N be modules, and let A be a submodule of M s N, with

A n N O. Then A is closed in M N if and only if A x + f(x) x X },

where X is a closed submodule of X for some f Hom(M,E(N}). Moreover, if M"
f

is uniform, then A is non-zero closed in M N if and only if A Bf, for some

f Hom(M,E{N)).

PROOF. Let be the projection of M N onto M. Since A n N O, there

exists f Hom(M,E(N)) such that f(a) (1-){a) (i.e. f{a} + (a} a) for

all a A. Hence A x + f(x) x (A} }. It is easy to check that (A) is

Now if {A) e y Xf then A e{ Y + f(y) Y y M N.contained in Xf.
Since A is closed in M N, it follows that Y (A); and thus (A) is closed

in X Now if M is uniform, and A is non-zero closed in M N, then 0 (A)
f

is closed in the uniform module Xf, and thus (A} Xf. Therefore A Bf.
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Conversely, let A x + f(x) x X where X is closed in Xf, and

f Hom(M,E(N)). It is clear that A _c B and that A has a proper essential

extension in Bf if and only if X has a proper essential extension in X. Since

X is closed in X it follows that A is closed in B But by Lemma B is
f, f"

closed in M e N. Therefore A is closed in M (R) N.

Observe that, the major step in studying the property CS for modules is

the one that deals with the characterization of all closed submodules. So that

Lemma 6 (including its special case, i.e. when M is uniform), can be used in

characterizing CS-modules, which are direct sums of two uniform modules (see

Is]).

COROLLARY 7. Let M and N be modules. Then N is M-inOective if and only if

any closed submodule A of M N, with A N O, must have the following form

A x + f(x} ’x e X }, where X is closed in M and f e Hom(M,E(N)}.

PROOF. (). By Lemma 6, and since N is M-inOective if and only if Xf= M;

for every f e Hom(M,E(N)).

(): Let f e Hom(M,E(N)) be an arbitrary element. By Lemma I, Bf is a

closed submodule of M e N with B N O. Then B has the form above for some
f f

g e Hom(M,E(N)), and for some closed submodule Y of M. It follows that,

X (B Y is closed in M" where M N M is the projection onto M.
f f

Since X is essential in M, we deduce X M.
f f

COROLLARY 8. Let M be a CS-module, and let N be M-injective. Then every

closed submodule A of M N, with A N 0 is a direct summand.

PROOF. Let A be a closed submodule of M (R) N, with A N O. Then, by

Corollary 7, A {x + f(x):x e X}, where X is closed in M and f e Hom(M,E(N)).

Since M is a CS-module, we have that M X (R) M It is easy to check that

A N X N- and thus M N A M N.

PROPOSITION 9. Let M and N be modules. Let Hom(N,E(M)) O. Then N is

M-injective and M is a CS-module if and only if every closed submodule A, of

M N, with A n N O, is a direct summand.

PROOF. The necessary condition follows immediately from Corollary

The sufficient condition: By Lemma 4, and since A N O, for every

closed submodule A of M, M is a CS-module. To show that N is M-injective it is

enough to show M N B N, for every f e Hom(M,E(N)). By Lemma I, B is a
f f

closed submodule of M N, with B N O; and hence B is a direct summand.
f f

Since, by Lemma N is the unique complement of B in M N, we have that
f

MeN=B eN.
f

Theorem 10. Let M and N be modules. Let Hom(N,E(M)) O. Then M N is a

CS-module if and only if M and N are CS-modules, and N is M-injective.

PROOF. () Corollary 5, and Proposition 9.

() By Proposition 9, it is enough to show that any closed submodule A

of M N, with A N O, is a direct summand. To this end, let A be a

maximal essential extension of A N in A By Lemma 4, A is closed in M N,

with A M O. By Lemma 6 and since Hom(N,E(M)) O, it follows that A N.

Since N is a CS-module, we get that N A N Thus A A A where

A =: A n M e N is a closed submodule of M e N with A N O. Since

N is M-injective, it follows, by Corollary 8, that A

_
M N Therefore A ls

a direct summand of N N.
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The following are immediate consequence of Theorem I0.

COROLL 11. ([?], Theorem I} Let M and N be modules, where M is non-

singular and N is singular. Then M N is a CS-module if and only if N is M-

injective, and M, N are CS-modules.

COROLLARY 12. Let M and N be modules, where N is semisimple and M with

zero socle. Then M (R) N is a CS-module if and only if M is a CS-module and N is

M-injective.

PROPOSITION 13. Let M be a non-singular semisimple R-module, and N be an

R-module, with Soc(N} O. Then N is quasi-continuous if and only if M N is

quasi-continuous.

PIOOF. Let N be quasi-continuous. We show that Hom(N,E(M)) O. Let f be

an arbitrary element of Hom(N,E(M)), and let Ker f e N N. Then, for every

n N there exists an essential right ideal of R such that f(n )I 01’

Since E(M) is non-singular, it follows that f(n O; and thus N Ker f.

Hence Kerr has no proper essential extensions in N; i.e. Ker f is closed in N.

NSince N is quasi-continuous hence a CS-module we have N Kerr @ Since

Soc(N) O, it follows that N O; and thus f O. Then M and N are relatively

inJective quasi-continuous modules; and therefore M @ N is quasi-continuous

(see [I0], Corollary 2.14).

14. In Proposition 13, if M is semisimple but not non-singular or

Soc(N) O, then M m N need not be quasi-continuous. This is illustrated in

the following examples.

EXAILE 1. Let M Z/pZ, where p is a prime number; and let N Z. Then,

as Z-modules, M is singular semisimple and Soc(N) O, while M N is not even

a CS-module (by Corollary 12 ).

EXAIPLE 2 Let F be a field R ( ) Let M ( )and N
o )F

Then M is a non-singular simple R-module, and N is uniform, hence a quasi-

continuous R-module, with non-zero socle, where R M @ N. One can easily
R

show that " RR, M O, while I, M e RR where [: ): a F }.

This shows that R does not satisfy (C3) e. M ,N is not quasi-continuous.

PIOPOSITION 15. Let M and N be R-modules, where M is non-singular and N

is M-injective. Then M N is a CS-module if and only if M and N are both CS-

modules.

POOF. () Let A be a closed submodule of M N. Let A and A be maximal
2

essential extensions in A of A n M and A N, respectively. Then A (i =I,Z)

are closed in M N, by Lemma 4. For each a
2 A2, a2 m + n; m M and n N.

Since A N is essential in A2, there exists an essential right ideal of R

such that a = A n N. It follows that ml O. Since M is non-singular, we
2

deduce m O; and thus A N. Since N is a CS-module, and A is closed in N,
2 2

we get N A2 N for some submodule N of N. By the essentiality of A1 over

A n M, we have A N O. Since N is M-injective, it follows that M N

N M" 3
@ A @ M’@ for some submodule of M, by Corollary ? Hence A AA1 2 I=1 i’

where A =: A [H’e N*]. It is clear that A is closed in H N with
3 3

N’= M" N*A a O. By Corollary 5, and are CS-modules, where N is M -inJective.
3
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Thus, by Corollary 8, A e H N and therefore A e H N.
.3

{) Is obvious.

REMARK 16. If H is not qon-slngular and N is H-Injective, where both of H

and N are CS-modules, then H N need not be a CS-module. This is lllustrated

in Remark 14 (Example 1} by taklng H Z/pZ and N Z.

In Remark 14 (Example 2), we have shown that Soc(N} 0 Is not avoldable

condition for Propositlon 13. This is not the case for CS-modules, as it is

shown in the following.

COROY 17. Let H be a non-slngular semlslmple module. Then H N Is a

CS-module for any CS-module N.

THEOREM 18. Let H M where the M are M -Injectlve for all
1=1 i’

Then M is a CS-module if and only if M are CS-modules for all i.

PROOF. If M is a CS-module, then, by Corollary 5, M is a CS-module for

all i. We show the converse by induction. It is sufficient to prove the result

when n 2. Let M M M where the M are CS-modules and M -inJective for

ffi: A M2, and B1 j (l,j 1,2). Let A be a closed submodule of M Let A
2 2

be a maxlmal essentlal extension of A In A. Hence B is closed in M, with
2 2

B M O. Since M Is M -Injectlve, It follows by Corollary 7, that
2 2

B x + f(x) x e X }; for some closed submodule X of M and for some
2 2 2 2

M
2 X2e 2" B2 XeM itf e Hom(M2,E(MI)). Since is a CS-module Since

2 1’

follows that X
2

M B
2

M and hence M M B M Thus A B B
2 2 2 1’

[MI M] M*where B =: A It is clear that BI A
2

O, and that M2 is M1-
inJective. Since M is a CS-module; we have B e M M (Corollary 8). Then A

2

is a direct summand of M.

A module M is a DRl-module provided that any two submodules of M are

relatively Inectlve, whenever they form a direct decomposition of M, i.e.

is M-Inectlve (i 1,2) whenever M M M
2

From Remark 3, every quasl-contlnuous module is a DRI- module. There are

DRl-modules which are not even CS-modules. In fact every Indecomposable module

is a DRl-module. For an example of a decomposable DRl-module which is not a

CS-module, let K be a field, and let R K[x,y]/<x2,xy,y2>. Let S be any

simple InJectlve R-module, and consider M R S. M is not a CS-module (due

to R Indecomposable and not uniform). Now R, S are relatively Inectlve, and

any two docomposltlons of M are isomorphic (due to R and end(S) local rings);

i. e. M is a DRl-module.

PROPOSITION 19. Every direct summand of a DRl-module is a DRl-module.

PROOF. Is obvious.

PROPOSITION 20. A module M is a quasl-contlnuous module if and only if

is a DRI-CS-module.

PROOF. Let X Y = M, with X Y O. Write M X M Since M is a

DRl-module, X is M -inectlve. By Corollary 7, Y a + f(a) :a A where A

M* M’=is a closed submodule of and f Hom(M ,X). By Corollary 5, A B, and

therefore M X Y B.

The converse is obvious.
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PROPOSITION 21. Let M
El lel

is a homologically independent family (i.e. Hom(M M 0 for all 3 E I)

then M is a DHl-module.

KPROOF. Let M K be a decomposition of M. Let ’M K, :M K, and

:M M (iEI) be the canonical pro3ections. Let A =:{aEI: (M 0}. We show

that K

and hence (Mj Mj for all j E I. Now we have K ejEI(Mj EI (Mj K) K"

and hence K 9,,(M.). Since =(M.) Ee K =e M, it follows that (M,) e M. for

all j E I. Since the M are indecomposables, we have =(M M for all = 6 A.

Therefore K eaEAM. By the same argument we can show that K esEs Ms, where

S =:{ s E I: (M) 0 }. This shows that K and K are relatively in3ective.

THEOREM 22. ([I0], Theorem 2.13) Let {Mi: i E I} be a family of quasi-

continuous modules. Then the following are equivalent:

I. M M is quasi-continuous;
iI

2. M is M -injective for every 3 I.

COROLLARY 23. Let M M where the M are quasi-continuous for all
IEI 1’

i I. Then M is a DRl-module if and only if M is quasi continuous.

PROOF. Is obvious.
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