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ABSTRACT. In an earlier paper concerning a solvable model in statistical mechanics, Miwa and
Jimbo state a theta-function identity which they have checked to the 200th power, but of which

they do not have a proof. The main objective of this note is to provide such a proof.
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1. INTRODUCTION.

In their paper [1], Miwa and Jimbo state a theta function identity, which they have checked
to the 2000th power, but of which they do not have a proof. They also state, and prove, two
other theta function identities. The object of this note is to provide a proof of the first identity,
and to make the observation that the other two identities are special cases of an identity of mine

that generalizes the quintuple-product identity.
2. MAIN RESULTS.
Our only tool in proving the first identity is Jacobi’s triple product identity,
(- gl = a7 g 0P) (P 0P = Y a"g™ (2.1)
[Here, (a:q). = H (1 —ag"~1'). and throughout this paper all sums are taken from — oo to co.]

n>1

The identity to be proved ([1]. (B.13)) is

(Zq(3"2-3")/2>(2( _ 1)nq6n2—4n+1)+(qunz—n)/?)(Z( _ 1)"(]6"2)
() (- -1yt o) (2.2)
Our first step 1s to make use of (2.1) to express all the sums in (2.2) as products.
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Yo = (- 6P
and 2 2
Z( _ l)nq6n -n + Z( _ l)nan ~-5n+1
= S 1= g
=[1a-(-9")
n>1

= (= 66")o(¢%9")o0r

So (2.2) is equivalent to

(= 66545
= (= 4800l = 9%6))o0(8% 6))oo(% 6 )2(9'% ¢"P)oo
+29( = ¢%6%)5(% 4°)oo(4% 4 )oo(4'% 4 ))ool9'% 4 )oo
= (= 4¢%)oo( = 7%9%)ao(4% 4ol — 4% 9%)oal — 45 6%)o( 4% ¢%)cor
(6%4)%(0'% 4o
+29(— 6% ¢°)%(9% 8%)ool — 4% 4°)2e(4% €¥)cr
(254 )o(@'% 4")(9'% 4'%)oo(4'% 4o (2.3)
If we put — g for g, we see that (2.3) is equivalent to
(6:9°)(0%4*)%
= (49%)ool = %590l = 7% 4%l — 4%6%)o0(4% 4)0(9% ¢°)oo
(4%98%)%( = 6% 4°)2(4% 6%)ool — 4% ¢°)co
= 24(¢%¢%)2( = 0% 8%)ool — 4% 0%)20(¢% ¢
(86%)ool = 45 4%)00(9% 8%)oo( — % 6%)o0(4% 8% — 8% V) (2:4)
Next divide by
(49700 = (59%)o0(4% 8%)o(4% ¢°)oo
and use the fact that

(¢%6))o0 _ ($9)o0 _ 1

(6600l = H8)ool = 05800 = (€8 ool = & Qoo = (6 6%)os TN

with ¢> for ¢, and we see that (2.4) is equivalent to

(£:9% = (=050%ool — 6%9%)oa(8% €)ool — €% ¢%)%(2% ¢)oo

—24( = 68%)0o( — 4% 6%)o0(4% 6%)oo( — €% ¢%)2(4% ¢®) (2.5)
We now prove (2.5)

(qu)go - Z( _ 1)r+0q(3r2_r+3'2_o)/2.
Split this sum into two, according to whether r+s is even or odd. If r+s is even, let
r=m+ns=m-—n;ifr+sisodd,leer=m+n+1,s=m—n.
We obtain
(g9 = Zq(s<m+n>’—(m+n) +3(m = n)? — (m - n))/2

_ Zq(ﬁ(m+n+1)2~(m+n+1)+3(m—n)’—(m—n))/z
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:Zq3m2—nl+3n2_.zq31112+2m+3n2—3n+1
= (=5l — 040l 0% 6%) ool — 0%6°)2(0% %)
=20 = ¢:6%) 0ol — €% ¢%)e(0% ¢%)ool — 0% ¢%)2(0% %) 0o

as required.
The other two identities stated and proved by Miwa and Jimbo are ([1], (B.12))

(%Zq(anz —3n)/2) ( zq12n2)+ (X:q(sn2 - n)/2) ( Zq12n2 —8n+ 1)
=(Zq2u2—n)(zq4n2—2n)
and
(%Zq(s'ﬂ -3n)/2) ( Zq12n2- 12n+3) + (Z‘I(3"2 - n)/2) ( unﬂz —4n)
(5 ) ()

These can be written, respectively, as

(Eq2n2—n)(zq4n2—2n)
=(Zq6n2—3n)(zq12n2)+ (Eqsnz—n+ Zq6n2—5n+l)(qu2n2—8n+l)

and

(zqznz—n) ( Eqmz-zn)

=(Zq6n2—3n)(zq12n2—12n+3)+(zq602—n+ Zq6n2—5n+l)(zq12n2-—4n)‘

In product form, these become
(= 4900l = 0%54M)o0(4* 0 ool — 7% ¢%)oc( ~ 0% 8°)oo(4% ¢°)o
= (= 0%0)oo( = 0%0")ool9'% 4"l — 4% 82674 6w
(= 0% 0ol = 059")ocl0%5 6o = 0456 )ool — €% €)@ 40
+ (= 60)oo = 050 )06 D)ool — €% 6% oel — 7% 6*)oo(2% 80

and
(= 6800l = €% o0(0* 0 ool = 7% €%l — 4% 6%)o(0% ¢*)ow
= (= €50 )ool = 050000 %)aol = €% "ol — 4'% *)oo(4** 4*)co
+ (= 4¢")oo( = 050" )o0(4% 6ol — €58 )oo — €% )o@ )
+26°( = %6 ool = €5 0")o0(0'5 0 D)ool — 85 ) 2(0* ) e

Now, consider the identity ([2], (2))

(= 0830") oo = 87 16:0%)o0(0% 8 )ool = D4%5 4" oo — b7 '0% )4 4")oo

= (= ab7¢% ¢%)oo( — a7 06% ¢%)oa(9% ¢%)ool — %05 0" — @720 7 ¢% 0" (0% ')

+ ag( — ab7'¢%¢%)oo( — @ 710¢56%)0(% 4%)oo( — 076 €)oo — @ 7207 10%0"%)0(1% 4" D)oe

819

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

+a7 (= ab7¢50%)u( — a7 186% 6%)00(6% 6ol — a70% 41%) o — @ 720710 ¢1%) (0% 4" D)o

(2.12)
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If in (2.12), we set ¢* for ¢, then @ = ¢~ b = ¢%. we obtain (2.10), while if we set ¢* for ¢ then

a=gq '.b=¢q 2% we obtain (2.11).
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