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ABSTRACT. An attempt has been made to study cross sectional temperature distribution in in-vivo

tissues of a human limb employing variational finite element approach. The outermost surface of the limb

is assumed to be exposed to the atmosphere. The physiological and physical parameters like rate ofmetabolic

heat generation (rmhg), blood mass flow rate Cutoff) and thermal conductivity are assumed to vary in the

subregions independently. Numerical results have been obtained for various cases of practical interest.
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1. INTRODUCTION.
The temperature distribution in the peripheral region of limbs of a human body undergo frequent

changes on account of changes in atmospheric temperature, the core being maintained at a nearly uniform

temperature. The peripheral region comprises of non-uniform layers and has variable blood flow, metabolic

heat generation and allied process. This intermediatory region play a very important role in maintaining

a balance between the atmospheric variations and the interior consisting of intra-abdominal, intrathoracic

and intracranial regions. Usually rectal and oesophageal temperatures are taken to represent core

temperature. Oesophageal temperature taken at heart level is a good index of rapid changes of cardiac and

aortic blood temperature. The temperature of the limbs and the surface layer of the trunk exhibits a wide

variation of temperature.

This paper employs a variational finite element approach to study the temperature distribution in a

normal cross-sectional region of a limb. Due to unsymmetric situations of large blood vessels passing

through the core of the limb the inter-face has angular variation. The peripheral part of limb is directly

exposed to atmosphere.
The peripheral part, assumed to be annular in geometry, has been approximated by the assembly of

triangular elements of different sizes. Thus the circular boundaries are approximated by the polygonal
one’s. Different types of variations of parameters have been considered for different natural subregions

such as stratum comeum, stratum germinitivum, dermis and underlying tissue (Montagana [1], Jarrett [2]
and Gray [3]). Finite element formulation provides necessary flexibility in taking care of different behavior

of distinctly different subregions.
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2. MATHEMATICAL MODEL.
The rate of change of temperature u at a point in in vivo tissue at time is given by the following

partial differential equation (Perl [4])
Ou

ec div[K grad u] + mbcb(uA U) + S (2.1)
Ot

where e, - and K are respectively density, specific heat and thermal conductivity of the tissue; mb and Cb

are blood mass flow rate and specific heat of the blood respectively; S is the rate of metabolic heat generation

per unit volume and UA is the arterial blood temperature. Above equation has been modified and extensively

used by Saxena [5], Saxena and Arya [6], Saxena and Bindra [7,8] in the thermal study of human skin and

subcutaneous tissue. Here we employ the same for a human limb with circular symmetry.

The surface of the limb is assumed to be exposed to the atmosphere at temperature u The heat

transfer coefficient between skin and the atmosphere may be due to convection, radiation and evaporation.

Hence the boundary condition at skin surface can be put as

-K
Ou

h(u u,,) +LE (2.2)
On

where n is the direction of the normal, h is coefficient of convection, L is the latent heat of evaporation, E
is the rate of sweat evaporation. At the inner boundary we put

[(lOd x 18d)
u(x, y) f(x, y)

(0 y 4d)
(2.3)

(0 x 10d)
(2.4)

(18d <x 28d)

where d is a distance constant. The boundary condition (2.4) corresponds to the case of mirror symmetry

in temperature distribution about x-axis (horizontal diameter). The variational form of equation (2.1) for

a two dimensional steady state case along with the boundary condition (2.2) is given by (Myers [9])

all (0u) (0u) )2 i[h(u u,,)2+2LEu]d (2.5)I - K -x +K -if-fly + mbCb(UA U 2Su dx dy +

Here the problem region A with boundary if2 is a cylindrical limb with circular cross-sectional and

symmetrical with respect to x-axis. The region of interest is semi-circular and is descretized into 150

triangular elements and 96 nodes as shown in Fig. 1. Here the angular points of each element are the nodal

points.
The integral in equation (2.5) may be written as

I I, +I,,, + t, +In (2.6)

where

m mbC

1 Ou] Ou 2] (2.7)

I - m(uA u )2dxdy (2.8)
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i [h (u uo) + 2LEu]d

12d

lOd.

Fig. 1. Triangular Element Arrangement for Annular Cross Section
of Human Limbs Numerals Without Circles Nodes and
with Circles Denote Element Numbers

Next we extremize I by differentiating it with respect to each nodal temperature ui and setting

derivatives equal to zero. That is

dl
O, r-k,m,s, (2.11)’

dU dU

where
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U

U //1

In view of the biology the region under study has been divided into one hundred and fifty triangular elements

so that the integrals in equation (2.11) are computed as a sum over each of the elements Hence

dl, od--=,.---, r =k,m,s,. (2.13)

Here (e) stands for the elements whose nodes are i, j and k. The expression on the right-hand side of

equation (2.13) for r will be summed up for the elements on the boundary of the outer surface of the

limb. Equations (2.13) will be commuted separately and then substituted into equation (2.11). For the

(e)th element u,, uj and uk are the only temperatures to be taken into account. For this element It’), Ie) and

Ie) will be function of these three comer temperatures only. Whereas Itu) will be function of only two comer

temperatures which lie on the outer boundary and element (e) adjoining this boundary. Consequently, the

partial derivatives of I_") for r k,m,s, with respect to all other nodal temperatures will be zero.

3. SOLUTION.
The following linear variation of temperature within each element is expressed as

ut)-prC(’) (3.1)

where

pr=[1,x,y], C(’)-

Now u’) is equal to ui, uj and uk at the comers of the eth element whose nodal temperatures are ui, u and

uk. Thus we have

where

U) pte)C) (3.2)

1 x,

Yi]lxy
X y

Now solving equation (3.2) for C() as given below

C(e) R()U()

where

R (’) p (’)-’

(3.3)
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Substituting the value of Cte) from equation (3.3) in equation (3.1) we obtain

ut’) prR)U’) (3.4)

With the help of equation (3.4), we can evaluate the integral L Further differentiating I with respect to

each nodal temperatures and setting derivatives equal to zero we arrive at the following system of

simultaneous equations

WU -Z (3.5)

where W is a matrix of order (96 96) and Z is a matrix of order (96 1). Finally solving the system of

simultaneous equations (3.5) we obtain the values of nodal temperatures (see Table 1).
4. NUMERICAL RF.ULTS

Assumptions regarding thermal conductivity, metabolic heat generation and blood mass flow rate are

given as under (Knudsen and Overgaard [10], Saxena and Bindra [7,8]).

For the
Elements of Kt’ cal/
Subretzions cm-min-dec S

Ist 0.060 Sma,, s Mm, m

Ilnd 0.050 7/8s 2/3tn
IIIrd 0.040 5/8s 1/3m
IVth 0.035 3/8s 1/6m
Vth 0.030 1/8s 0.0
Vlth 0.030 0.0 0.0

The numerical results have been computed for two different cases of atmospheric temperatures as given

below

u,,- 15C

Case-II

u,, 23C

m cal./cmLmin.-deg C 0.003 0.018

s cal./cmLmin. 0.0357 0.018

E gm/cmLmin. 0.0 0.12 x 10-3

0.24 x 10-3

L 579 cal/gm, h 0.009 cal/cm-min-deg.C.

The constant ’d’ can be assigned any value depending on the sample of the limb under study. Here we
have taken

d 0.625 cm

The values of nodal temperatures have been obtained for two cases of atmospheric temperatures and

are given in Table I. The temperatures at the nodes with numbers 1,7,13,19,25,31,37,43,49,55,67,73,79,85
and 91 (along the inner boundary) reflect the variation in the limb core temperature with respect to position.
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The effect of this variation in limb core temperature on the other subregions is visible in Table I. On

comparing the nodal temperature on outer surface and in each subregion, it is observed that these nodal

temperatures vary considerably with the change in atmospheric temperatures and rate of sweat evaporation.

The finite element method used here has made it possible to include more details of biology such as

the wavy structure of the layers and different values of physical and physiological parameters in each

subregion. A computer program was developed and executed on ICIM 6040 to perform these computations.

Nodal

Temperatures

ul

u2
u3
u4

u5

u6

u7
u8
u9

ul0

ull

u12

u13
u14

u15
u16

u17

u18
u19

u20

u21
u22

u23

u24

u25

u26
u27

u28

u29
u30
u31
u32

Table I. Values of Nodal Temperatures for Different Cases
of Atmospheric Temperatures

uo 15C Uo 23C

E-0

30.00
29.51
29.06
26.63

25.14
23.49

30.26
29.82
29.02

26.74
25.08
23.42

30.53
30.47

29.18
26.69
25.21
23.57
30.80
30.68

29.24
26.89
25.19
23.54
31.06
30.79
29.44
26.89
25.40
23.70
31.33
31.03

E 0.12 10-3

30.00
29.91
28.85
26.65

25.21
23.60

30.26
30.01
28.84

26.78
25.16
23.53
30.53
30.12
29.05
26.78
25.34
23.73

30.80

30.36
29.16
27.03
25.35
23.72
31.06
30.54
29.43
27.08

25.62
23.93
31.33
30.81

E 0.24 10-3

30.00

29.22
27.56
24.27

22.14

19.77
30.26
29.32

27.51
24.43

22.04

19.65
30.53
29.42

27.76
24.38

22.26
19.91
30.80

29.68

27.83

24.68
22.22
19.84

31.06
29.84

28.14
24.68

22.55
20.09
31.33
30.13
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Nodal

Temperatures

u33

u34

u35
u36

u37
u38

u39

u40
u41

u42
u43

u44

u45
u46

u47
u48
u49

u50
u51
u52
u53

u54
u55
u56
u57
u58
u59
u60

u61

u62
u63
u64
u65
u66
u67
u68
u69
u70

u71

u72

u73

u74

u,,- 15C

E--0

29.51
27.13
25.39

23.70
31.60
31.16
29.76

27.15
25.59
23.88
31.86
31.43
29.84
27.38
25.65
23.88
32.13
31.55
30.07
27.41

25.80

24.07

32.40

31.79
30.17
27.65
25.87
24.07

32.66
31.92
30.41

27.68
26.07
24.26
32.93
32.16
30.47
27.93

26.04

24.23

33.20

32.26

uo 23C

0.12 10-3

29.55
27.38

25.64
23.95
31.60
31.00

29.86
27.45
25.90

24.19
31.86

31.30
29.90
27.73
25.99
24.21

32.13
31.48
30.28
27.81

26.20
24.46

32.40

31.76
30.41

28.10
26.29
24.46
32.66

31.94
30.73
28.17
26.55
24.71
32.93
32.22
30.83
28.47

26.54

24.70

33.20

32.38

E 0.24 10-3f

28.21
25.03
22.51
20.08
31.60
30.31
28.56
25.06
22.83
20.36
31.86
30.63
28.66
25.37
22.88
20.34
32.13
30.79
28.98
25.41
23.11

20.63
32.40
31.08
29.08
25.74
23.18
20.59
32.66
31.25
29.43
25.78
23.49
20.89
32.93
31.54
29.50
26.13
23.40
20.81
33.20
31.69
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Nodal

Temperatures

u75
u76

u77

u78

u79

u80

u81
u82

u83

u84

u85

u86

u87
u88

u89

u90

u91

u92
u93
u94

u95
u96

u,,- 15C

E--0

30.67
27.89
26.31
24.38

33.46
32.48

30.73
28.12
26.18

24.39
33.73
32.52
30.88
28.07

26.38
24.54

34.00
32.64

30.85

28.22
26.29

24.46

u,, 23C

E 0.12 x 10-392

31.11
28.49

26.88

24.90
33.46

32.64

31.20
28.77
26.77
24.93

33.73
32.73
31.42
28.77

27.04

25.14

34.00

32.87
31.38

28.94
26.94

25.05

E 0.24 10-3

29.80

26.09

23.83
21.06
33.46
31.96

29.86
26.43

23.62
21.06
33.73
32.04
30.12
26.38

23.96

21.31

34.00
32.19
30.05
26.59
23.81

21.18

where fl gm/cm min
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