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ABSTRACT. In this paper we introduce the notions of separability and Lindeldf in approach spaces
and investigate their behaviour under products and subspaces.
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1 INTRODUCTION.

In (5], the measure of non-compactness which was introduced by K. Kuratowski in (8], was put
into the framework of so-called approach spaces, rephrased there as "measure of compactnesss”.
Approach spaces, as explained in detail in [6] provide us with a common supercategory of the
categories TOP of topological spaces with continuous maps, and p-MET® of extended metric
spaces and non-expansive maps. The advantage of doing this was not only that Kuratowski’s rather
peculiar measure of non-compactness was thus put into a canonical setting, and that this setting
allowed for a unified treatment of compactness for topological spaces and of total boundedness for
metric spaces, but also that it was thus possible to prove some fundamental relationships between
the measure of compactness of a family of spaces and their productspace.

In further study of approach spaces, and their application, especially to the analytical study
of spaces of probability measures [7], [1], it turns out to be indispensable also to have at our disposal
a mechanism to measure the deviation an approach space may have from being Lindel6f and from
being separable. The purpose of this paper is to introduce such canonical measures and to study
their basic properties. We pay particular attention to subspaces and products of metric spaces.

2 PRELIMINARIES.

We shall use the following symbols R := [0, 00], R} :=]0,00[ and R := [0,00]. If AC X
then ©, stands for the function X — R, taking the value 0 in points of A and oo elsewhere.
We put an T (respectively T ) for an increasing (respectively a strictly increasing) function, system,
sequence or whatever. We shall also use the symbols | and T respectively for strict decreasing
respectively decreasing functions, system, sequence or whatever.

We shall recall some definitions from [5] and [6]. ‘An eztended pseudo-quasi-metric (shortly

extended p-q-metric space) is a pair (X,d) where d : X x X — R, fulfils:

(M1) {d =0} D Ax := {(=z,2)|z € X}
(M2) d fulfils the triangle inequality.
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The map d is then called an eztended pseudo-quasi-metric (shortly extended-p-q-metric). Other
properties d may fulfil are:

(M3) d is symmetric
(M4) {d =0} C Ax
(M5) d is finite.

If d fulfils also (M3) we drop "quasi-” (”q-"), if it fulfils (M4) we drop "pseudo-” ("p-") and if
it fulfils (M5) we drop "extended”. If A C X then d(A) := sup{d(a,b)|a,b € A} stands for the
diameter of A.

A map §: X x 2X — R, is called a distance if it fulfils
(D1)VAe2X Vze X t€A=6z,4)=0
(D2) Vz € X : §(z,0) = 00
(D3)VA,Be2X Vz e X : 6(z,A)A§(z,B) = é(z, AU B)
(D4)VAe 2X Vz e X,Vee R, : §(z, A) < 6(z, A®)) + £ where
A€ = {z|8(z, A) < ¢}.

A collection (8(z)).ex of ideals in R¥ is called an approach system if it fulfils

(A1) Vz € X, Y4 € 8(z) : §(z) = 0
(A2)Vz € X,Vd € R’I :Ve, N € R},3¢Y € &(z) :

N +e>pAN = ¢ € d(z)
(A3)Vz € X,V¢ € ®(z),YN € R},3¢' € [[,cx ®(z),Vz,y € X :
#'(z)(2) + ¢'(2)(y) > d(y) A N.

We shall denote an approach system by (®(z)),cx or shortly & if no confusion is possible. If  is
an approach system then A := (A(z))zex is called a basis or base for & if it fulfils

(B1) Vz € X : A(z) is a basis for an ideal
(B2) Vz € X : &(z) = A(z) where:
A(z):= {$|Ve, N e R}, W e A(z): dp +€> ¢ A N}.
Further [6] if ® is an approach system on X then the map

63 : X x2¥ — Ry :(z,A) — sup inf ¢(a)
$€¥(z)acA

is a distance on X. From 6 a distance on X we can construct the approach system ®; defined by:
®5(z) := {¢IVA C X : inf 4(a) < §(a, A)} (1)

for all z € X. Further we have ®;, = ® and és, =-6. A space with an approach system or a
distance is called an approach space.

If (X,®) and (X’,®') are approach spaces then a function f: X — X' is called a contraction
if it fulfils any of the following equivalent conditions [6]:
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(Cl) Vz € X,V¢' € ®'(f(z)): ¢' o f € ¥(x)
(C2) For any basis A’ for ": Vz € X,V¥' € A'(f(z)) : ¥’ o f € &(x)
(C3) Vz € X,VA C X : 8'(f(z), f(A)) < &(=, A).

Approach spaces and contractions constitute a topological category [6] denoted AP. TOP is
reflectively and coreflectively embedded in AP by:

(X,T) % (X, 4(T)),
where the approach system of A(T) is (81(z))sex := {v|v(z) = 0,us.c. at x} for all z € X.
The associated distance is given by ér(z,A) = 0 iff z € A and 61(z,A4) = oo iff z ¢ A for all
z € X,AC X. Given (X, ®) € |AP| its TOP-coreflection is given by:

(X,T'(8)) 5 (X,9),
where T*(®) is the topology determined by the neighborhood system:

N*(®)(z):={{v < e}lv € T{r),e € R}, z € X}.
T* is left inverse, right adjoint to A,.
We say that the approach space has property P iff the topological bicoreflection of this space

has the topological property P (e.g. compact, Lindeldf, ...). Analogously p — ¢ — MET® is
bicoreflectively embedded in AP by:

p—q¢-MET= A=~ 4p
(X,d) — (X, An(d)),
where Ap(d) is determinded by the approach system (®a(z))zex with ®a(z) := {v|v < d(=,.)}
for all z € X. In this case the associated distance is given by 64(z, A) = infaea d(z,a) for all
z € X, A C X. Given the approach space X with approach system & its p— ¢ — M ET*-coreflection

is given by:
(X, M(3)) 5 (X,9)

where M(®) is the oo — p — ¢ — metric defined by M(®)(z,y) := bs(z,{y})- M is of course left
inverse, right adjoint to A,. Approach spaces for which §(X x 2X) = {0, 0o} are topological [6].
If A is a basis for the approach space (X, ®) then:

8s(z,A) := sup inf ¥(a).
YeA(z)acA

3 MEASURES OF SEPARABILITY AND LINDELOF.
We now introduce the measures of separability and Lindelof:
DEFINITION 8.1 If (X,®) is an approach space then we define the measure of Lindelof

(respectively separability) of (X, ®) as

L(X):= sup inf sup inf §(z)(2) @)
$€[]cx #(=) YEX XD 2€X zey

(respectively as

S(X):= inf supé(z, A)). 3)

Aca((X)) zeX
The following result is a straightforward exercise in topology:
LEMMA 3.2 A topological space X is Lindelof iff for every family (V;)zex where V; is a
neighborhood of z there ezists a countable set {zq|n € N} such that: |, .n V(za) = X.
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Further

PROPOSITION 3.3 An approach space X 1s separable 1ff S(X)= 0.

Proof. 1t is clear that S(X)=0 iff we can find an A € 2(¥)) such that: sup,y é(z, A) = 0
iffVze X :8(z,A)=0iff Vo € X : z € A. So §(X)=0 iff (X,7*(®)) is separable. 1

This result is not true for the Lindelof measure, as the following example shows.

COUNTEREXAMPLE 3.4 Consider d¢ : R x R — R whereby d¢(a,b) :==b—a1fa <b
and dc(a,b) := 0o if a > b. It is easy to see that this defines a p — ¢ — MET® space on R Its
topological bicoreflection s the RHO topology [3]. We now consider the product of this approach
space with itself. It 1s not hard to see that L(R x R) = 0. However since a coreflection preserves

products, it follows from [3] that the space is not Lindelof .
THEOREM 9.5 For a topological approach space X we have:

L(X),$(X) € {0,00}. *)
Further:
(a) (X, T) is separable iff S(X)= 0
(b) (X, T) 15 Lindelsf iff L(X)= 0

Proof. 1t is clear that we also have:

L(X):= sup inf sup inf Y(z)(z 5
Ve[, ex Mz) YEAXN 26X ze¥ (=)(z) )

where A(z) is a basis of ®(z). If we take:
A(z) = {Oy|Vis an neighborhood of x inT}

then it is clear that L(X) can only have the values 0 or 0o. Because §(z, A) can only have the values
0 or oo it is clear that S(X) can only take these values too. To prove (a) we only have to apply 3.3,
and (b) follows easily from 3.2 and expression ( 5). 1

In metric spaces we know that separability and Lindelof coincide. We shall prove that the

measures of separability and Lindeldf also coincide in p-M ET

LEMMA 3.6 For the p-¢-MET> space (X,d) we have:

L(X) = sup inf d(y,z) (6)
z€X yeA

S(X) = sup inf d(z,y) (7
T€X yeA

for a certain A € 2((X)),
Proof. 1t is clear from the definition that for any A € 2((X)):

L(X) > sup inf d(y,z).
z€X yeA

Further it is clear that for each n € N we can choose a set A, € 2(X)) sych that:

sup inf d(y,z) > L(X) - l
n

z€EX yeAn

And thus:

L(X) = sup inf d(y,z)
z€X yeA

where A = |J, oy 4n. The equality for S(X) is shown in a similar way. 1
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COROLLARY 3.7 For a p-MET™ space (X,d) we have: L(X)=85(X)

In counterexample 5.4 we sce that for a general p-q-M ET space the previous result is not
true.

COROLLARY 3.8 An cztended pseudometric space X is separable iff S(X)=L(X)=0.

It is easy to see that for contractions we have the following:
THEOREM 3.9 For X, X' € |AP| and f: X — X' a contraction :
(a) L{f(X)) < L(X)
(b)) S(f(X)) < S(X). ¥
In topological spaces we can state the Lindelof property by means of filters with the countable
intersection property [3]. We can do the same here for approach spaces. We shall put F(X)
(respectively F, (X)) for the set of filters (respectively the set of filters with the countable intersection

property) and analogously as for a filter we shall say that a base B of a filter € F(X) has the
countable intersection property if for all (Bn).en € B:

ﬂB,.eB.

Obviously if a filter F has a base with the countable intersection property then the filter F
itself has the countable intersection property.

We are now ready to prove the following theorem:
THEOREM 3.10 For (X,®) € |AP| with base (A(z))zex we have:

L(X) = sup inf aF(z).
FeFu(X)zeX
Proof.  First consider Y € 2((X)) and put:

By ={z € X3¢ € [] ®(2), ¥y € Y : ¢(3)(z) > L(X) — €}
zeX
The definition of L(X) implies that By # 0 and since [),cn By, = Bu,va, Be = {Br|Y € 2(XD} is
a base with the countable intersection property. Now consider the filter F, :=< B, > . Then:

inf aF.(z) inf sup sup inf ¢(z)
zeX z€X ¢€®(z) BEB: zcB
= sup  inf sup inf ¢(z)(z)
¢€H'6x§(:)zex BeB. zecB

= sup inf inf sup inf ¢(z)(x)
€[], x ¥(z) YEX XD zeY BeB.zecB

> sup inf inf inf ¢(2)(z)
#€],ex #(z) YEXXD) zeY zeBy
> L(X)-e.

From the arbitrariness of ¢ we deduce that:

sup inf aF(z) > L(X).
FeF.(X)zeX

Second to prove the other inequality we first prove the following assertion:

Assertion: For every F € F(X) and Y € 2((X));

inf sup inf ¢(y)(z) < sup inf ¢(y)(z).
yeY FeF zeF z€X yeY
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Indeed put
9(y) = sup inf ¢(y)(2)
FeF zeF
then 3F, € F such that Vz € F, : ¢(y)(z) > g(y) — €. Because F € F,(X) we can find z € [y Fy
Hence,
#(y)(z) > g(y) — &,

and thus;

inf inf —€.

inf §(y)(2) > inf g(y) — ¢
So finally we obtain:

sup inf ¢(y)(z) > mf sup mf #(y)(z) — €.
z€X yeY FerF

Since this is true for every € > 0 this proves the assert.lon.

Now take F € F,(X), then
inf aF(z) = inf sup sup inf'¢(y)
zeX z€X ¢€¥(z) FEF yeF

= sup  inf sup inf ¢(z)(y)
"en-ex #(z)z€X FEF yeF

= sup inf inf sup inf ¢(y)(z)
¢€]],cx =) YEXXD yev FEF :eF

< sup inf sup inf @(y)(z)  {assertion} (8)
¢€n ex ¢(,)y€z((x)) z€X yey

= L(X). 1

4 PRODUCTS.

In this section we shall discuss the relations between the measures of Lindelof and separability
of a product space and its component spaces.

REMARK 4.1 Since the projections are contractions it is clear from Theorem 3.9 that the
measures of separability and Lindelof of the components are always less than or equal to the cor-
responding measure for the product space. So we only have to prove one equality for each of the
measures.

MEASURE OF LINDELOF.

Since the real line with the right half-open topology is Lindelof and the product with itself is
not Lindeldf (3], Theorem 3.5 allows us to conclude that the product of approach spaces can have
measure of Lindeldf equal to oo while the measures of Lindeldf for the components are 0.

MEASURE OF SEPARABILITY.

For topological spaces [2] the product of separable spaces is separable iff the cardinality of

the index set is less than or equal to the continuum. Along the same lines we obtain:

THEOREM 4.2 For the approach spaces X; € |AP|, i € I where |I| < |2N| we have:

HX )= sup S5(X;).
i€l
Proof. Consider the set 4, := {ai(n)jn € N} C X;:

sup sup mf #i(ai(n)) < S(Xi) +e. (9)
zi€X, $i€d(z,) "EN
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Because |7] < [2N] there exists an injection ¢ : I — [0,1]. We shall note K = @(I) and CIR gy for
the set of closed intervals with rational endpoints in [0,1]. For each {J;,Js,...,Ji} C CIR ) and
ny, ..., we define the point ¢(Jy,...,Jk,n1,...,n) such that ¢(Jy,..., Je,nq,. -, = aisi)
where s; = n, il (1) € J,N K and s; = 0if p(I) ¢ Uj:x,.. xJiN K. Because the set CIR[g,y is

clearly countable the sct

A= {t(J1.~~,Jk,111,~~ ,'nk)l{J),Jz,‘..,Jk} C CIRI\)J] and ny,Mag,..., Nk € N}

is also countable. Now consider z € nlE,X. and ¢ € A(z) = {sup,;, {(pr( NIL € 200 and
G € ¢i(z.)} - Then with L := {l,lz,..., L} for cach j = 1,..., k there exists a set J; € CIR):
w(l,) € J, where all J; can be taken pairwise disjoint. It is clear from Equation 9 that we can find
for each I, a n, such that:

Cl,.(a,,(n,-)) < S(Xl,) +e
It is now clear that the point t := ¢t(Jy, .. .,Jk,'nll,...,nk) fulfills:

sup ((pri(t)) <sup S(X.) +e. 8
el el

This theorem cannot be improved. Indeed take |x] > |2N| and consider the set NX with
the product topology. The set N is clearly a separable topological space but it is well known ([9)

example 103) that N* is not separable. From Theorem 3.5 we now conclude that S(N)=0 but
S(NX) = oo.

5 SUBSPACES OF P-Q-M ET* SPACES.
In this section we discuss some properties of the measures of separability and Lindelof in
p-q-M ET spaces, especially for subsets and products.

THEOREM 5.1 For a p-MET® space X and Y C X we have:
(a) LY) < 20(X)
(b) S(¥Y) < 25(X).

Proof. (a) We know that:

L(X) = sup inf d(y,z).
2€EX yeA
for a certain A € 2(*) and we write ANY = {ba|n < inN} and ANY*® = {ca|n € N} [if
one of the sets is empty or finite we adjust the indexset ]. Suppose that thereis a y € Y and an

m € N : infren d(be,y) > L(X) + 1/m, then there exists a ¢, : d(cn,y) < L(X) + 1/m. Consider
now the sets:

B.n={ye€ Ylgé‘;f.-d(b"'y) > L(X) + 1/m and d(ca,y) < L(X) + 1/m}.

From each non-empty set B, we choose exactly one y,m ( if this set is empty choose an element

at random) and consider the set:

B = {ynmln,m € N}U {ba|n € N}.
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For y € Y two situations can occur. Either inf,en d(bn,y) < L(X), which gives us infyep d(b,y) <
L(X) or this is not true and then infoen d(bn,y) > L(X) + 1/m, for somem > 0 and so Ine N :
d(ca,y) < L(X) + 1/m which implies:

&(Ynm,¥) < d(Ynm, ) + d(cn,y) < 2L(X) +2/m. (10)
Because this is true for every m we have:
bing; d(b,y) < 2L(X).
(b) Follows from Corollary 3.7 and (a). i

Sometimes we can sharpen our inequalities, as the following theorem shows.
THEOREM 5.2 For a p-MET®™ space X with an ultrametric d and Y C X we have:

(@ LY) < L(X)
®) S() < S

Proof.  Simply note that Equation 10 in the proof of Theorem 5.1 now becomes
A(Ynm,¥) < maz(d(Ynm, &), d(en,y)) < L(X) + 1/m. 1 (11)

For metrics which are not ultrametrics Theorem 5.1 cannot be improved, as the following

counterexamples show.
COUNTEREXAMPLE 5.3 Consider R with the following metric:

d(0,z) = d(=,0) = 1/2 Vz € R and d(z,y) = 1.(y) where z,y € Ro.
Then L(Ro) = 1 but L(R) = 1/2.
COUNTEREXAMPLE 5.4 Consider R with the following pseudo-quasi-metric:
dn(0,z) = 1/n and du(2,0) =1 - 1/n  Vz € R and d(z,y) = 1.(y) where z,y € Ro.
Then L(Ro) =1 but L(R) = 1/n and S(R) =1~ 1/n.

So the foregoing results are not true for general p-(q)-M ET* spaces.

6 PRODUCTS OF P-Q-M ET> SPACES.

For p — ¢ — MET® spaces we have:
PROPOSITION 6.1 Let (X;)jes be an at most countable family of p-¢-M ET* spaces. Then:

L(I] x;) = sup L(X;).

1€J

Proof. The first inequality follows from Remark 4.1. We now prove the second inequality.

Put X := [],¢; X;, and for each X, we consider A; countable such that:

L(X,) = sup inf dj(a,z). (12)
z€X; a€A;
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Now put A := ﬂ]ej
If J is finite then A is countable and it is clear from equation 12 that:

L X,) < sup inf maxd,(a,,z
([1%) < supinf maxd(en=)

sup L(Xj;).
J€J

IA

If J is countable we can always take J=N. Let us remark first of all that L(A)=0. Indeed, each
set A, has a topological coreflection coarser than the discrete topology, hence the product topology
is coarser than the product of the discrete topologies. But this last product is homeomorfic with
NN which is Lindeléf [9]. Hence the product-topology is also Lindelof which proves L{A)=0.

From equation 12 we know that for every € > 0,7 € N and z, € X, there exists a, € A, such
that d,(a,, 2,) < L(X,) + €. Hence:

sup d(a,, z,) < sup L(X,) +e.
1eN

In the following we shall consider with each (z,).es € X this (a,),es € A. We now have:

L(H X;) < sup inf sup inf sup di(y,,2)
5eN K:x—20N) Ye2l(X) z€X yey 1€K(y)
< sup inf sup inf sup di(y,,2)

K:X—=2AN)Ye2(4) zeX yey 1€K(v)

sup inf sup inf sup [di(y,,a.) + di(a., )]
K:X—2AN) Ye2((A) zeX yey ieK(y)

sup inf sup inf sup d.(yi,a.)+ sup L(X\)+e¢
K:X—2N)Y€2((4) a€A yey ieK(v)

L(A)+sup L(X:)+e. 1
1eN

IN A

IA

Since the measures of separability and Lindeldf coincide for metric spaces, and the measure of
separability is stable for even some uncountable products. This could also be true for the measure
of Lindeléf. Unfortunately this is not the case as the following example shows:

COUNTEREXAMPLE 6.2 We know from [9] that Z® is a completely regular non-normal
topological space. From [8] p.154 it then follows that the topological bicoreflection of Z®R is not
Lindelof. On the other hand we can consider Z with the Euclidean metric and Z® as the product.
It is clear that L(Z) = 0, but we shall show that L(ZR) > 1. Indeed suppose that L(ZR) < 1 then
consider in each z € X a neighborhood V;. It is clear that for every z we have a finite Ky ;) such
that ﬂ,exv(,)wj'l(z,) C V.. Then we have:

sup inf  sup inf sup d,(z,z)< 1.
K:x=2R) ycatZRy) LezR zey jeK(z)

In particular for Ky : X — 2®) we can find Y € 2Z™) such that for every z € ZW there ezists
z € Y such that:

sup dj(z,z) < 1.
1€Kv(e)

Because the only distance in Z smaller than 1 is 0, we deduce that: Uzey Njeky(., ™5 (T,) = ZR.
But this means that Z® (as a topological space) is Lindelof which is not the case. Hence L(ZR®) > 1.
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REMARK 6.8 If we choose the distance function in Z such that the distance between two
different points is always N, then with the same reasoning as above we can prove that L(Zn) >N

and if we choose a co—p metric such that the distance is oo for two different points then L(Z®) = oo.

We know that for general approach spaces the measure of separability for an uncountable
(larger than the continium) product is not necessarily equal to the supremum of the measures of

separability of its components. For products of p-M ET® spaces we have the following counterex-
ample.

COUNTEREXAMPLE 6.4 Consider a set U with cardinality larger than the continuum.
Then as a product of discrete metric spaces S(2V) = 0 iff its topological coreflection is separable.
Since this is not the case [2], and §(X x 2%X) C {0,1} we have S(2Y) = 1.
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