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ABSTRACT. Steady two-dimensional free convection flow of a thermally stratified viscous fluid through

a highly porous medium bounded by a vertical plane surface of varying temperature, is considered.

Analytical expressions for the velocity, temperature and the rate ofheat transfer are obtained by perturbation

method. Velocity distribution and rate of heat transfer for different values of parameters are shown in

graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled

differential equations by Runge-Kutta method and compared with the analytical solution. The chiefconcern

of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat

transfer.
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1. INTRODUCTION
The investigation of problems involving free convection flow is invariably connected with the concept

of stratification which means the stable variation of the density of the fluid in the gravitational field. The

Boussinesq approximation is widely used in the case of little stratification in which it is customary to

consider the small deviation of the density from some constant value. However, the introduction of the

analogous deviation from the hydrostatic value is more natural andTurchak and Shidlovskii 1] have derived

from this approach the system of equations of motion for a stratified fluid in Boussinesq approximation in

the presence of viscosity, thermal conductivity and diffusion. This system of equations of Turchak and

Shidlovskii thus introduces explicitly the effect ofequilibrium stratification through the equilibrium density

gradient arising in general, from equilibrium salinity and temperature gradients. For a thermally stratified

fluid equilibrium temperature gradient only appear.
Raptis et al. [2] studied the free convection flow of an incompressible viscous fluid through a porous

medium bounded by a vertical porous plate with constant temperature considering viscous dissipation only.
Rudriah and Nagaraj [3] investigated for free convection flow ofa viscous fluid in a porous medium bounded

by two vertical plates kept at constant temperature and considered both viscous and Darcy dissipations.

However, the above references do not consider the fluid to be stratified in the sense that the equilibrium
temperature of the fluid is taken there to be uniform.

Here we investigate the two-dimensional free convection flow of a thermally stratified viscous fluid

through a porous medium bounded by a heated vertical plate taking into account both the viscous and Darcy
dissipations, the temperature of the plate varying linearly along the vertical direction. The main object
here is to find the effect of equilibrium temperature gradient of the fluid on the flow.
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Assuming the porous medium as an assemblage of small identical spherical particles fixed in space
the equation for incompressible fluid can be taken in the form [4],

tt ., +IxV’ O’" (1.1)p’(" V)’ -Vp k-;

where " is the velocity, p’ the density, p the pressure, . the viscosity of the fluid, k’ the permeability of

the medium and ’ the acceleration duc to gravity.

2. FORMULATION OF THE PROBLEM

We take a Cartesian coordinate system with the y’-axis vertically upward along the plate and the

x’-axis normal to it. Now the temperature, density and pressure of the fluid can be written as (Ref. [1 ])
T’-T.+O’, p’-p.-ctp00’ and p-p.+ff,

where T., p., p. the equilibrium temperature, density, pressure respectively of the fluid, are given by

T. To +Ar’y’, p. p0(1 -aT.) and Z-r, -p,g; and 0’, " are the deviation of temperature and pressure,
the constant At’(> 0) is the equilibrium temperature gradient of the fluid, the constants t30 and To are the

reference density and temperature respectively and ct is the coefficient of volume expansion. We assume

the surface temperature of the plate in the form Tw’ Tw + T., where TW(> 0) is a constant.

Here the motion is essentially due to the temperature gradient in the plate. The plate being assumed
infinite along the y’-axis, the field variables 0’ and " are taken to be independent of y’. Then using the

equation of continuity and applying Boussinesq approximation the equation of motion for the problem (el.
(1.1)) becomes

dZv v

v--7. + agO’- 0 (2.1)

and the equation of energy becomes

d2O ( a,u’/2 ViDo ,2 .,c"+pvb’] +’"Va -C’pAr’ -0 (2.2)

The boundary conditions are

.’=0, 0’=T.. at x’=0
(2.3)

.’0, 0’--0 as x’--*o

where .’ is the velocity component along the y’-axis, c is the thermal conductivity, C, is the specific heat

at constant pressure, v P./P0 and the second and the third term in the energy equation (2.2) represent the

viscous and Darcy dissipation respectively.

Introducing the non-dimensional variables. .’/13, x x’13/v, {}’/T, where I (ctgvTw)m has

dimension of velocity, the above equations with the boundary conditions take the form

dx----- oZv + 0 0 (2.4)

d’O
+v( d.)" I +NoZv Par. 0 (2.5)

with

and

.=0, 0=1 at x-0 (2.6)

--*0, 0--*0 as x-.-*oo (2.7)

where o v/V I (Darcy resistance parameter), N p0vl2/z:T, (buoyancy force parameter), P p0C,v/k
(Prandtl number) andAr vAr’/Tw{ (equilibrium temperature gradient parameter).
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3. SOLUTION BY PERTURBATION METtlOD
The coupled equations (2.4) and (2.5) are non-linear due to dissipation terms. However, in many

practical problems N is small and therefore, with N as a perturbation parameter we can employ the per-
turbation technique to solve the above equations.

We write

v(x) Vo(X + Nvl(x + 0(N2)
0(x) 0o(X + NO(x) + O(N2) (3.1)

where Vo, 0o are the solutions corresponding to N 0 i.e., when the dissipations are neglected.

The sets of equations of different orders can then be obtained as

zeroth order: (3.2)

first order:
vl" ov + 01 0

0" + Vo
’2 + o’2v0 PArr 0

(3.3)

together with the corresponding boundary conditions

v=0, ’ul=0, 0o-1, 0--0 at x=0
(3.4)

vo---0, v---*O, 0o---*0, 0---*0 as x

where primes denote differentiation with respect to x.

Solving the equations (3.2) and (3.3) with the help of (3.4) we get v0, 0o and v., l, 01 respectively and

from (3.1) we finally get the expressions of velocity and temperature in the form

v M(e: e-) +N[axe (ct + o:)e-+A2e ’’’ +M,
3a2(4ot

(P +2) -tM 2(cqPl +z) -(, ,})+
313(413- al)

e
al[31(131 + 2cq) (ctl + 2131)

e (3.5)

0 (M +A2N)ct21e -: + (AxN M):e-" +NM2,
3a2C4a2 IBm)

where

+ e + e I (3.6)
313(413- a) (13 + 2cq) (cq + 2131)

c*.+o 13+d 2(cq181+o2
+

3ct 4132 ct2 3x(P + 2Ctl)

1/’2

for >0

ct + d p + d 2(apl + d)
4ct- 13

+ 313 Ctl(e + 213)

M= 1/(a ) and X-o’-4PAr

Again for k < 0, cq and 131 will become complex and the real part of (3.5) and (3.6) will be the solutions

in this case. We can also obtain a solution in the case Z. 0 i.e.,At o4/4p.

For very high permeability of the medium, the parameter K j will be very large and the solution

of the corresponding problem for the free flow of the fluid is obtained by making o 0 in our solution.

(a,,) at the plate from (3.5)and the rate of heat transferWe can calculate the shear stress x g- ,-0

(,to) from (3.6).between the fluid and the plate in terms of the Nusselt number Nu, as Nu -g ,,.o
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4. SOLUTION BY NUMERICAL METHOD
The coupled second order ordinary differential equations (2.4) and (2.5) with boundary conditions

(2.6) and (2.7) are also solved numerically by fourth order Runge-Kutta method. For this we put the

equations (2.4), (2.5) in the form

d y, dO

and -- ov-e (4.1)

d2y2
PArr N

together with the initial conditions (2.6) and
dv dO

Y--, Y:---Nu at x-0 (4.2)

The infinity conditions in (2. namely (v 0, 0 0 as x w) will be replaced by the condition

v, 0 < 10q at x x, where x, is a suitable value depending on the parameter. To find the initial conditions
d0

(4.2) for specified P, At, o and N, we apply an improvement method with the values of and at x 0,

calculated from e zeroth order solution (i.e., whenN 0) the starting values. t these starting values

be and 0- en e appropriate improvement of these values are carried out by an iteration scheme

(ishnamuhy and Sen [5-7]) until the infinity condition state above is satisfied.

e numerical solutions for v and 0 are computed for a fixed P -0.71 with different Ar (0.05, 0.1,

0.3, 0.5 and 1.0), different o (1 and 2) and different N (0.01, 0.1, 0.2 and 0.3).

5. DISCUSSION
The coupled non-linear equations (2.4) and (2.5) for velocity and temperature are solved by pertur-

bation method with the buoyancy force N as perturbation parameter. These equations are also solved by
fourth order Runge-Kutta 0hK) method for different At, o and N with p. 0.71. The buoyancy force

parameter N represents here the effects of free convection currents and we take N > 0 (Tw > 0) which

corresponds physically to an externally cooled surface.

The velocity profiles obtained by the two methods for differentN(with fixed Ar and o) are shown in

Figure 1 for comparison. We find forAr 0.3 the maximum difference in the velocity obtained by the two

methods are 0.62% forN 0.1, 3.2% forN 0.2 and 9.7% forN 0.3. Thus forN :a 0.1 the two solutions

may be taken to be practically identical. The value of the shear stress at the plate obtained by the two

methods, agree up to a slightly higher value ofN. For example, the change in the shear stress forAr 0.3

are 0.27% for N- 0.1, 1.31% for N- 0.2 and 4.12% for N- 0.3. Similar is the case for the rate of heat

transfer.

It is also seen from computations that the agreement between the solutions by the two methods for a

fixed N(< 0.1) is not significantly affected for changes inAr and o.

The velocity profiles for differentAr and o (N 0.01, P 0.71) are shown in Figures 2-4. Figures 5

and 6 show the variation of shear stress x and the rate of heat transfer (in terms of Nusselt number Nu)
respectively at the plate with Ar for o and 2.

We find from Figures 2, 3 and 4 that an increase n velocity and an increase in permeability K -j
results in an increase in velocity.

From Figures 5 and 6 we see tha the shear stress at the plate decreases and the rate of heat transfer

at the plate increases with the increase in equilibrium emperature gradient. Also the shear stress and the

rate of heat transfer at the plate increases as decreases i.e., the permeability increases.
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We calculate separately the effects of viscous and Darcy dissipations on the velocity and also on the

shear stress and the rate of heat transfer at the plate. It is found that for N > 0 the effect of both the

dissipations is to increase the velocity as well as the shear stress at the plate. The rate of heat transfer is

however, decreased by these dissipations. All this is because of heat addition by dissipation. The effect

of these dissipations decrease with an increase in Ar.

It is important to note, as calculations show, that the effect of viscous dissipation is always smaller

than that of Darcy dissipation and for Ar o4/4P the effect of viscous dissipation is negligibly small

compared to that of Darcy dissipation.

6

o,9

’0

Figure 1. Solid line represents perturbation solution. Broken line represents
numerical solution by RK method.
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Figure 2. Velocity profiles for P 0.71, N 0.01 and o 1.
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Figure 3. Velocity profiles for P 0.71, N 0.01 and o 2.
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Figure 4. Velocity profiles in impervious medium forP 0.71, N 0.01.
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Figure 5. Shear stress at the plate withAr forP 0.71, N 0.01.
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Figure 6. Variation in the rate o’f heat transfer in terms of Nusselt
number withAr forP 0.71, N 0.01.
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