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ABSTRACT. In this paper we study the classification of solutions of delay difference equation

y,,= A, for n= N-(m+ 1),...N-1

where A,,, n =/V- (m + 1), -, N- are given, m is a nonnegative integer.
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1. INTRODUCTION. The problem of oscillation and nonoscillation of solutions of delay

difference equations has been receiving a lot of attention for the last few years. Erbe and Zhang

([1]-[3]), Lalli, Zhang and Zhao ([8], [9]), Ladas, Philos and Sficas ([6], [7]), have done some

extensive works on this topic. A survey on the oscillation of delay difference equations could be

found in the monograph by Gyori and Ladas [5].
In this paper we consider the second order delay difference equations of the form:

A2y, P,y, (1.1)

where z denotes the forward difference operator: Ay, y, + y., m is a nonnegative integer.

By a solution of equation (1.1) we mean a sequence {y,} which is defined for _> N- (m + 1)

and which satisfies equations (1.1) for all, > N. Clearly if

y,,= A,, for n g-(m+ 1),N-m,...,N (1.2)

are given, then equation (1.1) has a unique solution satisfying the initial conditions (1.2), where

N is an initial point.

A nontrivial solution {y,} of equation (1.1) is said to be oscillatory if for every N > 0 there

exists an n >_ N such that y,y, + < O. Otherwise it is called nonoscillatory.

Set EN {N-(m+ 1),N-m,...,N- 1}, if

y, An, n q EN (1.3)
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are given, then the solutions depend on the parameter l/N . We are concerning with the

classification of solutions of equation (1.1) with (1.3).
2. MAIN RESULTS.

We always assume that Pn > 0 and Pn does not identically equal to zero in equation (1.1).
We denote S the set of all solutions of (1.1). Since P, > 0, it is easy to see that

s=s/=Us-=Us,Us-’UsoUs~
where

LEMMA 2.1 If

then l/,, e S + oo. If

than l/. S- oo.
PROOF. From (1.1), we have

Summing it in n we have

yt >_O on EN, YN > yN-1

y,<_O on EN,YN <yN-1

N+(n-1)
IXYN + AyN-1 Z

i=N-1
Pil/i rn,

n-I N+n-1
YN+, YN-, +nAyN-, + Z Z

i=0 j= N-1

The conclusions of Lemma 2.1 follow from (2.2).
From (2.2), the following is also true.

LEMMA 2.2. If

n+N-2

then

(2.1)

lira (n + N i)P oo, (2.3)
i=N-1

Yi >- O, . EN, l/N >-- YN-
imply that {l/.} S + o, and if

Yi < O, e EN, l/N <-- l/N-1
imply that {l/.}

LEMMA 2.3. Assume that the solution y. d z have se initiM vMues on E with

AyN_ > AZN_ . Then y. > z.,Ay > Az.,n N d

_.moo(l/. z.)= oo. (2.4)

PjV,_ ,,,. (2.2)
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PROOF. Set z,=y,-z,, then z,=0 on E/v and Axv_ >0. By Lemma 2.1, {J’,}eS+

From (2.1) A, > 0 for n _> N.

LEMMA 2.4. For every given initial value on EN, equation (1.1) has no more than one

bounded solution.

PROOF. Suppose the contrary, let {y,}, {z,} be two bounded solutions of (1.1) with y, z,

on Eg and YN > ZN" This implies that ly,-z, is bounded. On the other hand, by Lemma 2.3,

(2.4) should be true. This contradiction proves Lemma 2.4.

For given y,= A, on EN, then the solution of (1.1) depends on the parameter yv =f e R.

Define the sets of f as follows:

K { e R, {y.} e s}

K { e R, {v.} e S

THEOREM 2.1. For given v, on EN, the sets K+ and K are nonempty.

PROOF. If u, 0 on EN, the conclusion follows from Lemma 2.1. Otherwise, from (2.1) and

(2.2) we can find a number YN so large that v, > O,i N,N + 1, N + m and AyN + > O.

Translating the initial point to n + m and using Lemma 2.1 we conclude that the solution with

this VN belongs to S + o. Therefore K + oo. It is similar to prove that K-oo is nonempty.

THEOREM 2.2. The sets K-,K +oo are open sets which are given by nonintersecting half

lines (-o,) and (8, +o)(a < 8). The set F R-(K+[.Jg -) is nonempty and consists of the

interval [a, 8], if a < 8, or the point a, if a 8.
PROOF. Let {v,} e S +. Then there exists N’ such that v, > 0 and Ay, > 0 on EN,. By

continuous dependence of solutions and their differences on the initial conditions, all solutions

with y, on EN and /v differ slightly from v/v are positive and have positive differences on Ev,. If

the initial point is translated to the point N’, then by Lemma 2.1 all those solutions belong to

S +, i.e., K+ is open. Similarly, one can prove that K is open. Using Lemma 2.3, the

conclusions of theorem follow.

THEOREM 2.3. If a < 8, then each YN F the corresponding solution is unbounded and

oscillatory.

PROOF. It is sufficient to show that every solution with YN 6_. "F is unbounded. Suppose the

contrary, {y,} is a bounded solution with YN F. Let zv # Y/v. By Lemma 2.4, {z,} is unbounded

and oscillatory. On the other hand, Lemma 2.3 shows that ly,-z, I--*c as n-o0 and hence

lirnnoo zn oo which contradicts the oscillation of {z,}.
THEOREM 2.4. If ],oo= g iP, cx:), then every bounded solution of (1.1) either belongs to S

or S

PROOF. Let {y.} be a bounded positive solution of (1.1). Then

From (2.1)

and from (2.2)

eventually and/,/oo/xv, 0.

AyN E PrY,
t=N-1
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oo n-1 N+i-1
YN + YN -1 n Z P,Y, + Z Z P.IY.1

i=N-1 i=0 j=N-1

oo N+n-2
=VN-I -n Z e,V,-m+ Z (n+N-l-i)P,V,_m

i=N-1 i=N-1

N+n-2 oo

=lIN-, n Z P,V, n Z P,Y, +
i-N-1 i=N+n-1

N+n-2
(n + N- i)P,y,_

i=N-I

oo N +n-2

i=N+n-1 i=N-1

oo N+n-2 N+n-2

i=N+n-1 i=N-1 i=N-1

=YN-I +(N--1)(AYN+n-2--AYN-1)
N+n-2
Z ip,y, + nAyN +

i=N-1

< YN- (N- 1)AyN_I
N+n-2
Z iP’Yi-m" (2"5/

i=N-1

If y,--,l > 0, then (2.5) lead to that limn_.o Yn --oo. This contradiction shows that limn._,o Yn O.

The proof is complete.
COROLLARY 2.1. If ,oo= Nip, oo, then

R K+UK-UKUK~
and K + 0% K and K JK are nonempty.

THEOREM 2.15. Assume that

iim sup Z (i (n m))p, >
i=n-m+l

(2.6)

(2.7)

Then every bounded solution of (1.1) is oscillatory.
PROOF. Let {,} be a bounded positive solution of (1.1).

Summing (1.1) from N to n, we have

AYn + AyN Pdti-
i=N

Then AV. < 0 eventually.

Summing it from n- rn + to n in N, we obtain

mAyn+l--Yn+l +Yn-m+l

Hence

PlY,
j=n-m+l

0_<v.+-v._.++
i=n-m+l

_< V. + V. + (1 _j (i (n rn))pi
i=n-rn+

which contradicts to (2.7). The proof is complete.
COROLLARY 2.2 Assume that the assumptions of Corollary 2.1 and Theorem 2.5 hold.
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Then K is nonempty.

In fact, by Corollary 2.1, h’U K is nonempty and by Theorem 2.5, K is empty Therefore

K is nonempty.

It is easy to see that if p, = p >0 in (I.1), then all assumptions of Corollary 2.2 hold,

therefore for any given A,, on EN, equation (i.i) with (1.3) has at least one oscillatorv solution,

i.e., K is nonempty.

EXAMPLE 2.1. Consider

a p_ (2.8)

with u, (- 1)’, 1,. .,sP, 1. Then through computation if u > -0.21675, the solution

{u} S +, if u < 0.21676, the solution {,,} S -, in this case we see o .
OPEN PROBLEM. What condition could guarantee that < ;3?
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