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ABSTRACT. In this paper we study the existence of solutions of the following nonlinear hyper-

bolic svstem

u"+A(t)u+b(x)G(,)=f in Q

u 0 on E

u(0)=u u’(0)=.’

vhere Q is a noncylindrical domain of Rn+l with lateral boundary E, u (u,u2) a vector

defined on Q, {A(t), 0 < < +o} is a family of operators in (Ho(), H-(f)), where A(t)u
(A(t)u,A(t)u2) and G: R R a continuous function such that z.G(z) > O, for z R2.

Moreover, we obtain that the solutions of the above system with dissipative term u’ have

exponential decay.
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1. INTRODUCTION.

Let Q be a noncylindrical domain of R" x [0, +[ with lateral boundary E, G: R R a

continuous function and u: Q R2, u(z, t) (u(x, t), u2(z, t)). In Q we consider the following

mixed hyperbolic problem:

u" + A(t)u + b(x)G(u) f in Q (1.1)

u 0 on E (.2)

Zt(X,0) Z/(X), /2t(X, 0) ?/I(x) (1.3)

where p > -1 is a real number, {A(t),0 _< < +} is a family in (Ho(f),g-(ft)). In this

case the vector (d(t)u,A(t)u2), for u (Hi(12)), is designated by A(t)u.
The linear and nonlinear wave equations in noncylindrical domains have been treated by a

number of authors. Among them we can mention Lions [6] who introduced the so-called penalty
method to solve the problem of existence of solutions. Using this method, Medeiros [8] proved
the existence of weak solutions of the mixed probleln for the equation

u"-Au+3(u)=f in Q. (1.4)
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For a vi(le class of fl(u) such that fl(u)u >_ 0, Cooper-Barrios [4] studied the existence and

uniqueness of weak solutions of (1.4) for the case t:(v.) ]v.l’ u (c _> 0) and E globally "time-

like" and Coopcr-Medeiros [3] included the above results in a general model

u -A.+f(.)=O

where f is continuous and sf(s) >_ 0 and E globally "time-like".

Cooper [2] considered the local decay property of solutions of linear wave equations (in some

exterior domain) assuming that the boundary is "time-like" at each point. Inoue [5] succeeded

in proving the existence of classical solutions of (1.4) for the case n 3 and fl(u) u when the

body is "time-like" at each point. Clark [1] proved the existence of weak solutions of the mixed

problem for the equation

k(x)u" + k(x)u’ + A(t)u + Il f in Q.

Nakao-Narazaki [11] studied the decay of weak solutions for a wave equation with nonlinear

dissipative terms in noncylindrical domains. On the other hand, Milla Miranda and Medeiros

obtained weak solutions for problems (1.1)-(1.3) for the case A(t) -A and b(x) 1 (Medeiros-
Milla Miranda [9]) and b(x) -1 (Milla Miranda-Medeiros [10]) in a cylindrical domain.

In this paper we study the existence of weak solutions of problem (1.1)-(1.3) and the decay

of weak solutions for the system (1.1) perturbed by the dissipative term u. Under the hypothesis

that the domain is monotone increasing we prove that these solutions decay exponentially as

2. PRELIMINARIES.

By :D(f) we denote the space of infinitely differentiable functions with compact support

contained in ft. The inner product and norm in (L2(f)) and (go(f))2 will be represented by

(’,"), I, ((’,")), ]] 11 respectively and defined by:

(, v) (u, )L=), I,1 (, ),
3-1

((u,v)) ((**,)), I111
3=1

where u (ua, u), v (v, v).

For w (wx, w2) e (L’(ft)), we have

for 1 _<p_< cx.

We denote by u’, u", Diu, 0 <_ _< n, the vectors

Or2 0t
(" Ou Ou2 )D,u k,-x-,’-x:

If X is a Banach space we denote by L’(0, T; X), 1 < p < +ec, the Banach space of vector

valued functions u" ]0, T[ X which are measurable and [lu(t)llx e L(O, T) with the norm
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an(l 1)5 L(O, T;X) th(" Ba,mch sl)ace of vect,) valued functions u" ]0, T[---+ X which are ,neasu-

,’al,le a,,,l Ilu(,’)ll.\. L-":(O. T) with the

Let Q be a bounded, connected and open subset of R with smooth boundary F,

Q c x]0, +[ an open noncylindHcal domain. We will use the following notations:

=Q{t=s} for.s >0, o=int(Q{t=O}),F=O, = F andOQ=oU
0<s<

is the boundary of Q. Of course, o # .
Our assumptions on Q are"

(H1) fit is monotone increasing, that is, C Q: if < s, where is the projection of t in

the hyperplme 0.

(H2) For each G]0, +[, t has the following property of regularity" if u H() and u 0

a.c. in fl;, the restriction of u to belongs to g(fl;).
For simplicity we will identify ; with t. We define Lq(O,;(L(t))2) as the space of

functions w Lq(o,;(L())) such that w 0 a.e. in x]0,+[Q. When 1 q < we

consider the nonn

J]W][L,(O,oo;(L))(fl, )))

l/q

I1()1 dt

which agrees with IlwllL,(O,;(L,(a))2). For the case q oo we consider

IlwllLoo(O,oo;<L,<a,>):> esssup II’()ll<L,<n,)),.
0<t<o

We observe that Lq(0, oc;(LP(t))2 is a closed subspace of Lq(0,;(U’())2) for
< q < c. In the same way we define q(O, xD;(Hlo(’t))2) as the space of functions

w E Lq(0, ; (Ho())2) such that w 0 a.e. in ]0, +[\Q with’the norm:

[IWllL, (0,+;(Ho (a,))2) O+C /q

IIw(t)llH:(,)) dt 1 <q<o,

and

IlWllL(O,;(u,o(n,)),) esssup
0<t<

It follows by (H2) that these norms agree with the norms in Lq(0, cx; (Ho())2) for < q < .
We also have that La(0, oo; (Ho(t))2) is a closed subspace of Lq(0, ; (Ho ())2).

Let us consider the following family of operators in L:(Ho(), H-())

where a, a, and a,, a, e L(O, +o;L(f)) (i,j 1,... ,n). Here a, denotes the

derivative in distributional sense of a, with relation to t. We suppose"
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for all (t,) e [0, +cx[xR" and a.c. in , with a > 0 a constant.

For u, v (Ho()) xve (lcnotc by a(t, u, v) the family of lincar forms defined as:

a(t,u,v)-- jfa,(x,t)Dit.Dvdx
t,l=l

associated to the operator A(f) defined in (Ho ())2 by A(t)u (A(t)u, A(t)u2 ), where u

(111, lt2).

From the hypothesis about a, we obtain that a(,t, u, v) is symmetrical and of (2.1)

a(t, u,,z) > llull, for u.e (Ho(ft))2, [0, +oo[ (2.2)

Still, if we define h(t) a(t, u, v) for u, v fixed in (H())2, we have that h, h’ Lo(0, +)
where

j[n 0
(x t)D,u.Dlvdzh’(t) - a,,

t,3"-I

which we denote as a’(t, u, v). Let us suppose that

a’(t,u,u) < O, for u (H(/))2. (2.3)

We consider the continuous function G: R - R defined by

G(s, t) (Itl"+=ll ’ ,, Isl+=ltl ’ t).

We easily verify that

x.G(x)>_O, for xl2. (2.4)

that

Let b(x) be a function such that b L(fl) and to facilitate the computation we assume

Ib(=)l < 1 a.e. in f. (2.5)

For u, v (H (2t))2 we use

a(t, u,v) ,l j a’(x’ t)D’fi’Di

where fi, are extensions of u, v by zero outside of 12t.
Finally in this section we give a lemma due to Nakao [11], which will be needed for the

proof of decay property of solutions.

LEMMA 2.1: Let (t) be a nonnegative decreasing function on R+, satisfying

(t + 1)- d2(t) _< d3((t)- (t + 1)) (2.6)

with some constants 0 < d2 < 1, d3 > 0. Then we have



NONLINEAR HYPERBOLIC SYSTEM IN NONCYLINDRICAL DOMAIN 565

(t)<ro(O)c-t. fin" tR+

whoro o, aro p(sitivo c(mstant.s.

3. MAIN RESULTS.
THEOREM 3.1: Let a(t, ,,, ,,)and b(x)be asin (2.2), (2.3), (2.4) and f L(0, +c; (L2(2t))),

u 6 (Ho(o)) u (L (9to))2 satisfy:

(3.1)

(1 a)e-(p+l)]/+ (3.2)

where

I(/(no)) + u u) + --(b(x)G(u),u)(L,(n))
4-, if n > 3 and Co is the constant of the continuous embeddingp>-l, ifn=l,2;-l<p<

of go(f) in L(o+)(Q). Then, under the assumptions (H1) and (H2), there exists a function u

satisfying

u e L(0, +; (goa(n,))2) (3.3)

u’ C L(0, +; (L(f,))) (3.4)

u" C L’(0, +; (H-l(no))2) (3.5)

u" + A(t)u + b(x)G(u) f in (D’(Q)) (3.6)

u(O) u (3.7)

u’(0) u’ (3.8)

REMARK: Theorem 3.1 (replacing c by T) is also valid of we do not consider (2.3) and

replace (3.2) by

exp [-nN -t- 2

whereN= max esssup Ia,,(z,t)l and
a_<,,<, nxlO,T[

THEOREM 3.2: Let p, a and Co be as in Theorem 3.1 and u C (Hlo(no)), u’ C (L(gto)),
a(t, u, v), b(x) as in (2.2), (2.3), (2.4) such that

(3.9)
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wh(,l"(,

O<
-(5 2p + 4

(3.10)

0 --I.’]{l.(ll )! + a(O,u, u) + b(.r)G(u(x)) u(x)dxp+2
Then, unl’r assmnptiCms (H1). (H2). there exists , flmction u satisfying (3.3), (3.4), (3.5). (3.7),

(3.8) and

." + .4(t)u + b(.r)G(.) + .’ 0 in (’D’(Q)) (3.11)

E(t) c-t for [0,+[ (3.12)

where c > 0,/ > 0 arc constants independent of u, and

E(t) I"’(t)lL(a,), + a,j(x,t)D,u(x,t).Dju(x,t)dx +

p+2

4. PROOF OF THE RESULTS.
PROOF OF THEOREM 3.1. We observe by (3.3), (3.4) and (3.5) that the initial conditions

make sense. From (3.1) we have 0 > 0. To prove the theorem we consider fi, fil extensions of

u, u by zero outside of o and

1 in 12x[o,+[\(Qufox {0})
M(x,t)=

0 in Quox{O}

It is clear that t E (Ho(F))2, fil e (L2(12)) and that they satisfy (3.1) and (3.2) with the

norms in the respective spaces.

Let (wv),,> be a basis of (Hol()) and Vm [w,... ,w] the subspace generated by

the m first vectors of the bis (w,). For each e > 0, we determine the penMized approximate

solutions u: [0,t[ V as solutions of the following system

u(t) z) + a(t,u(t),z) + (b(x)G(um(t)),z) + (M(t)u(t),z)

(f(t),z), for z e Vm (4.1)

u,(O) uom o strongly in (Ho())2, Uom V, (4.2)

Um(O u, strongly in (L2(/))2,um e V, (4.3)

Lt+Let be ,(z t) tt M(x,s)ds. We can prove that dr, C([0, +o),L(ft)), , is

differentiable with respect to and

0
0--’(x’t)-<0 for t[0,+[, a.e. in,

being the derivative in distributional sense of , with respect to agree with ,. Moreover,

we have:
0
0 " c L(0, +; L())
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Io,(.r, t)l -( . for (.,’. t [0, +,[ and > 0

O,(.r. t) .M(.r, ), fin" ]0. +[ a.e. in Q, when l

for u’ L(0, +;(H2(Q))2) such that u,’ L(0, +;(L2(Q))2).
When we take w ut, in the last equality and then make # , we obtain by the above

results for , that:

(4.4)

It follows by (4.2) and Ho(Q) L2(O+2)(fl) that there exists a subsequence of (Uo,,), still

denoted by the same symbol, such that

(b(x)G(Uo,,), Uo,,) (b(x)G(fi), rio) (4.5)

From (4.2) we also obtain

M(O)uo. 0 strongly in (L(f)) when m +c (4.6)

Since u., E C([0, t..,[; V,.) and (3.1) is valid for ti it follows that there exists To.. such

that 0 < Tom < tm and

1/2(p-F

II,,,.,(t)ll <
6’0

for E [O, To,,,[, m > ro. (4.7)

So, from (4.2)-(4.7) by using similar arguments as in Tartar [12], we have

II,..,(t)ll _< < c1, lu’,.(t)l < c=, llM(),,,(t)l= < C, (4.8)

( ) 1/2(p+l) (for E [0, To..[ and m > m,, where C co(+2) and C2 \ p+2 ]"

By continuity of ue,n in To. and (4.8) we can show that for all E [0, t..[ and rn _> rn"

I1,,,.()11 < c,, I,’,,,,(t)l < C2,
1
iM(t),,(t)l= < C=. (4.9)

Therefore we can extend the solutions to [0, +cxz[. One observes that the above constants are

independent of e and m, so there exists a subsequence of (u.,), still denoted by (u,,) such that

u,, u, weak-star in L(0, +c; (Ho(f))2)

u,r u, weak-star in L(0, +c; (L2(f)) :)

(4.10)

(4.11)
1
Mu., Mu. weak-star in L(0, +c; (.z)

To prove the convergence of nonlinear term of (4.1), first we show that they are bounded
in L(0, +cx;(L(ft))) and then using (4.10), (4.11), compactness arguments (Lions [7]) and
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Libra.’, Lemma 1.3 (1). (’it., we conclude

b(.r)a(. )-+b(.r)G(..) weak-star in L(O, oo;(Lr())2) (4.13)

From the convcrgcnces (4.10)-(4.13) and passing to the limit in (4.1) when m +oo it

follows that

u’’ + A(t)u, + b(.r)G(u.) + 3I,, f in :D’(0, +oo; (H-’(f/))) (4.14)

One observes that the estimates (4.9) are also valid for ue, so there exists a. subsequencc,
still denoted by (u,), which satisfy

weak-star in L(0, +oc; (Hol(f))2),

u’ u’ weak-star in L(0, +oo; (L2(F/))2), (4.16)

Proceeding as in (4.12) we have

M(t)u, Xl weak-star in L(0, +c; (L=(2))2) (4.17)

By (4.17) we see that Mu 0. From this we conclude that u 0 a.e. fx]0,
so that u L(0, +oo;(Ho(ft))). Therefore, we obtain u’ 0 a.e. in fx]0,+oo[\Q. So,
u’ L(0, +m; (L(f,))=).

Multiplying the equation (4.14) by (79(fl x (0, +oo)))=, where is the extension of

(:D(Q)) we obtain by (4.15), (4.16) and by definition of M, letting 0,

u" + A(t)u + b(x)G(u)= f in (:D’(Q)) (4.18)

Let Qo foX]0, +oo[c q. It follows by (4.18) that

u" + A(t)u + b(x)G(u) f in (D’(Qo)) (4.19)

From u satisfying (3.3), (3.4) and (4.19) we obtain (3.5) and (3.8). From the convergences

(4.15), (4.16) we obtain (3.7).
PROOF OF THEOREM 3.2. We only prove (3.12) because the other results follow as in

Theorem 3.1. For the proof of (3.12) it suffices to show that the approximate solutions U,m (m
large enough) satisfy the decay estimate of the theorem with c and/ independent of e and m.

Proceeding as before, we obtain

IlUm(t)ll < C, for o, rn - m (4.20)

) l/=(p+)where Ca 2co=(,+ a)

From Banach-Steinhaus’s theorem we obtain the same estimates for u.

From the penalized problem associated to (3.11) it follows that

Eem(t) + lUm(S)l ds >_ Em(0), m>_ml
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1[,E..,,,(t) I" (t)l-

z,(.,.)c(,, (.,..t)).,,,,,,(.,. t)d.,.++ T)

Applying similar argmncnts as Theorem 3.1, w, conclude that

m>m, t>_0 (4.21)

and
+1

E,m( + )+ I,’..,,,()1 ds <_ E,m(t) (4.22)

Therefore, from (4.20) and (4.21) we have that S,m(t) > 0 for > 0, m > m, and E,m(t)

is decreasing.

From (4.21), there exist tl e (t,t + 1/4), t (t + 3/4, + 1) such that for m > m,

I.,(t,)l _< 2F,,,,(t), = 1,2 (4.23)

where Fm(t) E,m(t)- E,m(t + 1).

Letting z u,m(t) in (4.1), we obtain

t 1 1 b(x)G(u,,,,(.r,s)).u,,(z,s)dx ds <

(4.24)

From (4.22) and (4.24) we see that there exists a time t* (t,t2) C (t,t + 1) such that

1
E,,(t’) <_ (2K + 1)(E,m(t) E,,(t + 1)) + ;2p 3

Since E,,(t) is monotone decreasing and p > -1 we have by (4’.25)

E,m(t + 1)- d2E,m(t) <_ d3(E,m(t) E,m(t + 1)),

where0<d2 < 1 and d3 2K + 1 > 0.

Applying Lemma 2.1 we obtain the desired result.

From the boundedness (4.21) and Arzelh-Ascoli’s Theorem it follows that for each to _> 0

we have

Um(to)U’(to) weakly in (L2(a))

and by (4.20) and Banach-Steinhaus’s theorem we can conclude that

E(t) < c e-at for > O.
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