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ABSTRACT. In this paper we study the existence of solutions of the following nonlinear hyper-

bolic system

u'+ A(t)u +b(x)G(u)=f in Q

where ( is a noncylindrical domain of R"*! with lateral boundary ¥, u = (u;,uz2) a vector

defined on @, {A(%),0 <t < 400} is a family of operators in L(H!(2), H™1(Q)), where A(t)u =

(A(t)u1, A(t)uq) and G: R? — R? a continuous function such that z.G(z) > 0, for z € R2.
Moreover, we obtain that the solutions of the above system with dissipative term u’ have

exponential decay.
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1. INTRODUCTION.
Let @ be a noncylindrical domain of R™ x [0, +oo[ with lateral boundary £, G:R? — R? a
continuous function and u: Q — R?, u(z,t) = (u1(x,t), u2(z,t)). In Q we consider the following

mixed hyperbolic problem:

u' + At)u +b(z)G(u)=f in Q (1.1)
u=0 on b)) (1.2)
u(z,0) = u°(x), u'(z,0)=ul(z) (1.3)

where p > —1 is a real number, {A(¢),0 <t < +oo} is a family in L(H}(Q), H1(Q)). In this
case the vector (A(t)u;, A(t)us), for u € (H}(R2))?, is designated by A(t)u.
The linear and nonlinear wave equations in noncylindrical domains have been treated by a

number of authors. Among them we can mention Lions [6] who introduced the so-called penalty
method to solve the problem of existence of solutions. Using this method, Medeiros [8] proved

the existence of weak solutions of the mixed problem for the equation

u" —Au+Bu)=f in Q. (1.4)
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For a wide class of A(u) such that f(u)u > 0. Cooper-Bardos [4] studied the existence and
uniqueness of weak solutions of (1.4) for the case 3(u) = |u|*u (e > 0) and T globally “time-

like” and Cooper-Medeiros (3] included the above results in a general model
u' = Au+ flu)=0

where f is continuous and sf(s) > 0 and ¥ globally “time-like”.

Cooper [2] considered the local decay property of solutions of linear wave equations (in some
exterior domain) assuming that the boundary is “time-like” at each point. Inoue [5] succeeded
in proving the existence of classical solutions of (1.4) for the case n = 3 and #(u) = u® when the
body is “time-like” at each point. Clark [1] proved the existence of weak solutions of the mixed

problem for the equation
ky(z)u" + ki(z)u’ + A(t)u + [ulPu=f in Q.

Nakao-Narazaki [11] studied the decay of weak solutions for a wave equation with nonlinear
dissipative terms in noncylindrical domains. On the other hand, Milla Miranda and Medeiros
obtained weak solutions for problems (1.1)-(1.3) for the case A(t) = —A and b(z) = 1 (Medeiros-
Milla Miranda [9]) and b(z) = —1 (Milla Miranda-Medeiros [10]) in a cylindrical domain.

In this paper we study the existence of weak solutions of problem (1.1)-(1.3) and the decay
of weak solutions for the system (1.1) perturbed by the dissipative term u’. Under the hypothesis
that the domain is monotone increasing we prove that these solutions decay exponentially as
t — +oo.

2. PRELIMINARIES.

By D(2) we denote the space of infinitely differentiable functions with compact support
contained in . The inner product and norm in (L%())? and (H1(Q))? will be represented by
Coo sl - KL= 1l - | respectively and defined by:

2
(u)v) = Z(u]’vJ)Lz(Q) ) lu'2 = (u,u),
=1
2
(o) =D ((uy0,)), ulf = ((w,w))
1=1
where u = (uy,uz), v = (v1,v2).

For w = (w;,wsz) € (LP())?, we have

2
w35 @)z = llwilZs (@) + llw2llze(qy, for 1 <p < oo
We denote by '/, u", Dju, 0 <7 < n, the vectors

Ou; Ou 0%u, O%u, _ [ Ou1 Ouy
u’=(—a-?l',g2), ""=(W’3t7 , Du= 32,02, )

If X is a Banach space we denote by LP(0,T; X), 1 < p < +0o, the Banach space of vector
valued functions u:]0, T[— X which are measurable and ||u(t)||, € L*(0, T) with the norm
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r 1/p
Nellirorny = [/ HU(")”K'] .
0

and by L>(0, T; X) the Banach space of vector valued functions u:]0, T[— X which are measu-

rable and |u(#)||, € L>(0.T) with the norm

HullLes 0.1 v) = esssup [Ju(®)]]x.
u<i<T

Let Q be a bounded. connected and open subset of R™ with smooth boundary T,
Q C 2x]0, +oc[ an open noncylindrical domain. We will use the following notations:

Q=Qn{t=s}fors>0, Q=int(QN{t =0}). T, =0, T = U [, and 0Q = Q,UT

0<s<o0

is the boundary of Q. Of course, 2, # ¢.

Our assumptions on @ are:
(H1) Q, is monotone increasing, that is, Q7 C Q% if t < s, where Q7 is the projection of Q, in
the hyperplane ¢t = 0.
(H2) For each t €]0, +oo[, ¢ has the following property of regularity: if v € H3(2) and v =0
a.c. in Q\Q}, the restriction of u to {2} belongs to H!(Q}).

For simplicity we will identify Q} with ©,. We define L9(0, co; (LP(£2))?) as the space of
functions w € L9(0, 00; (LP(R2))?) such that w = 0 a.e. in 2x]0,+00[\@. When 1 < ¢ < co we

consider the norm

oo 1/q
1]l Le (0,001 LP (22))2) = [/ (Ol Ls 0,2 dt]
0

which agrees with ||w||u(0,°°;(u(m),). For the case ¢ = co we consider

[[wl[ L (0,00;(L7(02,))2) = esssup [[w(t)||(Lr(a,))2-
0<t<oo

We observe that L?(0,00;(L?(2))?) is a closed subspace of L9(0,00;(LP())?) for
1 < ¢ £ oco. In the same way we define L9(0, co; (H1(Q,))?) as the space of functions
w € L9(0, 005 (H,())?) such that w = 0 a.e. in 2x]0, +00[\Q with the norm:

+ o0 1/q
1ol e o0, +oe a2 (02017 = [/0 oy a2 dt| » 1<g<oo,

and

([l Lo (0,00, H1(02))2) = €sssup [[w(t)]|(m1(a,)):s-
0<t<co

It follows by (H2) that these norms agree with the norms in L9(0, 00; (H1(£2))?) for 1 < ¢ < co.
We also have that L9(0, oo; (H,(€))?) is a closed subspace of L9(0, co; (H1(£2))?).
Let us consider the following family of operators in L(H(Q), H~1(Q))

"9 7]
A(t) == Z %[ax] 6_1,}’

1,7=1
where a,, = a;, and a,],%a,] € L*=(0,4+00; L>®()) (i, = 1,... ,n). Here %a,] denotes the

derivative in distributional sense of a,, with relation to ¢. We suppose:
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n

Y anle ) 2 allel -+ lal®) (2.1)

t,7=1

for all (t.€) € [0, +oo[xR" and a.c. in ©, with a > 0 a constant.

For u,v € (H!(£2))? we denote by a(t, u,v) the family of lincar forms defined as:

a(t,u,v) = Z /a,](:c,t)D.-u.D,vda:
Q

1,)=1

associated to the operator A(t) defined in (H1(Q))? by A(t)u = (A(t)u;, A(t)uz), where u =

(uy,u2).

From the hypothesis about a,,, we obtain that a(t,u,v) is symmetrical and of (2.1)
at,u,u) > allull?, for ue€ (H;(R))?, t€[0,+oo] (2:2)

Still, if we define h(t) = a(t, u,v) for u, v fixed in (H}(2))?, we have that h,h' € L} (0,400)

where

n
R(t) = Z / ga,](a;,t)D,u.D,vdz
14,=179
which we denote as a’(¢,u,v). Let us suppose that

a'(t,u,u) <0, for ue (HIQ))? (2.3)
We consider the continuous function G: R? — R? defined by
G(s,t) = (|t|**2s]? s, |s|?T2|t|o t) .

We easily verify that
z.G(z) >0, for z€R?2 (2.4)

Let b(x) be a function such that b € L>(f2) and to facilitate the computation we assume
that

[b(z)| <1 ae in Q. (2.5)
For u,v € (H}(£:))? we use
a(t,u,v) = Z / a,(z,t)D,a.Djv dx
i,)=1 Q

where @, ¥ are extensions of u, v by zero outside of Q,.

Finally in this section we give a lemma due to Nakao [11], which will be needed for the
proof of decay property of solutions.

LEMMA 2.1: Let ¢(t) be a nonnegative decreasing function on R, satisfying

B(t +1) — d2(t) < d3((t) — 6(t + 1)) (26)

with some constants 0 < d; < 1, d3 > 0. Then we have
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é(t) < eod(0) ™. for teR*

where ¢,. 8 are positive constants.
3. MAIN RESULTS.

THEOREM 3.1: Let a(t,u,v) and b(.) be asin (2.2), (2.3), (2.4) and f € L(0, +o00; (L3(£))?),
u® € (HM)Q))% u' € (L3(,))? satisfy:

(3.1)

. a 17m
el ey a2 < C2oAD)

ot2

o+ 1/2
<li(@)” ()] 5

112 o .0 1 T o 1 +oo
6= [Ju'l{L2(q,y +a(0,u’ u’) + —p_‘_z(b(l')G(u hu)rayz|  + [fF®l L2002 dt
0

where

p>-Lifn=12;-1<p< :_T'; if n > 3 and C, is the constant of the continuous embedding
of H!(Q) in L2(#*2)(Q). Then, under the assumptions (H1) and (H2), there exists a function u
satisfying

u € L(0, +00; (Hg())?) (33)

u' € L0, +00; (L3(%))?) (3.4)

u" € L*(0, +o00; (H™1(2,))%) (3.5)

u' + A(t)u + b(z)G(u) = f in (D'(Q))? (3.6)
u(0) = u° (3.7)

w'(0) = u! (3.8)

REMARK: Theorem 3.1 (replacing oo by T) is also valid of we do not consider (2.3) and
replace (3.2) by

242 1/2 ’
P+l —
9, < 1/a p+1 exp nN (p+2 T
2\ C? p+2 20 \p+1

where N = max esssup I(—%a.,(z,t)l and
151,380 xo,T]

1 . 1 . 1/2
1= 3 [ R + 0000 + 0RO W]+

1 +oc0
+ — t 2 dt.
\/5/0 [f®)z20.))

THEOREM 3.2: Let p, a and C, be as in Theorem 3.1 and u® € (H2(2,))?, u! € (L3(Q,))?,
a(t,u,v), b(z) as in (2.2), (2.3), (2.4) such that

= ] s (3.9)

el i@,y < [_QCZ(p+2)
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P a ) v (‘2/)-}-3

- (26'5) 2p+4 (3.10)
1 b(2)C(u® o(2)d

p+2/00 ()G (u’(z)).u’(x)dx.

Then, under assumptions (HL). (H2). there exists a function u satisfying (3.3), (3.4). (3.5). (3.7),
(3.8) and

where

a2
0 =|u 1“'2“20”2 +a(0,u’ u®) +

7" A+ WO)G) +d =0 in (D'(Q))? (3.11)
E(t)<ce P for te [0, +o00] (3.12)

where ¢ > 0, /3 > 0 are constants independent of u, and

1y, ;
E(f) = §|:|U (t)I?LQ(QI))z * Z

1,)=1

/a,J(a:,t)D,u(J:,t).D]u(z,t)da;+
Q

1
+ m /x;. b(.l')G(u(r,t)).u(:r,t)d.r].

4. PROOF OF THE RESULTS.
PROOF OF THEOREM 3.1. We observe by (3.3), (3.4) and (3.5) that the initial conditions
make sense. From (3.1) we have 6 > 0. To prove the theorem we consider @°, i' extensions of

o

u®, u! by zero outside of 2, and

1 in Qx[0,+0o[\(QUR, x {0})

Mzt = {0 in QUQ, x {0}

It is clear that @° € (H}(R))?, @' € (L%())? and that they satisfy (3.1) and (3.2) with the
norms in the respective spaces.

Let (w,),, be a basis of (Hy(2))? and Viu = [wy,... ,wm] the subspace generated by
the m first vectors of the basis (w, ). For each ¢ > 0, we determine the penalized approximate

solutions uem: [0, tem[— Vin as solutions of the following system

(ul (1), 2) + a(t,uem(t), 2) + (B(z)G(uem(t)), 2) + E(M(t)u,m(t),z) =

=(f(t),z), forz€Vn (4.1)
Uem(0) = Uom — 4°  strongly in  (H2(02))%, ttom € Vm (4.2)
ul(0) =uym — @' strongly in  (L*(R))%, uim € Vim (4.3)

1
Let be ¢u(z,t) = ;zf,“"‘ M(z,s)ds. We can prove that ¢, € C([0,+00), L=(Q)), ¢, is
differentiable with respect to ¢t and

%¢”(x,t) <0 for t€[0,+o0f, ae. inf,

being the derivative in distributional sense of ¢, with respect to ¢ agree with g; ¢u. Moreover,

we have:

a
o @u € L=(0,4+00; L=(R))
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lop(r )] < 1. for (w.t) € Q x [0, +oc[ and gy > 0

ou(r.t) = M(a,t), for t €)0. +oc[ a.c. in Q, when y — oc

' 1 1 1 /' '
/ (@u(s (), (5))ds = S(Bu(H0e(t), wl(t) = 5(6(0)e0),(0)) ~ 3 / (8, ($)(s), w(s))ds,

0 0

for w € L>=(0, +00; (HL(Q))?) such that w' € L>(0, +00; (L?*(02))?).
When we take w = u,,, in the last equality and then make g — oo, we obtain by the above

results for ¢, that:
! 1 1
/ (M(8)uem(8), ubp,(8))ds > ;)-|z‘l[(t)u,,,,(t)|2 — 5]]\/](0)1%,,,[2. (4.4)
o 2

It follows by (4.2) and H}(Q) — L2(»+2)(Q) that there exists a subsequence of (uom), still
denoted by the same symbol, such that

(b(2)G(uom ), uom) — (b(z)G(4°),d°) (4.5)

From (4.2) we also obtain
éM(O)uom — 0 stronglyin (L%*))® when m — +oo (4.6)

Since uem € C{([0,tem[; Vi) and (3.1) is valid for @° it follows that there exists Tpem such
that 0 < Tpern < tem and

]1/2(n+1)

a
uem(t)]] < [W for t€[0,Toem[, m > m,. (4.7)

So, from (4.2)-(4.7) by using similar arguments as in Tartar [12], we have
1
lluem(@®)I < ¥ < Cr,  upm(t))® < Co, -6—|M(t)u,,,,(t)|2 < Cy, (4.8)

1/2(p+1) (p+2)/(p+1)
for t € [0, Toem[ and m > m,, where C; = (W) and Cy = (-C‘%) (%)

By continuity of #.m in Tyem and (4.8) we can show that for all ¢ € [0,¢.m[ and m > my:
1
[tem@Il < C1,  ugn(B)? < Ca, c IM(t)uem(t)|* < Co. (4.9)

Therefore we can extend the solutions to [0, +o0o[. One observes that the above constants are

independent of € and m, so there exists a subsequence of (u.m ), still denoted by (u.m) such that

Uem — U, weak-star in  L*°(0, +o0; (H:(Q))z) (4.10)
u,. — ul weak-star in L>(0, +00; (L3(R2))?) (4.11)
1 Mu,,, — lMu k i o 2 2
" em = e weak-starin  L*°(0, +o0; (L%(2))?) (4.12)

To prove the convergence of nonlinear term of (4.1), first we show that they are bounded

in L°°(0, +00; (L"(2))?) and then using (4.10), (4.11), compactness arguments (Lions [7]) and
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Lions Lemma 1.3 op. cit., we conclude
b(2)G(uep) = Ba)G(u,) weak-star in  L°(0, 00; (L"(R2))?) (4.13)

From the convergences (4.10)-(4.13) and passing to the limit in (4.1) when m — +oo it

follows that
" 1 . . 1] -
ug + A(t)ue + 2)G(ue) + = Mue = f in D'(0,+o00; (H™'(R))?) (4.14)

Oue observes that the estimates (4.9) are also valid for u., so there exists a subsequence,

still denoted by (u.), which satisfy
ue — u  weak-star in L0, +o0; (HL(R))?), (4.15)

ul —u' weak-star in L*(0, +00; (L%(R))?), (4.16)

Proceeding as in (4.12) we have
1
z M(t)ue — x1  weak-star in  L>(0, +o0; (L*(2))?) (4.17)

By (4.17) we see that Mu = 0. From this we conclude that u = 0 a.e. ©2x]0,4+o0[\Q,
so that u € L*°(0, +o00;(H}(9))?). Therefore, we obtain u' = 0 a.e. in 2x]0,+00[\Q. So,
u' € L*(0, +00; (L2())?).

Multiplying the equation (4.14) by ¢ € (D( x (0, +00)))?, where ¢ is the extension of
$ € (D(Q))? we obtain by (4.15), (4.16) and by definition of M, letting ¢ — 0,

u" + A(t)u + b(z)G(u) = f in (D'(Q))? (4.18)
Let @, = Q,x]0, +00[C Q. It follows by (4.18) that
W'+ A+ K@)G(w) = f in (D(QW))? (4.19)

From u satisfying (3.3), (3.4) and (4.19) we obtain (3.5) and (3.8). From the convergences

(4.15), (4.16) we obtain (3.7).
PROOF OF THEOREM 3.2. We only prove (3.12) because the other results follow as in

Theorem 3.1. For the proof of (3.12) it suffices to show that the approximate solutions uem (m
large enough) satisfy the decay estimate of the theorem with ¢ and 8 independent of € and m.

Proceeding as before, we obtain
lluem()]| < C3, for ¢t20, m=my (4.20)
o 1/2(p+1)
where C; = (W)

From Banach-Steinhaus’s theorem we obtain the same estimates for u.

From the penalized problem associated to (3.11) it follows that

t
Eem(t) + / biln(s)Pds > En(0),  m>m
0
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where

Esm(f) = %[lll:‘m(f)lz + ”(fﬁuf"'(f) e "’(t))+

+ —L- (J')G((l{,,,(.l'.f)) Uepm(a, t)de + = |]\[(f Ytem (1)]?
p+2

Applying similar arguments as Theorem 3.1. we conclude that

o Il ) +3
(t) < . ], m>my, t2>0 (4.21)
Eem 7C 2p+4
and
t+1 929
Ecm(t+1) +/ lul (8)|* ds < Eem(t) (4.22)
t

Therefore, from (4.20) and (4.21) we have that Eem(t)20fort>0,m2m and E.(t)
is decrcasing,
From (4.21), there exist t; € (8,t 4 1/4), t2 € (t + 3/4,t + 1) such that for m > my,

[tem(ts)| € 2Fem(t), 1=1,2 (4.23)
where F?_(t) = E.m(t) = Eem(t + 1).
Letting z = uem(t) in (4.1), we obtain

2 1
/‘ %{a(s,um(s),um(s))+ = /ﬂ b(z)a(us...(‘r,s)).usm(x.s)dz+;lM(s)Um(s)lz]ds <

< KF2 (t) + 5% E.n(t) == H'-’m(t) (4.24)

1
p+6

From (4.22) and (4.24) we see that there exists a time t* € (1,t2) C (¢,t + 1) such that
1
Em(t") < (2K +1)(Eem(t) = Bem(t + 1)) + 5—— Eem(t) (4.25)

Since E.m(t) is monotone decreasing and p > —1 we have by (4.25)

Eun(t + l) - dZEcm(t) S d3(E¢m(t) - Eem(t + l)),

where0<d2=ﬁ<1andd3=2i\’+l>0.
Applying Lemma 2.1 we obtain the desired result.

From the boundedness (4.21) and Arzela-Ascoli’s Theorem it follows that for each t, > 0
we have

Uem(to) — u(t,) weakly in (H2(R))?
ul(to) = u'(t,) weakly in (L%(Q))?

and by (4.20) and Banach-Steinhaus’s theorem we can conclude that

E(t) <ce P for t>0.
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