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ABSTRACT. Nonlinear convection in a porous medium and rotating about vertical axis is

studied in this paper. An upper bound to the heat flux is calculated by the method initiated first

by Howard [6] for the case of infinite Prandtl number.

For Ta << 0(1), the rotational effect is not significant. For 0(1) << Ta << 0(x/ logR), the

Nusselt number decreases with increasing Ta for a given Rayleigh number R. The flow has

always a finite number of modes, but with increasing Ta in this region, the number of modes
decreases. The functional dependence of the Nusselt number on R and Ta is found to have
discontinuities as the number of modes N* reduces to N*-1. For 0(x/ logR)<< T << 0(R),

R Rthe Nusselt number is proportional to (log --a). The stabilizing effect of rotation is so strong
that the optimal solution has left with only one horizontal mode. For T 0(R), the Nusselt

R.number becomes 0(1) and the convection is inhibited entirely by rotation for T >
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1. INTRODUCTION AND DISCUSSION.
This is a study about nonlinear convecting fluid in a porous medium. We shall study the

influence of Coriolis force on the heat transfer in turbulent convection of a porous layer of fluid

using the upper bound calculation initiated first by Howard [6]. The fluid is assumed to have an

infinite Darcy-Prandtl number and is bounded by two horizontal planes. As a mathematical

model, we consider the Darcy-Oberbeck-Boussinesq equations (hereafter called DOB) for which a

convenient reference is Lapwood [7]. The DOB equations differ from the usual Boussinesq

equations for convection in an ordinary fluid layer (Chandrasekhar [4]) only as the viscous term

V 2u is replaced by----if’ where t is the Darcy-permeability coefficient. The velocity u is

defined according to Darcy’s law as an average over the microscale of the porous medium.

Through experimental observation, we find that Darcy’s law is not expected to be valid

above a certain value of the seepage velocity. A universal characterization of this certain value
has not yet been obt,ained. However, the results obtained by Gupta and Joseph [5] of an

asymptotic analysis (R---cx) using DOB equations for the non-rotating system are in qualitative
agreement with the result of the well known dimensional argument relating the Nusselt number
to the Rayleigh number and also with the experimental datas [5].
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We therefore follow Busse and Joseph [1] and Gupta and Joseph [5] and assume that DOB
equations hold in turbulent regime. We hope that the analysis of the present problem based on

the DOB equations also gives a qualitative picture of the high Rayleigh number convection in a

rotating porous medium.

Malkus [8] suggested that the actual heat transferred by the realized solution is the

maximum possible. Here to produce a solvable problem, we used the strengthened form of the

Malkus principle: the heat transport which actually occurs for large Rayleigh number may be

almost as large as the maximum obtainable using the two so-called power integr.als which are

derived from the governing equations or some differential constraints which are more restrictive

than these power integrals. Now regardless of the validity of the Malkus principle, the maximum

heat flux subject to these power integrals or differential constraints gives an upper bound on the

heat transport which actually occurs in the real world and is certainly of interest. It happened
that this upper bound has some agreement with the actual heat transport and in the case of

infinite Prandtl number turbulent convection (Chan [2]) has a very good agreement with the

experimental observation. Thus the Malkus principle perhaps has some similarity with physical

reality, and we find it appropriate to use this method for the study of the present subject. Note
that we cannot expect any close relationship between the maximizing fields of velocity and

temperature to those which actually occur. For example, real convection is time dependent,
whereas time disappears completely from our maximizing problem. The Darcy-Prandtl number,
which is very large in practice, is taken to be infinity in the present problem. The fact that the

Darcy-Prandtl number is very large for natural materials means that thermally driven motion in

porous material will ordinarily be very slow motion compared to the corresponding one in

ordinary fluid layer.
The main purpose of studying the present problem is to develop a simple variational method

to obtain at least some qualitative results from the maximizing nonlinear convecting fluid in a

rotating porous medium, to compare the qualitative multi modal results of the present study
with the corresponding one in ordinary convection (Chan [3]) which gave a rather unexpected
behavior of the horizontal modes, and to develop a mathematical model for a possible application

in fluid mechanics.

Chan [3], considered the corresponding problem in ordinary convection with free-free

boundaries and found that for To _< 0(R), the flow is essentially non-rotating and there is only
one single mode in the system. However, for O(R)<_ To < O(R’/), the fluid has finitely many

modes, though the total number of modes increases as To increases in this region, and for

O(R/:) <_ T,, <_ O(R:/:) the maximizing flow has infinitely many modes. But, heat flux decreases

in O(R) <_ To <_ O(R:/) as T,, increases for a given R. This behavior of the ordinary maximizing
flow has been discussed in detail by Chan, although he also feels that if the effect of a rotational

constraint is to suppress convection, the stronger the rotation, the more it will tend to suppress

small eddies, and therefore the less number of modes allowed. But he noted that this

contradiction to his asymptotic result can be easily resolved by saying that the number of modes

is allowed to increase indefinitely in its effort to remove the rotational constraint, although the

heat flux is still less than its non-rotating value. In our present problem with a porous layer of

fluid, we find that for T << 0(1), the stabilizing effect of rotation is so weak that the fluid acts as

in the non-rotating system. There are essentially infinitely many modes associated with small

scales of motion (or eddies). The Nusselt number increases as the Rayleigh number increases.

Gupta and Joseph [5] used a less formal method to find multi-wave number solutions in non-
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rotating system and obtained the same qualitative results to the leading order terms. However,

in their result for the Nusselt number, they obtained a different proportionality constant from

ours. One reason for this difference is that they did not use a formal multiple-boundary layer
method to solve the problem and similar to Chan [2] they obtained the Euler equations after they
simplified the expression (2.11) below by using (5.10) and (5.21). For 0(1)<<T. <<0(R), the

external constraint (rotation) tends to stabilize the flow. As T, increases in this range, the

rotation tends to suppress the small eddies and therefore the number of modes decreases. The

flow has always a finite number of modes. The Nusselt number drops sharply at certain values of

T, in which the number of modes N* reduces to N*-1, except for N*= 2 in which the

functional dependence of the Nusselt number on R and T is continuous. The heat flux is always
less than its non-rotating value in the entire range 0(1) << T. << 0(R). The qualitative picture of

the modes in a porous medium is therefore different from the case in which we have an ordinary
fluid.

Porous medium probably was important to present this difference, although one may expect

that our qualitative results should also hold in ordinary convection.

In section 2, the basic equations are derived. The instability analysis as was needed partly
for the latter sections is done briefly in section 3, and finally the boundary layer analysis for a

single and for many modes is done in sections 4 and 5 respectively.
2. FORMULATION OF THE PROBLEM.

We consider a horizontally infinite layer of fluid of depth d, bounded above and below. The

upper and lower surfaces are maintained at temperatures To and To + A T respectively. The

fluid is rotating about the vertical with angular velocity f. It is convenient to use non-

dimensional variables in which length, velocities, time, and temperature are scaled respectively

by d, K d and A T. Here K is the thermal diffusivity Then, absorbing the centrifugal force

into the pressure term, and with the usual DOB equations that the density variations are taken

into account only in the buoyancy term, the basic equations are:

+

V -u =0, (2.2)

dT* T* T*dt +u.V =V (2.3)

Here _u (u, v, w) is the velocity vector, T* is the temperaturd er To, T is the deviation

of T* from its horizontal average *, and P is the deviation of the modified pressure from the

hydrostatic value appropriate to *, also K is the unit vector in z-direction, B-1_ ud is theKKogKld / TPrandtl-Darcy number, E v is the Ekman number R is the Rayleigh number,vK
where K is the Darcy-permeability coefficient, g is the acceleration due to gravity, and a is the

coefficient of thermal expansion. The equations (2.1)-(2.3) differ from the Boussinesq equations
for convection in an ordinary fluid layer only in so far as the term V u is replaced by -u.

The upper bound method assumes that the flow is statistically steady in time and homogeneous
in horizontal planes, and various functions describing the flow exist and are bounded.

Following previous workers, we rewrite the following power integrals:

< lu 12> =R<WT>,
dT*= wT_ I_ < WT >dz

(2.4)
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<WT> + <WT> 2- <W-T2> < VTI>, (2.5)

which are derived from (2.1)-(2.3)[1]. Bar denotes horizontal averages, and angle brackets

denote a further vertical averaging over the whole layer. It follows that the Nusselt number N,
which measures the ratio of the actual heat transfer to that achieved simply by conduction, is

N I + < WT > (2.6)

Although (2.4) was used in place of (2.1) by Busse and Joseph [1], we shall not use it here, but

rather follow Gupta and Joseph [5] in using (2.1) in the linear form

2 (h_"xu)= P+RTK-u (2.7)

which is obtained by setting B 0 in (2.1). The physically appropriate value B 0 follows from

extraordinarily small values of the permeability coefficient K in porous material: in sand,

gl 0 (10 -s) cm; in very porous fiber met.4ls gl 0(10 -4) cm.
We shall be concerned with the problem of maximizing N + < WT > subject to the

constraints (2.2), (2.5), and (2.7). Eliminating P,u, and v while introducing the vertical
dv ducomponent of vorticity X --’, we obtain

Vw_RVT+ dx-= 0, (2.8)

X + dw 0, (2.9)

where 7 O2/Ox + O:/Oy. We shall scale our dependent variables again so that

WT > - R- W, < WT > - R T, 1/2 < WT > - R-< EX. (2.10)

This converts the problem to the one of maximizing

1-R-< 701 >N-l= < WT > (2.11)
< (1 --) >

subject to the integral constraint

<wO> -1 =0

and the differential equation constraints

7w 7 0+ To d WzW-h- 0, =

(2.12)

(To=_ 4/E2). (2.13)

Boundary conditions are

w # 72 0 at z 0,1. (2.14)

Here z# 0 arises as a natural boundary condition.

Euler equations for the maximization problem are obtained by introducing the Lagrange
constant multiplier +; multiplier functions qr(x,y,z), and PS(x,y,z), and maximizing the

functional G where

G=N-I+2+V<w0-1> +2 <q’(Vw- V0+T,=-)+2<P’(- + )>.

The equations obtained by considering variations of 0, w and are respectively

lVO- Vq/(Y-1)(1-w’) w-+- Aw=0, (2.15)R
7 2q dP--+ (N- 1)(1 --’0) 0 + AO 0, (2.16)
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dqP- r -z O (2.17)

where we defined (A,P,q)= < (1- WO)2> (A’,P’,q’). We thus have to solve (2.13) and (2.115)-
(2.17). Also it can be easily shown that 1/2 _< A ! and so must always be an 0(1) quantity. We

may eliminate, P, q between (2.15)-(2.17) to obtain:

V+T (N-1)R + 1-0+N...1 + 1-O+N_I
We the assume

w= Z(z)e.(x,y),O= EO,(z).(x,y),X m 2, (z)O,(x,y), (2.19)

where , can be solution of the equation

V ,(, y) ,(x, y) (.20)

for some horizontal wave number ,. Functions with different wave numbers are naturally

orthogonal, and we shall chse to make the functions orthonormal, so that.. ,,. (.21)

This separation of variables leads us to the system of nonlinear ordinary differential equations.-..+ + (2.22)

dz Z., (2.3)

-- N-1

We shM1 solve (2.22) (2.24) in Sections 4 and 5 using boundy layer approximation.

3. LEAR ANALYSIS.
The clsicM results of linear instability in ordiny fluid (Chandrasekhar [4]) e well

known. The present section is a brief extension in a rous layer. Considering infinite

horizontM layer of fluid with the governing equations (2.1) (2.3) in which a steady adverse

temperature gradient is maintMned d let there be no motion in the initiM stage. We sume

then that the initiM state be slightly perturbed. Let denote the velocity in the perturbed state

d the Mtered temperature be T, + O, where T, is the initial temperature. Ignoring terms of the

second and higher orders in the perturbations, we obtain:

B 0Ot V P + ROg - + XN, (3.1)

O0
0] w + V 0, (3.2)

V -u_u_ =0. (3.3)

By taking the curl of (3.1) and the curl of the curl of (3.1) and considering their vertical

components respectively, we obtain:
2 0wB Z + E Oz, (3.4)

(3.5)
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where w and are the vertical components of velocity and vorticity respectively. To find the

solutions of (3.2) and (3.4) (3.5) with the boundary conditions

w=O= 70=0 at z 0,1, (3.6)

we assume the functions, w, 0, Z are in the form

(v,O,) [W(z),H(z),Z(z)] ezp [,(o,z + oy) + at], (3.7)

where o 0 + o is the wave number of the disturbance and a is a constant. Using (3.7)in
(3.2), (3.4)- (3.6), and set a 0 (marginal state of instability), we obtain

(D- a)H + W O,Z DW,(D -a)W +- DZ + aR H 0, (3.8)

where D d-" Eliminating H and Z, we obtain

(D a)(D a + T,,D)W RaW. (3.9)

(3.9) has to be solved subject to the boundary conditions

W DW 0 at z 0,1. (3.10)

The proper solution for W is

W A Sin n r z, (3.11)

where n is an integer and A is a constant. Using (3.11) in (3.9), we find the lowest value of R
occurs when n 1. Thus

R 1 [(r + a) (r + a + rTa)]. (3.12)2
R attains its minimum R r(1 + x/]’--) when a r. As To--cx, we obtain the

asymptotic forms

Rc rTa, ac rv/. (3.13)

We now consider the case when a 0, assumed a is pure imaginary and seek the conditions

for such solutions to exist (We assume also that B 0 and Ta 0). We then find from (3.2),
(3.4)- (3.7) that a overstability cannot occur if

3-2V 3 + 2v/ (3.14)---:- < < .2T-----:--.
For the particular cases B 0 or T 0, it can be easily shown that o,erstability never occurs.

We shall consider the nonlinear analysis in the next section. The Rayleigh number R and

the Nusselt number N are supposed to be large and the solutions will be obtained for different

ranges of To in (R, To) plane.
4. SINGLE WAVE NUMBER SOLUTION.

(a) To O.

The solution for this case is of course that of Gupta and Joseph. The wave number cq is

supposed to be large, as can be justified a posterior. We have to solve the following equations

and boundary conditions:

o 20 : 0,

dw, (4.2)dz =Z,,

(d-) (N ll)R (d-) O, +[1--- +N_1}1 a [1--+ N-1
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dO, O, 0 at z O, 1. (4.4)

We shall obtain the solutions for w,O, and Z by considering three distinct regions; the

interior, the intermediate layer, and the inner layer.

In the interior we assume z is 0(1). Then (4.1) (4.3) reduce to the following equations:

,=0,, 77F=,, o, + (I 0,)(, + 0,) o. (4.5)

We then mssume that << NR as R, N and go to infinity. Thus, we get the following

results; , 0, I,, 0. (4.6)

Ne each surface and adjacent to the interior, there are intermediate layers of thickness 0([’).
Defining an appropriate variables oz for the lower of these lyers (the upper 1yer is

simil), the governing equations are

-1 ,+0=0, 0=1, Z=. (4.7)

he governing equation for is

d(
d we should require Wll (. We Mso require wO (0, d the ymptotic form

of (0 is readily found to be

d similly

There h to be one further layer in which 0 is brought to its zero boundary vMue. We supse

that this inner layer is of thickness e << { , d define the appropriate independent viable

z/e. We first determine the matching conditions q. We define

where ,0, and Z e order one qutities. We have so sumed that wO 0(1) in this

region, then

which give

( 1 ( 17 (4.12)

,(e) e, ,(e) e-’, 2,(e) 1. (4.13)

The governing equations (3.1)- (3.3) therefore reduce to

d, d2ld2=0, Z=d, d. NRC (,0,- I),, (4.14)
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which predicts that the thickness of the inner layer that must satisfy the equation

The solutions are:

_2,=r/, Z,:I, 0,=r/ f (1-t2) -idt.

For the constraint (2.11), we calculate the approximate expressions for

<11> < +kj > = + <) >’

< (1 -) > 2 < (1 ,) >.

obtain
IR=o+

From (4.15) and (4.17), we obtMn

(e (3)’/ ()-’/ (z /)- ’/

(4.15)

(4.16}

Using these expressions, (4.12), and (4.15) in (2.11), we

I f (1 -r/,)dr/= 2 - r2(3/4) 1.062 (4.17)

(4.18)

(4.19)

Then if N is maximized with respect to o, maximum value is

attained when , (R/5)/.

(b) To ,: 0(1).

Rotational effects do not become significant for To << 0(1) but can initially be regarded as

small perturbations to the previous solution. Our previous solution for Z shows that the term

in (2.23) first becomes significant in the intermediate layer when To becomes 0(1). Hence
rotational effects are unimportant so long as To << 0(1).

(c) T. 0(1).

The governing equations and boundary conditions are

d

= 1-0+R_1

dOO 0 at 0,1.

(4.21)

(4.22)

(4.23)

(4.24)

We shall consider the same regions and use the sasne notation and assumptions as in (a). In the

interior (4.21)- (4.23) reduce to (4.5) and the solutions (4.6) are then obtained.
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The equation for is

In the intermediate layer, the governing equations become

( d ) dw
d--i Wl + 0, + Ta --- 0,

1 =1, I /91=1"

d2Ol(1 + T) --w + l--i 0,

(4.26)

(4.27)

and we require wll as --oc and wl--*0 as --0. The asymptotic form of wl as --0 is

and similarly
(4.28)

(4.29)

In the inner layer we obtain easily the following results

C:l+T,,al(lga--, L=l+T,a(l9 (4.30)

and (4.13), (4.14), and (4.16) are obtained easily. Clearly the expressions for and N are

N ,1+ T,,) -1/3 (1/2)()1/3 (Rag)l/3 (1-a/R)4/3 ()4/3 (log )1/3,
( )- 1,3

(3I)’/3 (n)-1/3 (1-a/R)-’/3 (1 + Ta)’/3 log

(4.31)

(4.32)

Then if N is maximized with respect to al, the maximum value is

’,/3 R/3 (log R)1/3, (4.33)N (-/3 (51-)s/3 (1/2)1/3 (1 +TaJ
attained when

a (n15)1/. (4.34)

(d) O(1) < To < O [v log Rl
The governing equations are (4.21) (4.23) with boundary conditions (4.24). We shall

obtain the solutions for w1,$1, and 1 by considering three distinct regions: the interior, the

intermediate layer, and the inner layer. In the interior, we assume z is 0(1). Then (4.21)- (4.23)
reduce to the following equations

+ o + o, (.a)

d Z 1, (N- 1)R 01 (ol 01 1)(ol + 01). (4.a6)

We define

where 1,8 1, and Z are order one quantities. We have also assumed that o.,le 0(1) in all
the regions, a << NR, and 0(1) << Ta << 0(a). Then (4.35)- (4.3fi) reduce to

0 =1, =Z A=K=I.w 0 1, 1, (4.38)

Thus, we get the following results:
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(4.39)

In the intermediate layer of thickness t T/--- we define the layer variable to be ( where

/,, << , << 1,

and define

where &,l, and 1 are order one quantities, then

(4.40)

(4.41)

a ,,(o)= l, K,2,(--,oo)= 0.

The governing equations reduce to

, + 0, + 0, ,, ,, .
We also obtain

(4.42)

(4.43)

ch (4.44)B 1,K
The asymptotic solutions as --,cx are

In the inner layer of thickness << af 1, we define the appropriate variable layer as rl z/. We
first determine the matching conditions as q--,oo. We define

w, C1, 0, b ’1’’ L2,, (4.46)

where ,8 and Z are order on quantities. Then

which give

C= 2
the log alel, L= a log oqe ),

The goveng uations (4.21) (4.]2) therefore redu to

d dw dO, Z, (,0 1),NRCe

(4.47)

(4.48)

(4.49)

which predicts that the thickness of the inner layer must satisfy the equation

2NRcr’ (lo9 v]a, /= To. (4.50)

The solutions are the same as the inner layer solutions in previous cases. For the constraint

(2.11), we calculate the approximate expressions for

< v01>- <,,0;+,) > _;+ <--) >,

< (z -)’ > 2 < (z -,,)’ >. Using th prio=s, (.7), = (.o) into (2.iz), w
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obtain
I To
(log ae ]

(4.51)

where I is defined in (4.17). From (4.50) and (4.51), we obtain

e ""/---, (1- log] (4.52)

 -Woj (4.53)

The maximizing value of N is attained when

N_(2I)-4/3()l/3[R2l/3()5/3

,E) (4)4/3 (log R)’/,

(l ----(R/5).
(4.54), our assumptions e << (-, and 0(1) << Ta << 0(a) give

(4.54)

(4.55)

0(1) << T << 0(v/- lo9 R). (4.56)

The Nusselt number has the same form as (4.33) in both ranges Ta << 0(1) and (4.56). We note

also that rotation acts to decrease N over its non-rotating value for fixed and large values of R.

() 0(- tog ) << T. << 0().
The governing equations are (4.21)- (4.23) with boundary conditions (4.24).
We shall obtain the solutions for wl,0,, and Z1 by considering two distinct regions, the

interior and the inner layer.

In the interior we expect wlO 1. Then (4.21) (4.23) reduce to the following equations:

Kz a)l -- Ol =0 =I’

w,O 1,

Where we defined g (1 + To)[a.
Thus we get the following asymptotic results near z 0:

(4.60)

There has to be an inner layer in which 01 is brought to its zero boundary value. We suppose

that this inner layer is of thickness a-l<< << 1, and define as the appropriate independent

variable z z[. We first determine the matching conditions as zlc. We define

01 CI, 01 -’ I,I LI, (4.61)

where 1,0 d Z e order one qutities. We have Mso sumed that WlO 0(1) in this

region, then

L,(z,)- (log
which give
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1, ,(z,x)" 1.,(z,--,o) :,, 0,(,-oo)

The governing equations (4.21)- (4.23) therefore reduce to

which predicts that the thickness of the inner layer must satisfy the equation

Assuming e << , we obtain , ,/( + .
We now calculate the appropriate expressions

2ef dz,,

whCT o

0 0

Using (4.68)-(4.70)in (2.11)=d with (4.65), we obtain

(4.62)

(4.63)

(4.64)

(4.66)

(4.67)

(4.68a)

(4.68b)

(4.69)

N

_
R ( og R (4.71)

The expressions for N and are both independent of the wave number cr. Now from our

previous assumptions << 1,tr << 1, and (4.66), we obtain

Rlog(R) << a, << log (RT,,<<O(R). (4.72)

The range of the validity of the solutions for this case is limited to

O(v/- log R) << T << 0(R). (4.73)

The functional dependence of the Nusselt number on R and To is continuous, and is equal to v/
as To--O(v/ log R)in both ranges (4.56) and (4.73). As To--O(R), the Nusselt number is no

longer large and it approaches value one. However, by the result obtained in Section 3, the fluid

is stable for R _< rTo.
5. MULTI WAVES SOLUTIONS:

m Rotational effects are unimportant [To g: 0(1)1.
The boundary layer structure for this case is essentially that of the non-rotating case (Gupta

and Joseph [5]) to the leading order terms.

We shall consider three regions for each mode; the interior, the intermediate layer, and the

inner layer. We coincide the interior of the . mode with the extent of the inner layer of the

ct,_ mode. The coupling among the different modes occurs only between the nth and the

(n- 1)th mode and only in the (n- 1)th mode. We define as the thickness of the intermediate
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layer in the nth mode and 6, as the thickness of the inner layer in the same mode. We also

define

60 1, (5.11
and assume

<< 3 _, as R--,. (5.2)Ot <5.<5. On

In the interior of the a, mode, we define

(5.3)

where

the (n- 1)th mode. The basic equations (2.22)- (2.23) then become

are order one quantities and (._ a

which suggest that

is the boundary layer variable for

d ._, K, 2 (5.5)A, d,_

K,6,,_, A,, (5.6)

Assuming

and using (5.2), we obtain

and so (5.7) gives

1 T dZ- +-,’ + d
=0. (5.7

OnCrt

0(1) (5.8)

(5.9)T << c, ,_ ,

A,=I, ,
In the intermediate layer of the or, mode, we define

--0 (5.101

(5.111

where &.,,,,. are order one quantities and , a,z is the intermediate layer variable for the

nth mode. Since there is no coupling between the modes in this layer; the equation (2.24) gives

which suggest that

1-&,. 0,
provided we assume

NRB.x <<
The equations (2.22)- (2.23) in this layer become

( d ) 1.+
dw,

L.
Using (5.8) and (5.16)in (5.14)-(5.15), we obtain

(5.12)

(5.13)

(5.141

(5.15)

(5.16)

(5.17)
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(5.18)

B.-- 1. (5.19)

The form of the solutions to (5.12), (5.17) (5.18) as .--0 can be found, after imposing the

requirement that w.---0, to be ,, 1 ,,, V log (5.20)

An expression for .E w. 8. in various regions is needed for discussing the inner layer. It is

0 for z_0((d)
1- .E w,, 8,,

Q.(C.)8,,(C.) .+ ,(C.)8 + ,(C.) for z
_

0(g.).

In the inner layer of the tr,, mode, we define

(5.21)

w,, C.,,(C.), 8. -- .(’.), . M,,Z.(.), (5.22)

where O., Z.
mode. Matching conditions are

C..(’.--,cx)) V c..’. (log 1

,(C....,oo),. 1 ( 1 )-1/2
M.Z.(.) . (log

which ve
1C. a.. (log,

z is the inner layer variable of the nthare order one quantities and

(5.23a)

(5.23b)

(5.23c)

The governing equations (2.22)- (2.24) then become

-. =0, z.=d.,

In this layer, we shoed consider the functions +, + d we hsve

-a’+’ +(1--+ +)+ =0,NR +

(5.24a,b)

(5.25a,b)

Assuming the total number of the horizontal wave numbers is N*, then for n # N*, + # 0,

and (5.24b)- (5.25a)
4( 1 .=0, (5.26)
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which suggest that

log a, (5.27)

where a 0(1)is a constant, and will be determined later. Thus (5.26) reduces to

dO
+ a,, 0

satisfying the boundary condition

0.(0) 0.

For n N* then as ’ ,+1 decreases to zero, ’ft,
leading order term of (5.24b).

Now (5.24a) gives

,=,, 2,=1 n=l,...,N*.

Using the transformation . a/4 9, ft, a-/4 r/and (5.29) in (5.28), we obtain

dg + r/= 0,dr/
9(0) 0, and merging with 9(r/) 7"
For n N*,, +1 0 and (5.25a,b) always satisfied, (5.24) then suggests that

(5.2s)

(5.29)

must merge with 1-,,0, 0 which is the

(5.30)

(5.31)

(5.32)

2 N R 64N. a (1o9 )N* OtN.N.
(5.33)

where a 0(1) is a constant, and will be determined later. Thus (5.24b) reduces to

d.v" +a, (1-- ’N.N.
satisfying the boundary conditions

ou.(o) o, ou.(u.)

Using the trsformation (u. a/4 and u. a]/4 f in (5.34)- (5.35), we obtn

f(0) 0 and f(cx3) .
The solution to (5.36) is

df / (1 r/f)r/= 0, (5.36)dr/2

(5.37)

To evaluate the expression (2.11), we write the expression < 7 012 > and < (1 -)2 > to the

leading order terms as:

]< VOl> 2n’n_
3

where we define

N
<(I --’)> "2 E -.<(l-(,fi,,-’,,+,) >,

6,=g,,/a,,, <0 > 0 --0N*+I
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Using these expressions in (2.11), we obtain

a._ g3.(log 1/g.
N (5.38)N* g"

2 . < ( ..-
To maximize N with respect to the wave numbers er,,, we must first determine er,, and g,, and in

order to determine them, it is appropriate to write

Hence
o,, g._, R o._ ,, o. R ga log n i, (5.39)

Now since g" g,-<<<< <<l, it follows that

N*g x YN’" (5.40)

Solving (5.39), we obtain

c. b. R1-1/2" 3-" +
(5.41)n-l(]_[log 1) "3K-n

K=I

a"( 1)3-’ nIl ( 1)-"3g,, log
K

log y- R -, (5.42)

o
where we define H 1 and b. is a constant independent of R to be determined later. We note

K-I
that another constant factor can be included in the right hand side of (5.42), but since it changes
the inner layer thickness by a constant factor which can be shown to be of no consequence, can

be eliminated there. Using (5.41) (5.42), we have

b.R, -. bj R- "l’3--n fi (log
K=I

where we define b0 1.

Let us now define

N*
l-E (b.<Oz> +2bb._, < .>)

KN"-- N*
1 (5.43)

1 "Y-N* --’ < --(’"

Then

N*( IK_N*_NN KN.R -3- N* H log - (5.44)
K=I

Fixing N*, the N max can be obtained if we maximize KN.. Now from (5.27), (5.33), (5.44),
and (5.41)- (5.42), we obtain

a=2b,+ b-2,

a 2 KN. b,.
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Thus

Using (5.45) in (5.43) and the fact that ’2 (,, wc obtainn+l

N__- 1[ )3/2 (dg2 lbn_ 1)3/2l-b bn(2bn+lb; <-qj > +-(2bn+ <(l-r/g)> -bN.(2KN.bl.2)3/4<’q] >

25. < (1-r/f) > (2KN.b.2)-1]4 (5.46)

Defining"

+(1-r/f) r/=I,

then (5.46) becomes"
N*-I

r:3/ /23/4I *’N* b2 6/3 y (2b+,/b,)’/2- b.
Maximizing KN. with respect to b, gives us the following relations

v/ b 3fl b/ b;-3/2,

(5.4s)

(b3, + ,/b,,) 3(b3,/b,_ ,), 2 <_ n <_ N* (5.49)

Solving (5.49), we obtain

v/ 18fl b. b;2/2, 23/4 I r,-3/,

b (2.3u’- 1)= 1,

Thus

b12(2-3 (5.51a)

N*( IK_N._NN. KN.R1-3-
g*

H log
I(=1

Using (5.42), we can rewrite (5.515) in the following form

NN.__2_,/3 (_)4/3 (18fl)4/3 32N. .i.3 =i_ 3_N.+1 (_3%/)2(, _3 -N*, (2.3N. 1)_2+ 3

n -3 N’(log R)1/2(1-3 N’) (1’( -3 N’)
3 -(2N" -I +3 N’)

,2]

(5.51b)

-N*

(5.52)

Choosing N* such that Nv. >_ N, for all # N*, keeping R large but fixed and assuming N* will

be large and treat it as a continuous variable, we obtain

N* (log log R + Iog 2),
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and we finally obtain the expression for N as

where I 1.062 ([5]) and 3/3 - (6) ’/" (see appendix for more detail of the numerical values of

fl). The solution (5.54) has the same functional dependence on R as in the non-rotational

problem to the leading order terms.

b. Rotation is important [0(1) << To 0(V log R)].
The boundary layer structure in this region is similar to the one discussed in case (a). We

consider three regions for each mode, the interior, the intermediate layer, and the inner layer.

We define as the thickness of the intermediate layer in the nth mode and , as the thickness

of the inner layer in the same mode. We also define (5.1) and assume

0.--,o, i._ << a.=i << .-2 as Rc (5.55)

In the interior of the o. mode, we define (5.3), where .,0 .,Z. are order one quantities
z is the boundary layer variable for the (n-1)th mode. The basic equationsand "- ---S-

(2.22) (2.23) then become (5.4) (5.5) which suggest (5.6) (5.7). Using (5.55), we obtain

(5.0).
In the intermediate layer of the %, mode, we define (5.11), where ,.,k.,2. x odr o

quantities and ,, z[,T], is the intermediate layer variable for the nth mode. Since there is

no coupling between the modes in this layer, the equation (2.24) gives (5.12), if we assume (5.13).
We also assume that

a- << << x. (5.56)

The equations (2.22)- (2.23) in this layer become

.B. 0, (.)

.B. v/T L.2., (5.57b)

which suggest that

Using (5.58)in (5.57), we obtain

L. o.B./V/T’. (5.58)

d2. d$.= 2., (.9.)-$.+.+TC. =0, C.

B. 1. (5.59b)

The form of the solutions to (5.12) and (5.59a) as ,,--0 can be found, after imposing the
requirement that w.-,0, to be (5.20). The appropriate expression for 1 w,, 0,, is

o fo 0(
E. w.O. ,, (’,,) . (’,,) . + ,(,,) ". +, (,,) for z 0(.)

where ,,, 0. are the solutions in the inner layer.
In the inner layer of the a,, mode, we define (5.22), where .,O.,Z. are order one quantities

and ,, z],5. is the inner layer variable of the nth mode. Matching conditions yield
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(C, V ,6,, log

(M, V or,, log ct,,6,, ]’

(5.60a)

(5.60b)

(5.60c)

The governing equations (2.22) (2.24) then reduce to

dZ,, d,
d(,,-=0, -C. z.,

T,,-, + 2NRo 6,, log ,
In this layer, one should also consider the functions , + 1,0 + and we have

-,,+1 0 .+1 + NR(1 -.0.-" .+0 ,,+)’ .+1 O,

(5.61a)

(5.61b)

(5.62a)

d .+l Z .+x, w .=O .62b)
d.

then give

which suggests that

Assuming the total number of the modes in N*, then for n # N*, +, # 0 and (5.61b) (5.62a)

T,, -. + 2 a. a,, +1 6,, log a.6.] t2,. O, (5.63)

22. 64. Io9 ,,6,,] " +’ a T,., (5.64)

where a 0(1) is a constant and will be determined later. Thus (5.63) reduces to a form like

(5.28) satisfying the boundary condition (5.29). For n N* then as ’ +1 decreases to zero, ,
must merge with 1-2,, 0,, 0 which is the leading order term of (5.61b). Now (5.61a) gives

(5.30) and using the transformation ,, al/49, ,, a -’/4
r/ and (5.30) in (5.28), we obtain

(5.31)-(5.32). For n N*,’ ,,+, 0 and (5.62a,b)always satisfied. (5.61b) then suggests that

2 N R 64 lOg
aN.6N.aN" N" al Ta, (5.65)

where al 0(1) is a constant and will be determined later. Thus (5.61b) reduces to a form like

(5.34) satisfying (5.35). Using the transformation N" a/4l’ ON* a/4f in (5.34)- (5.35),
we get (5.3fi).

To evaluate the expression (2.11), we write the expressions < X7 012 > and < (1 _-)2 >
to the leading order terms as:

On-
3g. log

where we define

N*
n+l >

g.= < 2> 0 =-0.N’+I

Using these expressions in (2.11), we have
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N* I Taa"1- 1 2a. g"-’ <2> +.- g. (og
N* aN" g,2:: .<(:-.o.- .+t

<2>]
(5.66)

To determine o. and g., we again require

On gn !,

g._Now since << << << 1, we obtain
ON*N o
9N’"

Solving (5.67), we obtain

o. b. log gr )
K=I

(5.68)

(5.69a)

g. log g. ] =1 log gK / T (I + R-.i, (5.69b)

o
where again we define,rI= and b, is a constant independent of R and To. Using (5.69a,b}, we
have

a. g._, =or._, b. b-’,_ R,

g. b" . R-’ +3-" T!(I-3-") fi
K=I

where we define bo 1.

Now using (5.55) and (5.69a,b), we find that for sufficiently small Ta-0(1)l we now have

infinitely many modes. However as To increases in the range 0(1)<< To << 0(Vt’ log R), the

number of modes decreases. In particular, for O(Rl/r’) << To << 0(v/ log R) we have only two

modes namely h and a2. Let us now define

N*

(5.70)KN. N* - g. (: .-
1

where N* is the total number of modes and can be easily determined for a given To in the range

0(1) << To << 0(v/- log R), by the inequality

gN*=: (5.71)N* << N*-

Then

N KN. R’ a I’[ \lg gtc / (5.72)N*
K=I

Now from (5.64) (5.65), (5.69a,b), and (5.72), we get the relations (5.45). Using these relations

into (5.70) we can easily obtain the expressions (5.46) (5.51a). Using (5.69b), we can rewrite
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(5.72) in the following form:

NN. 2 1-5 (2.3N" 1)-+

R|_3-N" Ta-1/2(1-3 -N’) I-[ log K
K-- Tf (1-3

c. Strongly rotating system [0(v log R) << To << 0(R)I.
From the preceding section, it is clear that as T,---O(v/ log R), the number of the preferred

( R2 1o9 R)1/3
modes approaches one and the Nusselt number has the functional dependence Ta It is

then expected that in the case of strongly rotating system, we have only one mode, at least, for

the limiting case of Ta-0(- 1o9 R). Single wave number analysis (section 4.e) clearly has

shown that the inner layer thickness is independent of the wave number to the leading order

terms. Thus there is no hope to decrease the order of this thin layer by allowing more modes.

Therefore there is not a multiboundary layer structure for this case that exists.

We compute/3 by solving

APPENDIX

dg + rt 0 (A-l)
drt

Satisfying g(0) 0 and g as rtoo
(A-l) and boundary condition g(0)= 0 give

(A-2)

g(rt) Art (A-3)

We must now find a value rt* at which (A-3) and the boundary conditions for rt-cz, together
with their first derivatives, are continuous, i.e.,

Art*- ,/,3 1

A

Solving then, we obtain rt* (6). Thus

g(rt) # rt

_
rt3 for 0 _< rt _< (6)1/4 (A-4)

and so
for rt _> (6)i

[(dg) ]
(A-5)

(A-6)
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