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ABSTRACT. In this paper, we will describe the Pascal Type properties of Betti numbers of

ideals associated to n-gons. These are quite similar to the properties enjoyed by the Pascal’s

Triangle, concerning the binomial coefficients. By definition, the Betti numbers/3,(n) of an ideal

I associated to an n-gon are the ranks of the modules in a free minimal resolution of the R-
module R/I, where R is the polynomial ring k[x,x2,...,x,]. Here k is any field and

zl,z2,. .,z, are indeterxninates. We will prove those properties using a specific formula for the

Betti numbers.
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1. INTRODUCTION.
In this paper, we will describe the so-called Pascal Type properties of the Betti numbers of

ideals associated to n-gons.

In order to explain what these Betti numbers are, consider the general n-gon (n _> 3) with

vertices at the points 1,2,-.-,n (say, labeled anticlockwise). This corresponds to a finite

abstract simplicial complex,
A {0,{1},{2},- -,{n},{1,2},{2,3},. -,{n- 1, n}, {1, n}}.

In other words, A consists of vertex sets and edge sets of the n-gon together with the empty set.

For the general definition of a finite abstract simplicial complex, the reader may refer to [1], [2]

Let R be the polynomial ring k[xl,x2,. ,x,] where k is any field and x, are indeterminates.

withLet I be the ideM in R generated by M1 the monomials of the form XilXi2 .’xir
li,<i:< <i,nd{i,,i,-.-,i,}&.

The ring R/I is known the Stanley-Reisner ring or the face ring of the finite abstract

simplicial complex (S [3]). The ideal I is also known the Stanley-Reisner ideal.

A ff minimal resolution of the R-module R/I is exact sequence of the form

M,. MMoR/IO (1.1)

where each M, is a flee R-module with the smallest possible rank. For material on free minim

o.tion, t at, to [3] o [4].
Then the Betti numbers ,(n) of the R-module R/I are just the ranks of those free modules

M,,i.., ,()=..(M,) to i=0,1,2,.... It so b hown that

fl,(n)=dim[Torff(R/I,)]. By abuse of language, we will also refer to them the Betti
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numbers of the ideal I, or simply the Betti numbers of the n-gon.

Before establishing the Pascal Type properties of Betti numbers /,(n), we will first describe

how to obtain a formula for ,(n). The next section achieves this.

2. THE BETTI NUMBERS OF THE n-GON.
THF,OREM2.1. Let Ij=(zl,x2,...,2j,+l,...,x,) j=l,2,...,n where denotes the

omission. Then . n R h R
j=l j=l I+I+ I+I+ +I, ---*0

is a co-resolution of R/I. Here,
f()=(p,p,..-,)

g(-,-, ",--,) ql + q, q2 -4- q3,’ ", q,- + q,, q, + ql)

(,, ,..., ,) (, + + + ,)

In the above, when j n, I + is read as 11.
PROOF. For the complete proof, see [5].

In other words, the above result means that the following complex is exact at all the places

except at the 0 th spot, at which it has homology equal to R/I.
0 -1 -2

n R h Ro Rj=l j=11,+I,+I I1+12+..-+I, --.0 (2.1)

Notice that for any j, each of I,I + I+ and 11 + 12 + + I, is generated by a regular
sequence of length n- 2, n and n respectively. Hence, we can use Koszul complex resolutions

to lift the complex (2.1) into a double complex (C,,,6,,,d,,) as given in our next Theorem 2.4.

For material on regular sequences and Koszul complexes, the reader can refer to [1], [3] or [4].
Let us first give some definitions.

DEFINITION 2.2. A nonempty subset S {r,r,...,r} of {1,2,..-,n} is said to have

consecutive elements if there is a permutation p of {r,r2, .,r} such that

p(rt + 1) P(rt) + 1,1 < < j- 1. Here, p(rt) + is read as 1, whenever p(rt) n.

DEFINITION 2.3.

(a) For 0,- 1 and arbitrary j, let C,, be the free R-module having basis as the set,

{(U,S) S C {1,2, --,n}, Sl i,s has consecutive elements, U c_ U(S), U j} and,
(b) For -2 and arbitrary j, let Ci, be the free R-module having basis as the set

{U,S) IS c_ {1,2, ,n}, Sl n,U

_
u(s), UI j}, which is the same as

{(U, {1,2,- ,n}) U C_ U({I,2, ,n}), Ul j}.
In the above definitions for C,,,, for S C_ {1,2,...,n}, the notation U(S) just means LI

where U is the set of indeterminates used to define the ideal I (see [6], page 2).
One can also observe that,

rankn(Co,,) J
0 for j=n-l,n

jrankn(C_ 1,3)
0 for j n

rank.(G_2,,) =() for j=O, 1,"" .,n
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Also, define the maps
n R, t,0

n R:Co,o- 3:C
j= j= Ij+ Ij+,

R/:C_ 2,0 - i1 + 12 + + I,

5h7

respectively by,

d,,j:C,,j C,,j_(t 0, 1, 2 and j 1,2, -,n)

8,,:C,,j C,_t,j(i 0,-1 and j =0,1,...,n)

,(o, {,-})= (o,.., ,..,o), (O,{r,,- + 1}) (o, .,, .,o)

7(0,{1,2,.-. ,n}) =-i-

d,,,(lxp,, .,xp},S)= J (- 1)’-’xp,({xp,, ",p,, .,xpj},S)
k=l

0,,(U, {r}) (U, {r- l,r})-(U, {r,r + I})

g_,,,(U, {r,r + I}) (U, {1,2,. .,n})

Then we have the following theorem.

THEOREM 2.4. The following is a double complex

PROOF. The proof is a very direct calculation.

We will denote the above double complex by (C,,.,,,a, di, j). Before proving some properties

of the horizontal maps ,, of this double complex, we need some preparatory work.

First, introduce some notation. For a given U C_ {zl, z2,...,z,} with IuI-j, we will

define three R-modules by,
Do(U) $ ((V, {r})),

l<r<n
uc_u({,.})

D I(U) ((V, {r 1, r})),
l<r<n
v_c v{{- ,,))

D 2(U) ((U, i, 2,. ., n}))

In the above, ((U, {r})) means the R-submodule of Co,, generated by the basis element (U, {r}),
etc
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THEOREM 2.5. Fix U c_ {x,,x2,...,x,} with l[7] . Then we have,

(a) C,,,= D,(U) forz=0,-1,-2.
U

IVl -.
(b) (D.(U),.(U))is a sub chMn complex of C. where .,(U) denotes the map b. restricted

to D.(U).
PROOF. Easily follows from the definitions of C,,,D,(U) and $,,.
Now, for U{x,x,...,x,} define thr sets as follows. V(U)={{r}]zU},E(U)

{{r- 1,r} x V}U{{r,r + 1} x U} and F(U)= A-(V(U)UE(U)), where A {, {1}, {2},
., {n}, {1,2}, {2,3},- ., {n 1,n}{1,n}} w defined at the very beginning.
THEOM 2.6. For any U {x,x2,... z,},F(U) is a finite abstract simplicial complex,

which is a subcomplex of A.
PROOF. It is essentially showing that {r,r + 1} F(U){r} F(U) and {r + 1} F(U).

But this follows readily from above definitions of V(U),E(U) and F(U). H
Now, let (F.(U),7.(U)) be the reduced chain complex corresponding to F(U), nely the

nonzero modules F.(U) and the differential maps 7.(U) betwn them are defined as follows.

F(U) R-module generated by the edges {r- 1,r} of F(U)

F0(U) R-module generated by the vertices {r} of F(U)

r_,(v) R

d, 7(V)= {r-1,r}- {r},70(V)= 1, the identity element of R. Also, let (A.(U),$.(U)) be the

chMn complex obtMned by shifting the complex (F.(U),%(U)) one degree to the right. That is

h,(v) r, +,(v) =d ,(V) % +,(V) fo 0, , 2.

THEOM 2.7. For y V G {x,x,-..,x,}, the chMn complex (A.(U), $.(U)) is

isomorphic to the chMn complex (D.(U), .(V)).
PROOF. Producing isomorphism . from A.(U) to D.(U) will establish the threm. So,

define . on the bis elements o({r-l,r})=(U,{r-1}),_({r})=(V,{r-l,r}) d
_(1)=(U,{1,2,-.-,n}), and then extend linely. Then it is ey to check that Ml the

sques coute, i.e.,

_
$_(U)= _,(V)

_
d

_
(V)= 0,(V) 0. Hence the

threm.

THRUM 2.8. In the double complex (C,,,,,,d,,) given in Theorem 2.4,

(a) The maps 0, e injective for j 1,2,. .,n.

(b) The maps

_
l, e surjective for j 0,1, .,n 1.

PROOF.
(a) Let $#V{x,x,...,x,}. Notice that $#V mes the se j#0. Hence, if

j n- 1, or n, by definition Do(V is zero d 0, (V) is injective for those vMues of j. On the

other hd, for the other vMues of j 1,2,...,n-2,F(U) corresnds to a finite union of

disjoint lines d ints. Therefore by Whrem 2.7, ker 0,(U)= H0(A.(U))= H,(r.(u)) which

is zero by elementy topolo. Hence kero,,(V =0, d 0,(V)is injective for j= 1,
2,. ., n. Therefore by Theorem 2.5, 0, is injective for those vMues of j.

(b) This directly follows from the definition of

_
, given preceding to the statement of

Threm 2.4.

Now, Tensor our double complex (C,,,i,,d,,) with R-module k to get a new double

complex (C,, k,,, id, d,,i@ Hid). Then clely M1 the new vertical maps d,, id
become zero, d,, e maps in Koszul complex resolutions (see [4]). Let ,, ,, @ id.



PASCAL TYPE PROPERTIES OF BETTI NUMBERS 549

Then the new tensored double complex looks like the following:

THEOREM 2.9.

(a) 0o,, is injective for j 1,2,. .,n

(b) 0_ , is surjective for j 0,1,- .,n- 1.

PROOF. This directly follows from Theorem 2.8, since all the entries of matrices of the

maps of 0, and g_ 1, belong to the base field k. 13

The following theorem gives more information about the modules H,(Cq,.)
TltF.X}REM 2.10. Ho(Cq, 6.,), H_ ,(Cq, 6.,) and H_ 2(C.,,.,) are free R-modules for

j 0,1,- -,n and we have

rankR [H(C"’6"J)] {; j #
O

(j-1)(n-j-1)

0

j 1,2, -,n- 1

rank [H_ (C.,,$.)l =/1
Identical assertions hold for dimk[Hi(Cq (R) Rk,$. (R) Rid)] for 0,- 1, 2.

PROOF. Most of the above assertions are easy consequences of Theorem 2.8 and Theorem
2.9, except perhaps the one for rankR[H_(C.j, gq)],j= 1,2,.-.,n-1. But, it also follows
without difficulty since,

rankR[H 1(C., .)] rankRCo, + rankRC , rankRC 2,
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Now, an important theorem of this paper.

THEOREM 2.11. Let n > 3. Then the .th Betti number 14,(n) of the n-gon is given by,

/,(.)

t--0

n ,(n-,-2)(,+ 1) r71 ,= 1,2,..-,n--3

i=n--2

0 otherwise

(2.2)

PROOF. This follows from Theorem 2.10 and the equation, dimk[Tor,n(R/l,k)] (B

dimk[H,_ j(C.j nk,.j (R) id)] (See also Corollary 1.4 and Proposition 1.5 on page 7 of [6]). 3 -0

EXAMPLE 2.11. For n 5, one obtains the pentagon. In this case,

A {{, {1}, {2}, {3}, {4}, {5}, {1,2}, {2, 3}, {3,4}{4, 5}, {1,5}

R I[,,,xa, z,x]

I (XlX3, XlX4, X2X4, X2Xs, X3Xs)

Then using formula (2.2), the Betti numbers /,(5) of the pentagon are given by, f10(5)= 1,

3. PASCAL TE PROPERTS OF BEI NUMBE OF THE -GON.
As done in the previous section, using formula (.2), one can find the Betti numbers ,(n) of

vious n-gons, n 3,4,5, and form the following ray (3.1). It is known the Trig]e of

Betti numbers. In that if you consider any row, the 0th Betti number appes to the extreme

left, the 1st Betti number appears to the right of that, .,etc., etc.

n=3

n=4 2

n=5 1 5 5 1

n=6 1 9 16 9

n- 7 14 35 35 14 (3.1)
n 8 20 64 90 64 20

n 9 1 27 105 189 189 105 27

n=10 1 35 160 350 448 350 160 35

Notice that the above array consists of diamonds of the form,

&(n+ ) /i+ a("+ )

i+("+)
Some interesting connections exist between the Betti numbers/,(n),/,(n + I) and , + ,(n + 1) at

the top three vertices of the diamond, and the Betti number /,+ (n + 2) at the bottom most

vertex of the diamond. These properties are quite similar to the ones enjoyed by the Pascal’s

Triangle, concerning the binomial coefficients. Before proving them, we need two lemmas.

LEMMA 3.1. Let n>7 be a natural number. Then for 3<i<n-4, we have,
+ 2in> i-1 24-2i-1
PROOF. i>3=i2+3i-4>i+2i-1=(i+4)(i-1)>i2+2i-1=i+4> i- =

+ 2i- + 2i- Q.E.D.n> i+4 > i-1 = n > i
LEMMA 3.2. (The symmetry of the Betti numbers). For any positive integer n >_ 3 and

0,1,- .,n-2,fl,(n) fl a(n).
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PROOF. Let n > 3 be any positive integer. For 0 or n- 2, we clearly have the
indicated result, by formula (2.2) for the Betti numbers/3,(n). Therefore, let i= 1,2,---,n- 3,
which implies n- ,-2 also takes values 1,2,. ., n- 3. Hence, again by formula (2.2),

,., 2(n)=(n_ 1)(n 2)(n-n+,+2-2) n
n -(n 1) i(n--2)ff-I

n fl’(n) Q.E.D.

THEOREM 3.3. (Pascal Type properties of Betti number@
(i) Let n 3, 4, 5 or 6. Then for any 0,1,2, ., n 2 we have,

(ii) Letn=7. Then for 0,1, 4 and S we have,

B,(n) + ,(n + 1) + fl, + ,(n + I) < fl, + ,(n + 2)

and for 2, 3 we have,

,(n) +/,(n + I) +/i + ,(n + 1) =/, + ,(n + 2)

(iii) Let n > 7 be any positive integer. Then for 0,1,n- 3,n- 2 we have,

/3,(n) +/3,(n + 1) + fl, + ,(n + 1) </3, + ,(n + 2)

and for 2 < < n- 4 we have,

/3,(n) +/3,(n + 1) +/3, +,(n + 1)> ,+,(n + 2)

(iv) Let n > 3 be any positive integer. Then for any 0,1,n 3,n 2 we have,

i(n) +/3i(n + 1) +/3 + ,(n + 1) </3 + ,(n + 2)

PROOF. (i) and (ii) follow at once from the triangle of Betti numbers (3.1) given at the
beginning of this section.

Before proving (iii), we will obtain an expression for fli(n)+,(n+l)+,+,(n+l)
/, + l(n + 2) for n > 3 and 1 < < n 3. Using the formula (2.2) for the Betti numbers fl,(n),

one obtains,

/,(n) + ,(n + 1) + , + (n + 1) --/, + t(n + 2)

=(i+l) i(nn-li 2)

+(n+l’ (i+ 1)(n-i-2)_(n +2 (i+ 1)(n-i-1)
k+ 2] n ,i+2] n+l

i(n 1)
(n i)n

n! {i(n.ff-_" 2)
(i + 1)!(n 1)! +

(n + 1)(i + 1)(n- i- 2)
(i + 2)n

n! [n(i- 1)- 2- 2i + 11
(i + 1 )!(, 1 )! n

n [n(i- 1)- 2- 2i + 11=(i+1) n

(n + 2)(i + l)(n --i-- 1)
(i + 2)(n i)
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Hence, for n > 3 and <: < n 3 we have,

,(n) + 3,(n + i) + 3, + ,(n + I) 3, + ,(n + 2)

n In(i- 1)-z- 2i+ 1]=(i+1) n (3.2)

Now, to prove the second part of (iii), let n > 7 be any positive integer, and be a positive

integer such that 2 < < n- 4. If 3 < < n- 4, using the Lemma 3.1 and the formula (3.2), we

immediately obtain B,(n) + fl,(n + 1)+ fl,+(n + 1)- 3,+(n + 2) > 0. Since this result is true for
i=n-4 and i=n-5, it is also true for i=2 and i=3 respectively, using Lemma 3.2.

Therefore, for n>7 and 2<i<n-4, the inequality fl,(n)+3,(n+l)+,+,(n+l)
> 3, + (n + 2) holds.

Finally, to prove (iv) (the first part of (iii) is also included in this statement), let n > 3 be

any positive integer. For i=0,3,(n)+3,(n+ 1)+,+(n+ 1)-fl,+(n+2)= 0(n)+0(n+ 1)
+fl(n+l)-fl(n+2)=l+l+1/2(n+l)(n-2)-n+2)(n-1)=2-n<0. For n=3 and

1, the required result is clear from the triangle of Betti numbers (3.1). So assume that n > 3

and 1. Then by (3.2) one obtains, fl(n) + fll(n + 1) + 2(n + 1) fl2(n + 2) () (2.___) < 0.

Hence, we get for n > 3 and 0,1 that i(n) + 3,(n + 1) + 3, + (n + 1) < fl, + (n + 2). Clearly, it

is also true for n- 2, n 3 using the symmetry stated in Lemma 3.2. Q.E.D.
R.EMAR.K. We can illustrate the content of the above theorem by means of the diagram

(3.3). In that, the positions of the aioa satisfying 3,(n)+,(n+l)+,+(n+l)
< fl,+ (n + 2) are indicated by <> No matter how indefinitely you continue the triangle of
Betti numbers, there are only two diamonds which satisfy the equality fl,(n)+,(n+l)
+ 3, + (n + 1) 3, + (n + 2), namely,

and 90" 64

189J
Except the above described ones,

3,(n) + ;3i(n + .q- 3i + l(n % > fl, + l(n -t- 2).
all other diamonds satisfy the inequality

n=3

n=4

n=5

n=6

n=7

n=8

n=9

n=10

/\/\/\
/1N/5\ 15\ /\
/9 16 9 I-

/\/ \ / \ /\/ \
1-- 14_ 35__ 35 14 __1__
/\/ \/ \/ \/ /

20. 64 90 64 0 .
35 160 350 448

189 105 27

(3.3)
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