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ABSTRACT. Different versions of Wiener’s Tauberian theorem are discussed for the generalized

group algebra LI(G,A) (of integrable functions on a locally compact abelian group G taking
values in a commutative semisimple regular Banach algebra A) using A-valued Fourier

transforms. A weak form of Wiener’s Tauberian property is introduced and it is proved that

LI(G,A) is weakly Tauberian if and only if A is. The vector analogue of Wiener’s L-span of

translates theorem is examined.
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1. INTRODUCTION.
Weiner’s Tauberian theorem for the group algebra LI(G) of a locally compact abelian group

G can be formulated in several ways. Here are two of them (see [1]):
(I) For every proper closed ideal I in LI(G), its hull

h(I) {7 E F: ?(7) 0 for every f in I}
is nonempty. (Here F is the dual group of G and f is the Fourier transforms of f).

(II) If a function f in LI(G) has non-vanishing Fourier transform, then the closed ideal

generated by f is the whole of LI(G).
What happens when we consider the "generalized" group algebra La(G,A) of A-valued

integrable functions on G? (We take A to be a commutative, semisimple, regular Banach

algebra). If we consider the Gelfand transform, then the Tauberian theorem holds for LI(G,A)
provided it holds for A ([2]). What if we consider the (A-valued) Fourier transform? In section

2, we observe that a suitable version of (II) does hold in this case although the direct analogues of

both (I) and (II)fail.
A weak form of Wiener’s Tauberian property is considered in Section 3 and it is proved that

La(G,A) is weakly Tauberian if and only if A is.

Since a closed linear subspace in LI(G is an ideal if and only if it is translation invariant,
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(II) can also be stated as follows:

(II’) If f in L’(G) has non-vanishing Fourier transform, then the translation-invariant

closed linear subspace spanned by f is the whole of LI(G).
The L analogue of this span-of-translates theorem is true and is also due to Wiener (see [3]).

In the last section of this note, we discuss the vector analogue of this L theorem.

2. TAUBERIAN THEOREM FOR LI(G,A).
Throughout A will denote a commutative, semisimple, regular Banach algebra. Th,’n

LI(G,A) is also such an algebra ([2], [4]). The analogues of (I) and (II) hold for L’(G,A)if we

use Gelfand transforms provided A is Tauberian ([2]). In this section we look at the situation

when we consider A-valued Fourier transforms:

F(7)= [ F(z)(,)dz
G

for F E L’(G,A) and 3’ E F. This vector-valued Fourier transform has the usual properties one

would expect. (e.g., YF is a continuous function vanishing at infinity). The Fourier hull of an

ideal I in La(G,A) is defined by

hF(I {3’ G F:f(-)= 0 for every f G I}

PROPOSITION 2.1. If dim A > 1, then LI(G,A) has a proper closed ideal with empty
Fourier hull.

PROOF. Since dimA > 1, A has a nonzero proper closed ideal B (Recall that A is assumed

to be semisimple). Then

L’(G,B) {F L’(G,A):F(x) B for almost all x in G}

is a nontrivial closed ideal in L(G,A). This ideal has empty Fourier hull: if 3’ E F, then

F(3’) 0 where F(x)= f(x)b with 0 # b B and f La(G) satisfying .(3’) 0.

Thus the analogue of (I) fails for La(G,A). The next result shows that the vector version of

(II) also fails.

PROPOSITION 2.2. Suppose G is metrizable. If dim A > 1, there exists an F in LI(G,A)
with non-vanishing Fourier transform which generates a proper closed ideal.

PROOF. We can choose (i) an f in LI(G) with , nonvanishing (ii) b a,b 0 and (iii) a

complex homomorphism of a with (b)= 0. Then the function F d’efined by F(x)= f(x)b has

the required properties ffF(3’)= f(3")b y 0 for every 3’ F; but the Gelfand transform of F
vanishes at (3’, ) for every 7 E F, so that F generates a proper closed ideal.

The following natural analogue of (II), however, holds.

THEOREM 2.3. Suppose that A has an identity. Let F LI(G,A). For the closed ideal

generated by F to be the whole of LI(G,A), it is necessary and sufficient that qF(7) is invertible

in A for each 7 F.
PROOF. Since LI(G) has an approximate identity consisting of functions with compactly

supported Fourier transforms, and since A has an identity, it follows that functions in La(G,A)
with compactly supported Gelfand transforms are dense (that is, L(G,A) is "Tauberian").
Hence

F generates La(G,A) as a closed ideal

iff F has non-vanishing Gelfand transform

iff (5F(7)) 0 for every complex homomorphism of A and 3’ F
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iff ffF(3’) is invertible for each - F.

3. WEAK TAUBERIAN PROPERTY.
Recall that A is Tauberian if given a in A and e > 0 there exits b in A with supp b coi)a(-t

such that a- b < e. We weaken this condition and give th following definition.

DEFINITION 3.1. We say that A is weakly Tauberian if there is a positive iteger n with

the following property: given a a, in A and e )0 there is an element b in A with

supp b compact such that

If A is Tauberian, then it is weakly Tauberian. The converse holds if A h an identity or even if

factorization is possible in A. Here is an example (due to Mirkil [5]) which shows that the

converse is not true.

EXAMPLE 3.2. Let A be the Banach algebra (with pointwise operations) of all conplex

sequences (a,) such that hm ha, exists, with the norm sup[ha, [. Then A is not Tauberian. In
fact, the maximal ideal space of A is the discrete space of natural numbers and the closure of the

space of elements with finitely supported Gelfand transforms is

A0 {(a,) A:Iim ha, 0}

However, if (a,), (b,) are in A, then (a,b,)E Ao so that A is "2-Tauberian".

It is well known that LX(G,A)is Wauberian if A is ([2], [4]). Here is the "weak" version,

along with the converse.

THEOREM 3.3. LI(G,A) is weakly Tauberian if and only if A is.

PROOF. Suppose, first, that A is weakly Tauberian and let n be as in the definition. Let
>0 be arbitrary and let F,....,F, LI(G,A). Since each element of LI(G,A) can be

approximated by finite sums of functions of the form af, where (af)(x)= f(z)a,f L(G),a A,
we have

f,,. ,F.- Ea,, a,. f,,. *f,. < (3.)

for suitable % E A and f LI(G). Now L(G)is Tauberian and so there exist g,, ,, in

L(G) with compactly supported Fourier transforms such that

f’,* *f,. g,, i. < /(3Nmax a,, a,.
where N is the number of terms in the sum appearing in (3.1). Sin,ce A is weakly Tauberian,

there are elements b, i. in A, with compactly supported Gelfand transforms, satisfying

ai,. a,. b, i. < /(3Nmax g, i. ).

Then the function

F Eb, g,
has compactly supported Gelfand transform and

F1. *F.- F < .
Conversly, suppose that La(G,A) is weakly Tauberian and take n as in the definition. Let

aa,. ,a,, be in A. Choose non-negative functions fl,. ,f, in LI(G) of unit norm.

Given e > 0 there is an F in LI(G,A) with compactly supported Gelfand transform such that

a,f,, ,a,f,- F < e.

If b YF(O), then

al a. b ff(alf,* ,a.f. F)(O)II
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<_ a,f,, ,a,f,- f

Moreover, supp b is a subset of the projection of supp F on the maximal ideal space of A

and hence is compact. (Here A denotes the Gelfand transform).
4. THE L2-’rHEOIM.

Wiener’s theorem for L(G) says that the linear span of translates of an f in L(G) is dense if

and only if the Plancherel transform of f is non-vanishing a.e.

To consider the vector analogue, we use the Plancherel theorem for vector valued functions

due to Haussman [6]. The setting is s follows" G is -finite and A is a separable Hilbert space

with a fixed orthonormal basis {e,} (with co-ordinatewise multiplication, A is a commutative

semisimple Banach algebra with countable discrete maximal ideal space. But this is not

important for our present purpose).
It turns out that only one part of the natural analogue of Wiener’s theorem holds in the

vector ce.

HBOM 4.1. Let F L(G,A). Suppose ha the translates of F sp a dense subspace

of L(G,A). Then each co-ordinate function of the Plancherel transform of F is non-vishing

PROOF. Let F (f,) denote the Plancherel transform of F wih co-ordinate functions f,.
Suppose that some f vanishes on a set E of finite positive measure in F. For ech n let

E, {V e E: f,(v) 0}

and let @. -,. Let @ (,) be the A-valued function on F with co-ordinate functions

Since on S E, @ is a nonzero function in L(F,A). By elaucherel’s threm ([6],
Theorem 4.4 and Example 5.3) @ F0 for a nonzero Fo in L(G,A). From the fact that

f,@, 0 for each n, it follows, using Parseval’s formula ([6], Theorem 4.4), that F0 is orthogonal
to every translate of F. Thus the line span of the translates of F is not dense.

MA 4.2. That the converse in not true can be seen follows. Chse , in L(F)
with V real, non-vishing a.e. and #0. Define V,=$-V, =@, = -2 and @,=0 for

n 3. Let F,Fo be in L(G,A) with F (V,) and F0 (@,). Then each co-ordinate function

of F is nonvanishing a.e. but a simple computation shows that the nonzero element F0 is

orthogonal to every translate of F.
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