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ABSTRACT. The authors consider the nonlinear difference equation

where Ay, Y,+I Y,, {P,}, {q,}, and {rn} are real sequences, and uf(u) > 0 for u # 0.
Sufficient conditions for boundedness and convergence to zero of certain types of solutions axe

given. Examples illustrating the results are also included.

KEY WORDS AND PHRASES. Difference equations, nonlinear, forced, boundedness, asymptotic
behavior.

1991 AMS SUBJECT CLASSIFICATION CODES. 39A10, 39All.

1. INTRODUCTION.
In this paper we obtain results on the asymptotic behavior of solutions of the forced nonlinear
difference equation

A[yn -6 PnYn-h] -6 qnf(Yn-k) rn (E)

where Ay, y,,+,- y,,h,k E N {0, 1, ...}, {p,,}, {q,}, and {r,,} are sequences of real
numbers, and f" ]R ]R is continuous with uf(u) > 0 for u 0. A solution of (E) is a sequence
{yn} defined for n > No max{h, k}, No > 0, which satisfies (E) for n > No. We will classify
solutions of (E) by borrowing some terminology introduced in [5] for the solutions of differential
equations. A nontrivial solution {y, of (E) is said to be oscillatory if for every positive integer
N] > No there exists n > Na such that g,,y,,+ < 0; it will be called nonoscillatory if there exists
a positive integer N2 such that y, has fixed sign for all n > N2; and will be called a Z-type
solution if there exists a positive integer N3 such that y, does not change sign for n > N3 but
y,, 0 for arbitrarily large values of n.

REMARK. Notice that when rn 0, (E) may have Z-type solutions. For example, the
equation

Ayn + Yn =1 + cos (n-)----
has the solution

y.= + sin (n--) >0
Typeset by .AAIS-TEX
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for alln > 1.

Our interest here is in obtaining results on the convergence to zero of all the nonoscillatory
solutions of (E). The Z-type solutions, even though they have arbitrarily large zeros, behave in

many respects like the nonoscillatory solutions. As a consequence, our results include that type
of solution as well. Very few results of this type are known for nonlinear difference equations, and

essentially no such results are known for equations with a forcing term. Most of the results known
to this point in time arc sufficient conditions for the oscillation of solutions of unforced equations.

Recent contributions in this direction can be found, for example, in [2 4, 6, 8, and 10] and in the

references contained therein. For a discussion of basic notions on difference equations, we refer

the reader to Kelley and Peterson [7] and Mickens [11]; for more advanced topics we refer to the

monographs by Agarwal [1] and Lakshmikanth d Trigiante [9].
2. MAIN RESULTS.
In the remainder of this paper, we will let w, y, + P,Y,-h. Our first theorem gives sufficient

conditions to ensure that certain types of solutions of (E) are bounded, and our final result gives
conditions that imply these types of solutions tend on to zero as n .

THEOREM 1. If

q, 20, (1)

t=No

and there exists a constant P such that - < P < p., (3)

then any nonoscillatory or Z-type solution of (E) is bounded.
PROOF. Let {y,, be either a nonoscillatory or Z-type solution of (E). For definiteness,

assume that there exists N1 > No such that y, > 0 for n > min{N1 k, N1 h}. Then, from

(E), we have

w.+l + q,f(y,-k) v, + WN,. (4)
t--N1 t’-N

Clearly, there exists a constant L0 > 0 such that either

E q’f(Y’-:)= Lo, (5)
t--N1

or

E q,f(Y,-t,) oa. (6)

If (15) holds, then (2) and (4) imply that w, L1 for some constant /-,1. If L1 < 0, then
eventually Wn < 0. Thus, eventually p. < 0 since y. > 0, say p, < 0 for n > N2 > N1. Then (3)
implies that -1 < P1 < 0 and that

o < y. < -PIy,.-,

for n > N2 + h. Iterating for each fixed n k N + h, we have that

Yn+lh < (--pl)lyn

for k 1. Since 0 < -P1 < 1, for each fixed n, y,+th 0 as c, which implies that y, 0
as n cx. Hence, in this case {y,} is not only bounded but also tends to zero as n cx. If
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L > 0 and {y. is not bo,mded, then there exists an increasing subsequence {y,,: of {y,, with

y,, c as 3 o, n > N + b, y. > w. for 3 > 1. and

y., max{ym "nl

_
n

_
n}.

But y,, > w, implies that p, < 0 for j > 1, so -1 < P < 0 and

contradicting w, L1 and n cx. Thus, we have proved that {y,} is bounded in case (5)
holds.

Now suppose (6) holds. Then (2) implies that w, -c as n c, so eventually u,, < 0.

Then, as argued above for the case L < 0, eventually p, < 0 and {y, is not only bounded but
satisfies

The proof for y, < 0 is similar and will be omitted.

THEOREM 2. Suppose that, in addition to (1) (2),

E q, cx3, (7)

and

f(u) is bounded away from zero when u is bounded away from zero. (8)

p, --- 0 as n c, (9)

then any nonoscillatory or Z-type solution {y,,} of (E) satisfies y, 0 as n -- cx.

PROOF. Let {y,,} be a nonoscillatory or Z-type solution of (E), say y, > 0 for n > N-h-k
where N1 > No is a positive integer. Observe that (9)implies that (3) eventually holds, so {y,,}
is bounded. From the proof of Theorem 1, either (6) holds, or (5) holds and w, L as n c

for some constant L. Furthermore, it was also shown in the proof of Theorem 1 that y, 0 as

n o if either (6) holds or (5) holds with L1 < 0. Hence, we only need consider the case when

(5) holds and L1 > 0.

Notice, first, that since (5) holds, (7)- (8)imply that

lim inf y. 0. (10)

Also, by Theorem 1, {Yn} is bounded. Now suppose that L > 0. Then there exists N2 > N
such that w,, > L/2, or

Yn > L1/2- PnY,-

for n k N2 k h. It then follows from (9) and the boundedness of {y,} that eventually
y, > L/4 > 0 contradicting (10). Thus L 0, and (9) and the boundedness of {Yn} imply that

Yn wn p,-,Y,,,-t, 0

as n . The proof is similar for the case y,, _< 0.

REMARK. It is interesting to observe that a requirement analogous to the condition

E r, converges (2)
--/o
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is necessary in the hypotheses of Theorem 1. Furthermore, conditions similar to (2) and

Z q, diverges (7)

are needed in the hypotheses of Theorem 2. To demonstrate this, consider the following examples:

Yn-1 Yn-1A Yn +
n ] + n 2

n(n+ 1)’
7 >_ 1; (El)

A(ynh Yn--3) rt 2(n2 2u + 3)
n 2 +Y"-I= n>4; (E2)

n- 1 n(n + 1)(n 2)(n 3)’
and

A(ynq Yn-3) Yn-l_ 2(n2 2n + 3). 2 + . .(. --- .(. + 1(. 2)( 3/’ "-> 4. (E)

Equations (El) and (E2) satisfy all the hypotheses of Theorems and 2 except condition (2).
Notice that {y,, } {n + 1} is an unbounded nonoscillatory solution of (El) while {y, ",-}
is a solution of (E2) satisfying y,, - 1 as n . The latter solution, y,, -__+A also satisfies

(E3), and (Ea) satisfies all the hypotheses of Theorem 2 except condition (7).
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