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1. INTRODUCTION.
In [1], M. Altman showed the existence and uniqueness of solutions for set-valued and single-

valued nonlinear operator equations in Banach spaces by means of the concepts of contractors

and contractor directions. Since Altman, Lee and Padgett ([5]-[7]) introduced the concept of

random contractors with random nonlinear majorant functions and showed the existence and

uniqueness of solutions for random operator equations by random contractors.

In this paper, we introduce the concept of more general probabilistic contractors in

probabilistic normed spaces and show the existence and uniqueness of solutions for set-valued and

single-valued nonlinear operator equations in Menger probabilistic normed spaces. Our results

extend and improve the corresponding results of Altman [1], Chang ([3], [4]), Lee and eadgett [6].
2. PRELIMINARIES.

Throughout this paper, let R=(-o, +oo) and R + =[0, +oo). A mapping $:R-R + is called

a distribution function if it is nondecreasing and left-continuous with inf r 0 and sup q 1. We
also denote and H by the set of all distribution functions and the specific distribution function

defined by

H(t) {O’t > O’

,t<O,
respectively.

A function A:[0,1] [0,1]-[0,1] is called a t-norm if it satisfies the following conditions:

(A--1) A(a, 1)= a and A(0,0) 0;

(A- 2) A(a,b) < A(c,d) for a < c and < d;
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(A- 3) A(a,b)

(A-4) A(A(a,b),c)-- A(a,A(b,c)).

A triplet (X,,A) is called a Menger probabilistic normed space (briefly, a Menger PN-space)
if X is a real vector space, is a mapping from X into (for X, the distribution function (z)
is denoted by F and Fx(t) is the value of F at tR) and A is a t-norm satisfying the following
conditions:

(PN-1) Fx(O)=0;
(PN 2) Fx(t H(t) for all _> 0 if and only if x 0;

F (-)for all R,c, # 0;(PN 3) Fizz(t)

(PN- 4) Fx + y(t + t2) _> (AFx(tl),Fy(t2)) for all z,y X and tl,t2 +.
A non-Archimedean Menger probabilistic normed space (briefly, a N.A. Menger PN-space) is

a triplet (X,,/x), where IX,q,+/-) is a Menger PN-space and the t-norm A satisfies the following
condition instead of (PN 4):

(PN -5) Fx + y(max{tl,t2} > A(Fz(tl),Fy(t2) for all z,y X and tl, 2 R +.
Note that if (X,,A) is a Menger PN-space with the t-norm A satisfying the following condition:

sup A(t,t) 1, (2.1)
0<t<l

then (X,q,A) is a real metrizable Hausdorff vector topological space with the topology induced

by the family of neighborhoods,

where
{Uy(, A):y x, > 0,A > 0}, (2.2)

Uy(,A) {x X:Fz_y()>

Let (X,,A) be a Menger PN-space with the t-norm A satisfying the condition (2.1) and fX
be a family of all nonempty probabilistically bounded r-closed subsets of X. For any given
A,B i2X, define the distribution functions FA, B and FA by

fA, B(t)=sup A( inf sup fa_b(S), i..f sup Fa_b(S))
s<t aA bB bB

and

FA(t)= sup sup Fa(s
s<t

for all s, R, respectively.

Then, from the definitions of FA, B(t and FA(t), we have the following:
LEMMA 2.1. Let (X,’Y,A) be a Menger P/V-space (resp., an N.A. Menger P/V-space) with

the t-norm A satisfying the condition (2.1) and A ftX. Then we have the following:

(1) FA(0) 0;

(2) FA(t for all > 0 if and only if e A;

(3) FAA(t FA(---V) for all e ,$ # 0;

(4) For any A,B X and e B, FA(t FA, B(t) for all R;

(5) If the t-norm A is continuous, then we have

FA+z(t +t2) A(Fz(tl),FA(t2) (resp., FA+z(maz{tl,t2}) A(Fz(tl), FA(t2))) for M1 tl, t2q +

d zX.

Recl hat a sequence {n} in x converges o a poin 6 X in he opology r (denoted by

lira Fn_ (t) n(t) for all > O.

A sequence {zn} in X is called a r-Cauchy sequence in x if
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llm /"x (t) H(t) for all > 0.

The ,i)a(’ X is ,all to 1), r-COml)lcte if ,vcrv r-Cam hv sequence’ in x converges to a point in the

topology
DEFINITION 2.1. Let (.\’, ,A) and (t’,ff.A) be two Menger PN-spaces with the t-norm A

satisfying the condition (2.1). Let and be the topologies induced by the family of

neighborhoods of the type (2.2) on (X,,A) and (I’,,A), respectively. A set-valued mapping

P:D(P) C XFtt. (resp. a single-valued mapping P:D(P) C X---,Y) is said to be r-closed if for any

Zn D(P) and ln P(xn) (resp. yn= P(gn)), whenever znz and n-, we have z D(P) and

u P(z)(resp. u P(z)).
DEFINITION 2.2. A function 0:[0, + .)-.[0, + ) is said to satisfy the condition (el,) if it is

nondecreasing, (0) 0 and

h,,, vn(t) +o for all > 0. (2.3)

REMARK 1. By Lemma 9.3.5 in [2], if , satisfies the condition (), then ,(t) > for all > 0.

DEFINITION 2.3. A t-norm : [0,1] [0,1]-.[0,1] is said to be of a h-type if for any 6 (0,1),

there exists a number 6(.) 6 (0,1) such that, as > 6(,), the following holds uniformly

Ak(t) > , for all/ > 1,

where Am(.):[0,1]--[0,1], Al(t)= A(t,t) and Am(t) A(t,A l(t)) A(Am- l(t),t) for all 6 (0,1)

and 2,3,.

REMARK 2. The t-norm A defined by A(a,b)= {a,b} is an example of an h-type.

3. SET-VALUED AND SINGLE-VALUED OPERATOR EQUATIONS.
In this section, assume that (X, ,A) is a rl-complete Menger PN-space, (Y,,A) is a r2-

complete Menger PN-space, A is a t-norm of h-type, and f. is a nonempty family of

probabilistically bounded r:2-closed subsets of Y.

Let P: D(P)C X--,f. and P:D(P)C X--,Y be nonlinear set-valued and single-valued mappings,

respectively, and F:X--,L(Y,X), where L(Y,X) denotes the space of all linear operators from Y into

x. Let ,:[0, +e)[0, +oc) satisfy the condition () and u6 Y be a given point. Then I" is called

a probabilistic contractor of a nonlinear set-valued mapping P (resp., a single-valued mapping P)
with respect to if, for all 6 D(P) and u 6 {u 6 Y:z + r(z)U 6 D(P)},

Fp(z+r(z)y),p(z)+y(t)>min{Fy((t)),Fp(z)_u((t)),Fp(z+r(z)y)_u((t))}, (3.1a)

(resp., Fp(x + F(x)y)- P(x)-y(t) >- min{Fy((t))’FP(x)-u(O(t))’Fp(x + F(x)y)-u((t))}" (3.1b)

for all > 0.

REMARK 3. It follows from (4) of Lemma 2.1 that if A is a continuous t-norm with

A(t,t) _> for all [0,11, then (3.1a) is equal to the following:

Fp(x + r(x)y),P(x) + y(t) > min{Fy((t)),Fp(x)_ u(O(t)), (3.2)

Fp(x + F(x)y)- ((t)’F P(x) + y- (2(t))’

Fp(x + F(z)g) (2(t))} for all > 0.

If (Y,,A) is also a N.A. Menger PN-space, then (3.1a) is also equal to the following:
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t.t,(.,. + r(.,.):), t’(.,.) + u(t) -> ’"i" F.v((t))’ F p(,,.)_ ,,(( (3.3)

Fp(x + F(x)y) ((t)), Y P(x) + y ( t)),

Fp(+F(.r)y)_y_u((t)) for all t_> 0.

For the single-vahw,1 ,nalpiug P, we have the similar inequalities (3.2) and (3.3) which are

equal to (3.1 b).
Now we are ready to show the existence and uniqueness of solutions for the set-valued

nonlinear operator equation

P(,). (3.4)

THEOREM 3.1. Let (X,’,A) be a rl-complete N.A. Menger PN-space, (Y,q,A) be a 2-
complete Menger PN-space and A be of a h-type. Let P:D(P)C X-ray be a r-closed set-valued

mapping. Suppose that F:X--L(Y,X)satisfies the following conditions:

+ F(x)y E D(P) for all D(P) and Y;

F is a probabilistic contractor of P with respect to u, i.e., F satisfies the condition

(i)

(2)
(3.1a);

(3)

(4)

There exists a constant M > 0 such that, for any E D(P) and v E Y,

F(z)y (t)>_ Fy ()for all t> 0;

For any A, B Dy and a A, there exists a point e B snch that

Fa_b(t > FA, B(t for all > 0.

Then the nonlinear set-valued operator equation (3.4) has a solution x* in D(P). Further, the

sequence {xn} defined by

Zn + Xn F(zn)yn

converges to the solution z* in the topology r1.
In order to prove Theorem 3.1, we need the following:

LEMMA 3.2. Let F and F2 be two distribution functions with FI(0)= F2(0 and

:[0, +o)-.[0, +) be a function satisfying the condition (). If the following condition is

satisfied:

Fl(t > rain {Fl(o(t) ), F2((t)} for all > 0, (3.5)

then we have F2(o(t))< Fl(,(t)) for all t> 0.

PROOF. Suppose that the conclusion is not true. Then there exists a number O > 0 such

that.

V2((to)) > rl((to)). (3.6)

By (3.5), since (to)> o, we have rl(to)= Fl((to) ). Let t*=ma.{t > to:Fl(t Fl(/o)}. Since F is

left-continuous, such a t* must exist and t* >_ (to). However, since (t*) > t*, we have

Fl(O(t*)) > Fl(t*).
By the nondecreasing property of F2 and (3.6), we have

F2(o(t*)) _> F2((to)) > Fl(O(to))= Fl(t* ).
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Therefore, we hav’ Fl(t* < ,,,,,,{FI((t*)),F2((t*)) }, which is a contradiction. This completes the

proof.
THE PROOF OF THEOREM 3.1.

(I) The case of u-O. In this case, (3.1a) can be written as follows"

Fp(x + r(x)y),P(x) + y(t) > ,,,i,,{Fy((t)),Fp(x)((t)),Fp( + r(x)y)((t)) for all > 0. (3.7)

For any given xo D(p), take Yo P(xo) and let xo- I’(Xo)Y By the assumption (1), we have

D(P). Replacing and y by x and -Yo in (3.7), respectively, from (4) of Lemma 2.1 and

0 P(xo)- Yo, we have

)(t) >_ Fp(x ), p(xo)_yo(t)Fp(xl

Fp(xo- r(zo)Yo), P(zo)- yo(t)

>_min {Fyo(O(t)) Fp(xo)((t)), Fp(xl)((t))

for all > O. By Lemxna 3.2, we have

min {ryo(a(t)) FP(xl)(o(t))}

Fyo(O(t)) <_ FP(zl)((t))
for all >0. By the assumption (4), for 0 P(xo)-Yo, there exist a point Yl P(Xl) such that

Vyl(t) > FP(xl),P(xo)_Yo(t)

(3.8)

for all t>_0. Hence, by (3.7) and (3.8), we have Fyl(t)>_Fyo(O(t)) for all t>0. Let

x2 x P(Xl)y 1. By the same method as stated above, there exists a point Y2 P(x2) such that

Fy2(t) >_ Fyl(O(t)) >_ Fyo(O2(t))
for all t_> O. Inductively, we obtain two sequences {xn} and {Yn} in X such that

Xn + Xn- F(Xn)Yn;

Yn - P(xn);

Fyn(t) >_ Fyo(on(t)).
for all > 0. By the assumption (3), (3.9) and (3.11), we have

r Xn_ Xn + l(t) r r(Xn)Yn(t) > Fyn >_ >_ Fy o

(3.9)

(3.10)

(3.11)

for all > O. Hence, by (PN-5), for any integers m,n(m > n),

F Xn_ Xm(t >_ A(F Xn Xn + l(t), F Xn + Xm(t))

> A(F Zn_ Xn + I(t),A(F Xn + Xn + 2
(t)’
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A(... A(F _l(t)’F m- 1-m(t))" ))

for all > 0. Since o satisfies the condition (), o(t) > and so, we have

for all, > O. Since A is of a h-type, onh)-. +oo as n--oo and so, for all , E (0,1)and,> O, there

exists an integer n(t,A),n >_ n(t,A),m > n, such that

Zn_ Zm(t >_ Am -n-l(Fyo(on())) >1-A.

This means that the sequence {zn} is a r-Cauchy sequence in x..Since (x,. ,A)is a rl-complete N.A. Meager PN-space, znz. By (2.3) and (3.11), we have

lira FUn(t 0 for all > 0,

i.e., nO. Therefore, from the r-closedness of P and (3.10), we have * E D(P) and 0 P(*), i.e.,
* is a solution of (3.4).

(II). The ease of e 0. Let T(z) P(z)- u for D(P). Then D(P) D(T) and P satisfying

(3.1a) is equal to T satisfying (3.7). Therefore, by using the case .of u=O, we can show the

existence of solution for the nonlinear set-valued operator equation 0 T(). This completes the

proof.
For the nonlinear single-valued operation equation

u P(z), (3.12)

we also have the following:
THEOREM 3.3. Let (X, ,A), (Y,,A) and A be as in Theorem 3.1. Let P:D(P)C X-,Y be a

r-closed single-valued operator and F: X-,L(Y,X) be such that

(1)
(2)

(3.1b);
(3)

x + r(x) D(P) for all x D(P) and y Y;

r is a probabilistic contractor of P with respect to u, i.e., r satisfies the condition

There is a constant M > 0 such that for any z D(P) and u - Y,

F(z)(t) _> FV() for all _> O.
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Then the equation (3.12) has a solution x* in D(P) and for any given x E D(P), the sequence

defined by

,x. -I-- xn- r(xn)(P(xn) u) (3.13)
converges to the solution x* of equal;Ion t3.12) in the topology r 1.

If F(x*): Y--X is surjective, then x* is the unique solution of (3.12).
PROOF. Without loss of generality, we may assume that u 0. In this case, (3.1b) can be

written as follows:

FP(x + F(z)y) P(z)-y)(t) >_ min{Fy(o(t)),Fp(z)((t)),Fp(z + r(x)y)(,(t))} (3.14)

for all t>0. By the condition (1) and (3.13), we have nE D(P) for n=0,1,2,-... Replacing

and y by xn and P{zn),n 0,1,2,..., in (3.14), respectively, we have

FP(xn + 1)(t) k rnin{Fp(xn)((t)),Fp(xn)((t)),FP(xn + 1)(o(t))}

min{FP(xn)((t)),FP(xn + )((t))}
for all _> 0. By Lemma 3.2, we have

Fp(xn + 1)(t _> FP(xn)(o(t) >_ )_ Fp(xo)(on + 1(/))

for all > 0. In view of the assumption (3), (3.13) and (3.15), we have

Xn Xn + l(t) F(Xn)(P(xn))(t F

for all > 0. By the same method as in the proof of Theorem 3.1, we can prove that {Zn} is a r1-
Cauchy sequence in x. Since (X,,A)is r-complete, xn " Hence, from (2.3) and (3.15), we

have P(xn)--.O. Therefore, by the r-closedness of P, we have * e D(P) and P(x*) 0.

Next, we prove the uniqueness of solution of the operator equation u P(x). In fact, if

x** D(P) and P(x**)=o, by the surjectivity of r(x*), there exists a point y(5 Y such that

** x* r(x*)y. Since P(x*) P(x**) 0 and ro(t H(t), from (3.14), we have

Fy(t) Fp(x**) p(x,)_y(t) > rain {Fy(O(t)), Fp(x,)(o(t)), Fp(x**)(o(t))

for all > 0, which implies that

Fy(to(t))

Fy(t) > Fy(o(t)) > > Fy(on(t))

for all _> 0 and n 1,2,.... Letting n-<x, from (2.3) we have Fy(t)= for all _> 0. This means

that y 0, i.e., x* **. This completes the proof.
4. FIXED POINT THEOREMS.

In this section, using Theorems 3.1 and 3.2, we can obtain two fixed point theorems for set-

valued and single-valued mappings:

THEOREM 4.1. Let (X,q,A) be a r-complete N.A. Menger PN-space and A be a t-norm of a

h-type, let T: Xfx satisfy the following condition:

FTx, Ty(t) >_ min{Fx y(O(t)),Fx Tx(o(t)),Fy_ Ty(O(t))} (4.1)
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for all > 0 and z,u . X, where :[0,)---[0,oo) satisfies the condition (). Suppose further that, for

any A, B E fX and E A, there exists a point B such that

Fa_b(t) > FA, B(t) for all > O.

Then there exists a point z* x such that x* Tz*, i.e., z* is a fixed point of T.

PROOF. Putting p(z)= -Tz and F(x)= IX (:the identity mapping on X), the mappings P

and F satisfy all the hypotheses of Theorem 3.1. Therefore, there exists a point z* X such that

0 P(x*) z* T*, which means that * is a fixed point of T. This completes the proof.
THEOREM 4.2. Let (X,,A) be a r-complete Menger PN-space and A be a t-norm of a h-

type. Let T: X-,X satisfy the following condition:

FTz Ty(t) > min{F:_y(o(t)),F_ T:((t)),Fy_ Ty(O(t))}
for all > 0 and z,y x, where :[0,o)[0,c) satisfies the conditions ().
Then there exists a point x* x such that *= Tz*, that is, z* is a unique fixed point of T and,
for any o X, the iterative sequence {Zn} in X converges to r* in the topology r, where

n T’n- ,n 2,3,4,

PROOF. Putting P(:)=:-Tz and F(z)= IX, the mappings p and F satisfy all the

hypotheses of Theorem 3.2. Therefore, there exists a point z* E x such that 0 P(z*)= z*-Tz*,

i.e., :* is a fixed point of T. This completes the proof.

REMARK 4. (1) In Theorem 4.2, if we assume that A(t,t)>_t for all rE[0,1], then by

Remark 3, (4.1) can be weakened as follows:

FTx_ Ty(t) >_ min{Fx y(O(t)),F_ Tx(o(t)),Fy_ Ty(o(t)),Fy_ Tz(o(t)),Fx Ty((t))}

for all _> 0.

(2) Theorem 4.2 extends fixed point theorems of Chang [3] and others.

REFERENCES

1. ALTMAN, M., Contractors and contractor directions, Theory and Applications, Marcel
Dekker, New York, 1977.

2. CHANG, S.-S., Fixed Point Theory and Applications, Chongqing Publishing House,
Chongqing, 1984.

3. CHANG, S.-S., Probabilistic contractors and the solutions of nonlinear equations in
probabilistic normed spaces, Chinese Sci. Bull. 15 (1990), 1451-1454.

4. CHANG, S.-S. & PENG, Y.-C., Probabilistic contractor couple and solutions for a system
of nonlinear equations in non-Archimedean Menger probabilistic equations in
probabilistic normed spaces, Applied Math. Mech. 11 (1991), 965-972.

5. LEE, A.C. & PADGETT, W.J., Random contractors and the solutions of random nonlinear
equations, Nonlinear Analysis TMA (1977), 173-185.

6. LEE, A.C. & PADGETT, W.J., Random contractors with random nonlinear majorant
functions, Nonlinear Analysis TMA 3 (1979), 707-715.

7. LEE, A.C. & PADGETT, W.J., Solutions of random operator equations by random step-
contractors, Nonlinear Analysis TMA 4 (1980), 145-151.


