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ABSTRACT. Here we investigate the pure (0,1,...,r- 2, r)-interpolation problem on the zeros of

(1- z2) P(,’) (z)= (1- z2) P"’’) (z), a > -1, where P(,"") (z) is the Jacobi polynomial of degree n

with Z a.
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1. INTRODUCTION.
Let k and be natural numbers and let E=E=(%) (i=1,2,...,k;j-O, 1,...,l-1) be a

matrix with k rows and (i >_ t) columns having e,j 0 or 1, which are such that e,j and no

row is entirely composed of zeros. Let "

z < z < < z, (1.1)

be increasing reals and e {(i,j):Q- 1}. The reals x, and the incidence matrix E describe the

interpolation problem

P(D(x,) y!’), for (i,j) e (1.2)

where y!J) are prescribed and the problem is to find the polynomial P(x) of degree _< l-1, which

satisfies the condition (1.2). If y!J)=0 for (i,j) e then the problem (1.2) is the homogeneous
interpolation problem. Let X {xi} be the interpolation nodes. We’say that (E,X) is regular if

(1.2) has a unique solution for all choices of reals y!), and singular otherwise. If P()(x,)= 0 for

(i,j) e, then p(x) is said to be annihilated by (E,X).

TurAn and his associate [4] considered E=E, with xl,x,...,x, as the zeros of

,(x) (1-x)P_l(x), where P,(x) is the Legendre polynomial of degree n with normalization

P,(1) 1. TurAn proved that (E,X) is regular if n is even and singular if n is odd. Later, Varma

([5], [6]); Anderson and Prasad [1]; and erasad and Anderson [3] considered different incidence

matrices. Recently, Bajpai and Saxena [2] proved the following:
TttEOREM A. If E is the matrix of order (n+2)(m+ 1)(n+2), rn_> 2, with rows

(.1 0 0 0 and X is the set of zeros of (1- x)P,(x), P,(z) being the Legendre

polynomial of degree n, then:

(i) if rn is even, (E,X) is singular, and
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(ii) if m is odd, (E,X) is regular if n is even and singular if n is odd.

Let X be the set of the zeros {zk} +1 of (1-z2) p) ()= (1-2) P{."’") (z), a > -1, where

p(.’a)(z) is the Jacobi polynomial of degree n with B a, such that

--l=Zn+l<Zn< <Zl <z0= 1.

Our aim here is to prove the following:
THEOREM 1. Let X be the set of the zeros of (1- r2)P(.")(r),c, > 1, and E be the incidence

matrix given by

(1)m 0 0 0

(1)m 0 0 0

E En+) x (m + 1)(, + )

(1)m 0 0 0

(1.3)

where (I), means m entries of in that row. Let m be an odd positive integer _>3, and

< a < 1, then:

(i) if n is odd then (E,X) is singular.
m-2 and a is such that m-I--a(m + 2) is odd positive integer then(ii) if n is even, a # -’V’’

(E,X) is singular and for all other values of m- -a(m + 2), (E,X) is regular.
m-2 then (E,X) is singular.(iii) if n is even and a ----,

THEOREM 2. Let X be the set of the zeros of (I- t)P{na)(t),a > -I, and E be the incidence

matrix given by (1.1). Let m be an even positive integer >_ 2, and < a < I, then:

(i) If n is odd then (E,X) is singular.
m- 2 (0 < a < I), then (E,X) is singular.(ii) If n is even and a -’V-’
m-2 then (E,X) is singular if m-l-a(m+2) is an odd positive(iii) If n is even and a # --,

integer and regular otherwise.

2. SOME LEMMAS.
Here we state and prove a few lemmas.

LEMMA 1. If w.(z) e")(z),a > 1,A,(z) [(1 z2)w(z)]’,r 1,2,. and {zk} are the zeros

of wn(z then:

[." ()]’__. (2) I )1 (2.1)

2r+l)[w2n’()==k =2r(2r/l)!(a/l)k(1-i) [w(k)]2r

( + ) , ( + ) (; )- [w"

0, i=0, 1,’’’, 2r-I
9 (,)=

(;_ ), () [; (,)],, i= ,
A(" + ) (zt) 2r (2r + I) zt (I zl)’- [W (Zk)12r

2r(2r 1)zk(l zi)- l2r)(Zk).
The prf is obvious.

LEnA 2. Let 2,(z) (I 2)2r (2_ i)2r, r l, ,.
Then:

()= f0,s :0, 1,..., 2,-

(2r) 22r, 2r

(2.2)

(2.3)

(2.4)
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(12rr 4" I) (1)= 22r (2r - I) r (2rr 4" I) (_ I) (2.6)

(2.7)

and

2rr+’) (-I)= (2r+l)2rr) (-I). (2.8)

The proof is obvious.

LEMMA 3. Let F,,(:)=[(I-z2)w,,(z)]"q,,+(x) be a polynomial of degree < (n+2)(m+ l)-l,

where q, + l(X) is a polynomial of degree s n + I, and let

F(nre+l) (zk)--0,k--0,1,2,-..,n+ 1.

Then, q,, + () satisfies the following conditions:

(1-z) q’+l(zk)+ra(a-1) xk qn+l(xk)-0, k- 1, 2,...,n; tr> -1, (2.9)

n(n + 2 + 1)
2q+ (1)+m

n(n + 2tr + 1)
2q+ (-1)-m l+a

PROOF. Let m 2r. Then

+ 1] q,,+l(1) 0 (2.10)

+ 1] q,,+,(- 1) 0. (2.11)

Fn(z Ar(z)[(l- z2)rqn + l(Z)]"
On using Leibnitz’s formula and Lemma one can easily see that for k 1,2,...,n,

F(n2r+l) (k)--(2r + 1)A!2r) (xk)(1-x)r-1 [(1-x) q+ (xk)+2rxk((--1)qn+

To evaluate F(,,2r + 1)( 4-1) we proceed as follows:

(2.12)

Fn(x>-2r(X>{[wn(x)]2rqn+l(X>}
Now, making use of Leibnitz formula and Lemma 2, we get

F(2r + 1)(1 2rr + 1)(1)[wn(1)]atq, + 1(1) +

We know that

+ (2r +2rl:rr)( 2r[w,(1)]:r lw’(1)q) + l(1) + [wn(1)]2rq’ + l(1)l. (2.13)

hence

(1 za)w(x)- 2(a + 1)rw(:) + n(n + 2c) + 1)w,(z) 0 (2.14)

So, from (2.13) and (2.15)it follows that

2a’- l(2r + 1)![w,(1)]arl2q’+ i(I)+ 2I +F(.r+

We also know that
w.( I) l)nw.(1),

n(n + 2a + 1). }l+a n+ 1(1) (2.16)

(2.17)
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to;,( x) )" +

Further, using Leibnitz formula, Lemma 2, (2.17) and (2.18) one can easily verify that

F(+l(-1)=2’-(2r+l)![w.(1)] q+l(-1)- 1-t- 1+ n+l(-l)

Next, let m 2r + 1. We now write

(2.19)

Fn(:) ,r(z)[( :2)r + lwn(r)qn + i(:)]"

Again, on using Leibnitz formula, Lemma and (2.14), it follows that for/ 1,2,...,,,

F(nr + 2) (zk) (2r + 1) (2r + 2) (1 zk)rw’n (:k) 2r) (:k) [(1 z) q +

+(2r + 1)(a-- 1)zkqn +

Further, to compute F(nr + 2) + 1), we write

(2.20)

,to (a:)q + 1(:)

and use Leibnitz formula to get

2r+2(2r 2) 2. 2+--.b"(2r + I)(): E ? ’) (:)[(I : ,ton l(x)q. + l()](2r + I-,).
i=0

On simplification using Lemma 2, (2.21) yields

+ 2)(1) (2r+2), 22r 2r+l(1)[2q’n+l(1)+(2r+l){n(n+2+l)wn tr+

(2.21)

+ 1} q, + 1(1)], (2.22)

g’(2+)(-1) (-1)"(2r+2) ’"2r 2+ [ {.z to 1(_1 2q+1(_l)_(2r+l)
n(n+2tr+l)

or+ + 1} qn + 1(-1)1. (2.23)

Hence the conditions

F(’+l)(k)=0, k=0, 1, 2,..., n+l

along with (2.12), (2.16), (2.19), (2.20), (2.22) and (2.23)imply (2.9), (2.10) and (2.11) for m even

or odd. This completes the proof of Lemma 3.

LEMMA 4. Let q,, + l(r) be a polynomial of degree _< n + which satisfies the following n + 2

conditions:

(1 z)q, + l(zk) + m(a 1)rtq,, + l(xk) 0, k 1,2,. .,n;a > 1, (2.24)

+ 2o + 1)
2q + 1(1) + m +tr

n(n + 2tr + 1)
2q+1(- 1)-m +or

Then q, + l(x) satisfies the following equation:

+ 1] q,+ 1(1)= 0, (2.25)

+ 1] qn+ 1(- 1)= 0. (2.26)

(I x2) q + l(Z) -I- rn(- I) qn + I() c[:2 LX(c)] wn(x),

where c is an arbitrary constant and

(2.27)

:()
n(n+2+l)+a+lI(n+n)m(ls--a)-+2}l+(rI, 1-(r +1](n+2 +ntr)-l]
n(n+2+l+trl)+tr+l n+ntr) m(l-tr)+21_a +I 2(n+n )+1
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PROOF. Due to (2.24), it follows that
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(1 x2)q;, + l(x) + "( )q, + 1() c2 + d +

where c, d and are constants. From (2.29), (2.15) and (2.17) we see that

(2.29)

(2.30)

--)n(t- 1)qn + 1(- 1)= (c-d +e)(- 1)

Also, on differentiating (2.29) we have

(2.31)

(1 x2)q + l(x) + [m(a 1)- 2]xq + 1() + m(a 1)q + l(X)

(cx + dx + e)w(x) + (2cx + d)wn(x ).

Hence, from (2.32) we conclude that

(2.32)

[m(a 1) 2]q + l(1 + m(a 1)qn + l(1) (c + d + e)w(1 + (2c + d)wn( ), (2.33)

[m(a 1) 2]q + l( + m(a 1)q. + ( 1) (c d + e)w’n( 1) + 2c + d)w,( 1).

Further, from (2.30), (2.31), (2.15), (2.17), (2.18), (2.33) and (2.34)it follows that

<.+,(1)=(_)t"++(c++>. .(. + 2 + )Ira(a-1)-21 2(+ )

(2.34)

(2.35)

(2.36)

Consequently, on substituting the values of qn+ l(1), q + 1(1), qn+ 1(--1) and q,+ 1(- 1) from the

above equations into (2.25) and (2.26) and simplifying we get

o)_ o)+

+a + a m+ + =0, (2.37)

o)+

+ (c d + e) + 2a
l+aL

+ 1] [(" +n a){m +_-}+ 1]:0. (2.38)

Now, from (2.37) and (2.38) we see that d 0 and

+ a [ f= + 0

wch, on simplification, yields

c (2.39)
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or, using (2.28) we have

A(a)c. (2.40)

This completes the proof of Lemma 4.

3. PROOF OF THEOREM 1 AND THEOREM 2.

Let E be the incidence matrix given by (1.3) and let X be the set of zeros of

(1 x2)P()(x) (1 x2)w,(x). Let F,(x) be a polynomial of degree _< (, + 2)(m + 1)- annihilated

by (E,X). We have to ascertain if F,(z) is identically zero. Since

Fn(x:) F(x:) F’(xk) F( l)(xk) O, k O, l, ., + 1,

rn(x [(1 z2)w.(z)lmq. + ,(x),

where q. + () is a polynomial of degree < n + 1. Further, since we have required that

F(m+l)(xt)=O, k=0, 1,’’., n+l,

on account of Lemma 4, q, + (z) satisfies the following equation:

(1 g2)q + I(X)._ DI(- l)gqn + C[Z2 A()]wn(g)’

where c is a numerical constant. Let

n+l
q. + () ().

k=0
Further, it is well-known that

(3.1)

(3.2)

(1 x2)w’,(x) nxw,(x) + (n + a)w,_ ,().

Now, from (3.1), (3.2) and (3.3), on simple computations, it follows that

n + 2 k(t +
_

[m(-a)-+] (+)(+2- )
k=l

(3.3)

o

+ 2 ilk+ l(k+(+l) 1+
k=0

m(- 1)-k- 1]2k + 2tr + 3 w(x) c[x2- A(c)lwn(z). (3.4)

Also, we know that

(n+ 1)(n + 2a + 1) (n+O
Wg 1().xwn(x)-(2n/2o+ l)(n/tr/ l) wn+l(x)+ (2n+2tr+ l) (3.5)

Repeated application of (3.5) in (3.4), on simplification, yields

(k+o+l)[k+o(m+2)+2-m]
ak + (2k + 2tr + 3)

k=0

where

n + 2 [rn(a I)- t + 1]k(k + 2tr)
+ ’- (+.) (+.-I)/:=1

Aw 2(z) + Bwn(x) + Cw +

(n+a) (n + o- 1)a
(2n + 2ct + 1) (2n + 2tr- 1) c,

(n+ 1) (n+2tr + 1)
B-- (2n+2+1) (2n+2a+3) +

n(n + 2tr)
(2n + 2(r + 1) (2n + 2c- 1)

(3.6)

(3.7)

(3.8)
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C= {n+ 1) (n +2o + 1) (n+2) (n+2a + 2)

Consequently, we obtain
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(3.9)

(1 + ) [(m + 2) + 2
2a + 3 a, O,

(k+l+cr)[k+ot(m+2)+2-m] k(k+2oO[m(c-l)-k+l
(2k + 2or + 3) at + + (k + ct) (2k + 2a 1) at 0,

k= 1,2,- .,n-4, n-3,

(. + i) [. + (, + 2) ,l
(2k + 2or- 1)

[m(a 1) + 3l (n 2) (n + 2c, 2)
an-’ + (n+tr-2) (2n +2cr-5) an_3 A,

(n 4- c) In 4- c,(m 4- 2) 4- l
(2n + 2tr + I)

[rn(c 1) n 4- 21 (n 1) (n 4- 2 1)a,+ (-+-l)(2- + 2,- 3)
._ 0,

(. +or + I) [n +(+ 2) + 2- ]
(2n + 2a + 3) an + + (n + a) (2n + 2c 1) a, B,

and

(n + 2or 4- 1) (n 4- 1) [m(c I) n]
(n +ct+ 1) (2n +2at + 1) an-O’

(.+2) (n+2a+2)[re(a- 1)-.- I]
(- +, + 2) (2- + 2, + 3) .+

then

and

Let rn be an odd positive integer _> 3:

(i) If n is odd, -1 < a < 1, and a is such that m-1-a(m+ 2) is an even positive integer

an an-2 a3 a 0

aO a2 am 3 ot(m + O

but am_l_a(m+),am+]_,(m+2),....,an+ are note necessarily zero. Hence, qn+l(z) is not

identically zero. If n is odd, -1 < a < 1, and a is such that m-1-a(m + 2) is an even negative

integer then

an an- a3 a 0

and a0,%,...,an_ 3 are not necessarily zero. Hence, qn+ i(z) is not identically zero.

If n is odd, < tr < 1, and a is such that rn- -a(m + 2) is an odd integer or a fraction then

an:an-2-- :a3--al :0

but ao, a2,...,an_3,an_ and an+ are not all zero. Hence, qn+ () is not identically zero.

So, it follows that (E,X) is singular if n is odd.
m-2 and a is such that m-1-a(m + 2) is an odd positive(ii) If n is even, < a < 1, a # ---,

integer then

an an- a a0 0

and
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al-a3= =am_3_o(m+2)----0,
but am_]_(m+2),am+]_(m+2),...,an+l are not necessarily zero. Hence, qn+l(z) is not

m-2identically zero. If n is even, -l < a < I, a # -----, is such that m-1-(m+ 2) is an odd

negative integer then

an=an_ a2 aO =0.

Noting that a 0 we conclude that

al a3 an- 3 O.

Recalling the equations for a and a + and substituting the values of A, B, and C it can be

easil verified that c 0. So, a and a +l are also zero. Hence, qn + l(z) is identically zero. If
m- 2 and a is such that m- -a(m + 2) is an even positive integer thenn is even, < a < l,a ---,

and

an an-2 a2 ao 0

a a3 an_ 3 an_ an+ O.

Hence, qn + (z) is identically zero.
m-2 and a is such that m-1-a(m + 2) is an even negative integerIf n is even, < a < 1, a # ----,

then

and

an an- a a0 0

al a3 an 3 an an + O.

Hence, qn + (z) is identically zero.
m- 2 and a is such that m- -(m + 2) is a fraction thenIf n is even, < < 1, # -%-,

and

an=an_2-- =a2=a0=0

al a3 an- 3 an- an + O.

m-2 andaissuchHence, q,, + (z) is identically zero. Consequently, if n is even, < a < 1, a # ----,
that m-1-a(m+2) is an odd positive integer then (E,X) is singular and for all other values of

rn a(rn + 2), (E, X) is regular.
m- 2 and a is such that rn- -a(m + 2) iS a negative integer then(iii) If n is even, a -----,

an=an_2 =a2=ao=0
and a1, %,-.-, an_ 3 are not necessarily zero. Hence, q, + (z) is not identically zero.

m 2 and a is such that m- -a(m + 2) is an odd positive integer thenIf n is even, a ---,
an an- a2 ao 0

and

al a3 am- 3- a(m + 2) 0
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but am_ -o(m + 2)’ am + -o(m + 2)’ "’ an- are not necessarily zero. Hence, qn + 1(x) is not
m-2 and a is such that m-1-a(m+2) is an even positiveidentically zero. If n is even,

integer then

an an- a2 aO 0

and al,aa,...,a,,_ 3 are not necessarily zero. Hence, qn + 1(z) is not identically zero.

Consequently, in this case, (E,X) is singular.
This completes the proof of Theorem 1.

Next, let m be an even positive integer _> 2, and < a < 1:

(i) If n is odd then

an an-2 :a3:al =0

but not all %,%,...,a,+ are zero. Hence, q,,+ l(z) is not identically zero. So, (E,X) is singular.
m-2(ii) If n is even and a --,0 < a < 1, then

tln an- ti2 tiO 0

but a, a3,...,a_ 3 are not necessarily zero.

Consequently, (E,X) is singular.

Hence q,+(z) is not identically zero.

m- 2 and a is such that m- -a(m + 2) is an odd positive integer then(iii) If n is even,

an an- a a0 0

and

a a3 am_3_(m+2) O,

but am_l_t(m+2), am+l_o(m+2),.... an+ are not necessarily zero.

identically zero.

If n is even, a # m- 2 and a is such that m- -a(m + 2) is an odd negative integer then

an--an_2-- a2 aO_-- 0

and since k + a(m + 2)+ 2- m is never zero for even values of k hence

al a3 an 3 an an + O.

So, qn + 1(x) is identically zero.
m- 2 and a is such that m- -a(m + 2) is an even positive integer thenIf n is even, a #

an an-2 % tiO 0

and also a 0 SO that k + a(m + 2) + 2 m is never zero for even values of k hence

til ti3 tin- 3 an- tin + O.

Consequently, on + 1(z) is identically zero.
m- 2 and a is such that m- -a(m + 2) is an even negative integer thenIf n is even, a #

an:an_2= =a2:a0=0

and also a 0 80 that k + a(m + 2) + 2- m is never zero hence

til a3 ti5 tin 3 an an + O.

Hence qn+(z) is not
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Consequently, . + (z) is identically zero.
m- 2 and a is such that rn- -a(rn + 2) is a fraction thenIf n is even, a

an an-2 ao O,

a 0, SO a a3 a a an an q- O.

Therefore, q,+ l(z) is identically zero. Consequently, (E,X) is singular if rn-1-c(rn+ 2) is an odd

positive integer and regular otherwise. This completes the proof of Theorem 2.

In conclusion, it is worthwhile to mention that H. Windauer [7] has also considered the

modified (0,1,...,r-2,r)-interpolation problem on the zeros of (1-z2)P(a)(z),a>-1, and

(0,1,...,r-2,r)-interpolation problem on the zeros of P(a)(z),a > -1. As is evident, we have

addressed the (0,1,...,r-2,r)- interpolation problem on the zeros of (1- z2)P()(z),a > -1.
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