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ABSTRACT. An epidemiological model of the dynamics of Japanese Encephalitis (J.E.) spread
coupling the SIRS (Susceptible/Infected/Removal/Susceptible) models of J.E. spread in the

reservoir population and in the human population has been proposed. The basic reproductive

rate R(0)in the coupled system has been worked out. Using Aron’s results (cf. [1] and [2]), it has

been observed that the disease-free system is stable in this coupled system also, if R(0) is less

than unity, and if R(0) is greater than unity, the disease-free system is unstable and there exists a

unique stable endemic equilibrium.

The model also shows that in contrast to Aron’s observations, loss of immunity is

independent of the rate of exposure to the disease. This observation sheds light on the control

measure of J.E. by vaccination. Passive immunization, i.e., administration of antibody at

recurrent intervals is the correct method of vaccination to eradicate the disease.
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1. INTRODUCTION.
Japanese Encephalitis (J.E.) is a mosquito borne disease where infection is transmitted from

reservoir population (pig, cattle, equine, bird, etc.) to susceptible human population through a

particular species of mosquito (Culex Vishnui). Man is the dead end of infection and as such

harboring of infection from man to man is not possible. Immunity in both reservoir and human

populations appear to be sustained by continual exposure. The present paper investigates into

the epidemiological effect of boosting immunity in J.E. and the qualitative dynamics of the

epidemiological model. Since transmission from man to man does not occur, man does not act as

a carrier in J.E. On the other hand, the reservoir population (infective and immune carriers) not

exhibiting the clinical symptoms, act as active hosts permitting transmission to both animal and
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human susceptibles. Thus in J.E. some proportion of immune reservoir population also acts as

infective (active carrier), and the constraint that the degree of infectivity reduces with the

increase of immunity status in them has been incorporated in this model following Aron (el. [1]
d [21).
2. MATHEMATICAL MODEL OF J.E.

Both human and reservoir populations are classified into three categories, namely

susceptible, infected and removal classes. Let x l, x2 and x3 be the proportion of susceptibles,

infected and removed respectively in human population and Yl’ Y2 and Y3 be those for reservoir

populations. The removed class includes both recovered (immune) and dead by J.E. The

dynamical system representing the epidemic spread in human and reservoir populations are then

given by the following rate equations

dx

d--f- Pl PlXl hlXl + flx3
dx2
dt hlZl PlX2- 71z2

dx3
dt 71x2- PlX3- flz3

dY
d-- 1’2 h2Yl P2Yl + f2Y3

dY2
d-T h2Y P2Y2 72Y2

where

dY3 (2.1)

xl(t + x2(t + x3(t

Yl(t) + Y2(t) + y3(t)

and h

is the effective exposure rate for man and

(2.2)

h2 =/32(kY2 + k2Y3
is the exposure rate in reservoir population

0_ k_ k
_

1; 0_ kt_ k_ 1.

1 is the birth and death rate in man, so that the population size remains the same. B is the

rate at which the human susceptibles become sick by mass action contact between susceptible

man and infective reservoir populations. /: and :’ are the proportions of infected and immune

reservoir respectively who are infective to man. Sick human individuals enter the removal class

(recovered and dead) at the rate 71 and immune individuals (i.e., the recovered portion of the

removal class z3) become susceptibles at the rate I1, 11 being a function of hi, and as derived by

hron 1] is (h + )r
fl(hl)

(hi + Pl)e (2.4)
-e -(hl + Pl)rl

r being the unit of years in which immunity in man lasts unless reexposure occurs during that

time interval. The function fl(hl) is a monotonically decreasing function of h (cf. [1]; see also



SIRS EPIDEMIC MODEL OF JAPANESE ENCEPHALITIS 349

[2]). The rate constants P2’ 2 and 72 in reservoir population stand for the same connotations as

for the corresponding rate constants in man. k and k’ are the proportions of infected and

immune reservoirs respectively who are infective to the reservoir population. We also have

similar expression for )’2(h2) as in (2.4),

f2(h2)
(h2 + p2)e -(h2 + P2)r2

-e -(h2 + P2)r2
(2.5)

r2 is the unit of years in which immunity in the reservoir population lasts unless reexposure

occurs during that time period.

It may be noted that h involves second order term whereas h2 involves first order term

only. this is apparent from the mode of transmission of the disease which is unlike malaria.

Transmission of J.E. in man takes place by the interaction of the susceptible human populations

and infected or carrier reservoir population (mediated by vector population), whereas

transmission of J.E. in reservoir population occurs by direct contact (through vector) amongst

thelnselves.

Considering that the proportion of infective reservoir population effective for infecting the

susceptible man is usually higher than or at most equal to that effective for infecting the

reservoir population itself, we can assume ] >_ t and ]’ > ’. Moreover, because of persistently

boosted acquired immunity in the reservoir population, the transmission rates 81 and 82 satisfy

the inequality relation, 81 >_ 82. Hence

81(k]//2 + k]//3) > 82(k//2 + k’//3). (2.6)

Again, since hl, the exposure rate in man can at most be equal to h2, the exposure rate in

the reservoir population, and also z < 1, we can take as a particular case

81(k]//2 + k]//3)Zl 82(k//2 + k//3)
i.e., h h2 h. (2.7)

When equality holds in (2.6) we have rl 1, under which circumstances the disease process

cannot start at all and hence, a requisite condition for the spread of the epidemic is that the

inequality condition in (2.6) must be satisfied.

3. EUILIBRIA OF MODEL.
For a particular h, the equilibrium values of//2, //3 and x l, x2, x3 are

h(p2 + f2(h)) (3.1)Y2 (/2 + 72)(P2 + f2(h)) + h(P2 + 72 + f2(h))

h72 (3.2)//3 (P2 + 72)(P2 + f2(h)) + h(P2 + 3’2 + f2(h))
(Pl + fl(h))(Pl + 71) (3.3)Zl (Pl 4- "},l)(Pl 4- fl(h) 4- h) 4- hfl(h

h(Ul + fl(h)) (3.4):2 (Pl + 71)(Pl + fl (h) + h) + hfl(h

71h (3.5)3 (Pl + 71)(Pl + fl(h) + h)+ hfl(h

and therefore
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h{(2 + f(h)) + k’7/(l + 71)(/ + fl(h))(kY2 + k’Y3)l {(P2 + 72)(P2 + f2 + h) + hf2(h)}{(pl + 71)(Pl + fl(h) + h) + hf l(h) (3.6)

and

where

Again

lk lk 3’2 (3.12)R(0) =/2 + 3’2
+ (it2 +/2(0))(tt2 + 3’2)

1/= -transmission from the infected reservoir to the human population,
/12 + 72

112(0) period of unboosted immunity in human,

"r2 probability of surviving period of infective state of the reservoirs to become
/2 + 72 immune.

effective reservoir of infection for man.

Again from (2.2) and (2.6) we have

(klY2 + k{Y3)Xl ll" (3.7)

Now the equilibria exist when the two relations (3.6) and (3.7) are satisfied simultaneously and

equilibria points are the points of intersection of the graphs of equations (3.6) and (3.7).
Whenever h-O, Y2-Y3=O and x2=x3=0 and this is characterized by the disease free

equilibrium. If h # 0, i.e., when disease is present, then following [2] we obtain the condition for

an equilibrium as

R(h) (3.8)
where

[’ fl kl(2 + "f2(h + k{72
R(h) (g2 + 112(h))(g2 + 3’2) + h(g2 + 112(h) + 72)

[ (Pl + 71)(Pl + fl(h)) .] (3.9)
/1 +/l(h))(/l + 71)+ h(l + fl (h) + 71)

which contains the dynamics of both the systems, man and reservoir populations in contrast to

Aron’s model where only one system (only human population) was considered. Each of the

bracketed terms in RHS of (3.9) is similar to equation (3.6) of Aron [2] and hence as shown by

him is a decreasing function of h. Thus in our case also R(h) is a decreasing function in h.

If R(0) > 1, a unique equilibrium exists with disease present. If R(0) < 1, the only equilibrium

is the disease-free state. Thus R(0) is the basic factor which determines the qualitative dynamics

of the model. If R(0)< 1, the disease-free equilibrium (zero equilibrium) is locally stable

(appendix A) and there is no other equilibrium. On the other hand if R(0)> 1, the zero

equilibrium is unstable (appendix B). Thus R(0) is the number of cases of infection in human

susceptibles generated by a single infective individual in the reservoir populations through
mosquito bite. In other words, R(0) is the basic reproductive rate in the model. The disease will

be present in the human population when R(0) > 1.

Now

R(0) 1{k(112(0) + 2) + k’3’2} (3.10)( + 112(o))( +)
where

(h + u2)e
-(h + /-t2)r2

f2(O)--/mo f2(h)=lim _(h+/2)2 (3.11)
h-.o
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Figure clearly demonstrates the condition for existence of the non-zero equilibrium. If R(0) > 1,

the slope of the curve (1) exceeds the slope of the line (2) at the beginning, and after a certain

value of h, the latter exceeds the former, so that the two curves intersect two times, once at the

origin (disease free state) and secondly at a point in the positive orthant.
4. CONTROL OF THE DISEASE.

Since J.E. is a communicable disease, it can be controlled by two ways-(i) by reducing
transmission 81 which can be achieved by controlling the vector populations (mosquitoes) and (ii)
by immunizing the human susceptibles and gradually increasing the proportion of coverage of

vaccination (v). The ultimate goal is to reduce /(0) so that R(0)< which will result in

eradication of the disease. Let Zlc and v be the threshold values for transmission rate and

vaccination coverages respectively where Zlc and vc are determined by Aron [1] and Anderson

and May [3].

(2 + (0)) +’lc(1-Vc) (/2 + 72)(/2 + f2(0))
(4.1)

where for eradication the conditions required to be satisfied ar:e v > vc and /1 >/lc" Table

shows the effect of reduction of transmission on the level of vaccination. It can be observed that

increasing the level of vaccination in human means that less effort for reduction of transmission is

required to eradicate the disease.

Now, if the infectivity k is constant, then increasing the infectivity of the immune reservoir

population (carrier) does not in contrast to Aron’s findings, significantly increase the equilibrium

levels of infection (Figure 2). The dynamics of J.E. spread is thus qualitatively different from

that of the malaria epidemic and eventually poses less difficulty in eradication by vaccination.

Figure 3 shows the two curves for different combination of values for k and k’ do not

intersect at a non-zero point and, in fact, each curve is a multiple of another. This implies that,
in J.E. loss of immunity (I1) in man is independent of the exposure rate. This is also a

characteristic property of J.E., in contrast to the model given by Aron. Thus from our results

(Figure 3), it indicates that boostering of immunity against J.E. is feasible only by passive

immunization, i.e., direct administration of J.E. antibody in man at recurrent intervals.

Acquired immunity by the attack of the disease does not persist for a long time by continued

exposure to the bites of infected mosquitoes.
5. CONCLUSION.

The J.E. model presented here is an extension of the SIRS model by coupling the dynamics

of the disease in two populations, the reservoir and the human populations. The reservoir

population does not itself show any pathological symptom of the disease but acts as an

intermediate host medium to pass over the infection to man through a vector population

(mosquito). Infection of J.E. cannot spread from man to man or to any other animals, that is to

say, man is the dead end of infection.

We have assumed that the effective reservoir of infection (hl) for man is proportional to the

proportion of human susceptibles. The higher (lesser) is the proportion of susceptibles in a

human population, the higher (lesser) is the effective reservoir of infection. In other words, in a

human population where the number of susceptibles is zero, the effective reservoir of infection

will be eventually nil.

It is also assumed, as in Aron ([1] and [2]), that irnmunes are no more infective than those

who are infected both in the reservoir and human populations. The dynamic model of J.E.
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spread in reservoir population is same as that of Aron. The reservoir system is also independent

of the human system but not the reverse. Aron’s system has a stable disease-free equilibrium

(h=0, y2=0, y3=0) if R(0)<I and a non-zero equilibrium (disease present) if R(0)> 1.

Substituting this result in the coupled system we have obtained similar results on stability

properties of J.E. spread in disease by vaccination. In contrast to Aron’s results we have

observed that in J.E. the loss of immunity in man is independent of the rate of exposure to the

disease. This implies that active immunization (direct administration of antigen in the form of

live attenuated virus) does not give immunity or prolong acquired immunity in man.

Vaccination by passive immunization (i.e., direct administration of serum containing antibody to

man) at fixed intervals, on the other hand, will ensure control of the disease.

APPENDIX A. STABILITY OF ZERO EQUILIBRIUM.
Linearizing the system about the zero equilibrium (2 0, x3 0, /2 0, /3 0), we get the

biquadratic characteristic equation

(A2 +01’ + 1 )(A2 +02A + 2) 0

where

o 2 + I + h + f(h)

! (.I + + )(. +/())

02 2"2 + 2 2+ h +

2 (P2 + f2(h))(P2 + 72 + h -/2k) 72(/2k h)

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

The roots of (A.1) having negative real parts, the zero equilibrium is locally stable if and only if

01, 1’ 02 and 2 are all positive.

Now 01 and 1 are always positive. The condition that 2 > 0,/(0)< 1, where/(0) is given
in equation (3.10). Again R(0)< 1=2 > 0. Hence if R(0)> 1, the zero equilibrium is locally
unstable.

APPENDIX B. STABILITY OF NONZERO EQUILIBRIUM.
Linearizing the system about the non-zero equilibrium (z2’ z3’ v2 and v3), we get the

biquadratic characteristic equation

where

(A2 + aiA + r/1)(A2 + a2A + r/2 0 (B.1)

2Pl + 3" + h +/l(h) + l(kY2 + kY3)(1 2 z3)-/lfl(h)(klY2 + kY3)z3 (B.2)

1 {Pl + 1 + h + l(ky2 + k)(1 z2- 3)}{Pl + fl(h) Dlf(h)(kY2 + kY3)3}
+ {71 + lf(h)(ky2 + ktY3)z3}{h + l(kY2 + ktY3)(1 z2 z3) (B.3)

a2 2,2 + 72 + h + f2(h) + 2f(h)kv3 2k(1 V2 V3) (B.4)

2 {P2 + 72 + h- 2k(1 V2 V3)}{P2 + f2(h) + 2f2(h)k2v3

+ (72 2f(h)kY3)(h 2k(1 2 93))" (B.5)

We s that the equilibrium rate of exposure h is the function of z1, u2 d v3 defined in

equation (2.2) d (2.3). The rts of equation (B.1) having negative reM pts, the non-zero

equilibrium is locMly stable if d only if l al, 1’ a2 d 2 e positive.
We note that, a > 0 ways, since < f(h) < O.
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After canceling few common terms ql may be written as

Therefore

’11

+ 71l(ky2 + k"lY3)(1-z2 z3)+(u +/l(h))(#l +71 +h)+71h.

[as < fl(h) < O]

From (2.3), (2.7) and f’2(h)> -1 we have

h >/32k’y3 >/32k’2’f’2(h)1/3 (B.6)

Again from (3.1), (3.2), (2.3) and (2.7) we have

2u2(.2 + 2)2( 2- 3) (+ 2 3,k’Py <P2 +72 (B.7)

O, always holds when a non-zero equilibrium exists.

’12 may be written as

’12 (P2 + 72 + h fl2k(1 Y2 Y3))/32f’2(h)k’2PY3

+/32k(1/2 + 1/3)(P2 + f2(h)) + 132f’2(h)k’21/32k(l 1/2 !/3)

h2f’2(h)k’21/3 + {h72 72/32k’ + (P2 + 72 + h)(P2 + f2(h))

-/32k(P2 + f2(h))} + 7232k(1/2 + 1/3) (B.S)

Since the equilibrium point must satisfy (3.8) which again implies

/2{k(#2 + f2(h))+ k72}
(P2 + 72)(P2 + f2(h)) + h(P2 + 72 + f2(h))

the term within curly brackets is zero.

Again, from (3.1) and (3.2) we have

72(Y2 + Y3) Y3(P2 + 72 + f2(h))"

The remaining terms in (B.8) may be written as

-h2f2(h)Y3(k2- k)+/32k’Y3(72 + #2){(1 + f’2(h)+ f2(h)}

+/32k(y2 + Y3)(#2 + f2(h))

+ 132f(h)kU3(1 1/2 Y3)C/2k{ /2k(1 1/2 Y3);32f(h)k’1/3 (B.9)

The last two terms in (B.9) cancel each other and therefore ’12>0 since, k>k and

< f2(h) < 0. Thus whenever the non-zero equilibrium exists, it is stable.
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TABLE 1

Eradication criteria for J.E.

Level of vaccination

100 v

Reduction of Transmission

100 (1- --11c)
0% 93.9%
25% 89.9%
50% 81.9%
75% 57.9%
80% 45.9%
85% 25.9%

The eradication criteria are given in (4.1).
The parameters used are/1 l’p2 0.02, r 1,72 0.1,k 1,k 0.6, I2(0 0.99.

Fig. Effective reservoir of infection in man, (klY2+kl yB) function

of the rate of exposure h, according to (1) eq,uation (3.6) and

(2) equation (3.7). The parameters used are 13 8, P 0.02,

2 0.2, "fl 0.7, "f2 0.1, 1 2 1, k 1, k 0.5
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Fig.2 Effective reservoir of infection in man, (klYz+kl Y3 Xl as

function of the rate of exposure h, according to equation (3.6):
(A) k] I, (B) k 0.5, (C) k] 0. The rest of the parameters

used are P 0.02, P2 0.2, 0"7’72=0"I’ ’I z2=l, kl=l.

0

h

Fig.3 Effective reservoir of irfectfon in man, (klY2+ k y3) Xl as a function
of the rate of exposure h according to equation (3.6): (A) k l.,

k 0, (B) kl’ k 0.5 (C) k 0.5 k The
rest of the parameters ueJed are I 0.02, 2 0.2, 71 0.7,

7 2 0.I, z z
2 I.
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