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ABSTRACT. A flexible rod is rotated from one end. The equilibrium equation is a fourth order

nonlinear two-point boundary value problem which depends on two parameters , and a

representing the importance of centrifugal effects to flexural rigidity and the angle between the

rotation axis and the clamped end, respectively. Previous studies on the existence and

uniqueness of solution of the equilibrium equation assumed a 0. Among the findings of these

studies is the existence of a critical value c beyond which the uniqueness of the "trivial" solution

is lost. The computations of c required the solution of a nonlinear bifurcation problem. On the

other hand, this work is concerned with the existence and uniqueness of solution of the

equilibrium equation when a # 0 and in particular in the computations of a critical value ’c such

that the equilibrium equation has a unique solution for each a {} provided < ’c" For small

a 0 this requires the solution of a nonlinear perturbed bifurcation problem.
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1. INTRODUCTION.
Consider an elastic rod of uniform cross section and density which makes an angle a,0 < a _< ,

with the horizontal. The rod is being rotated from one end that is supported by a bushing. The

other end is free (Figure 1). This problem serves as a model for many important engineering

problems. Among the previous studies are the papers by Odeh and Tadjbakshs [1] and Wang [2],
[3]. Both [1] and [2] considered the case when a 0. In [1] it is shown that the "trivial" solution

becomes unstable as the rotational velocity exceeds a certain critical value and that the problem
possesses nontrivial solutions for such rotational velocity. The proof of existence of the critical

rotational velocity required the solution of a .nonlinear bifurcation problem and the proof of the

existence of the nontrivial solutions was done using several applied analysis techniques, some of

which will be used in this work. [2] is concerned with both the analytical (using the perturbation
r ismethods) and the numerical computations of the nontrivial solutions. The case 0 < a _<

treated analytically and numerically in [3].
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In this paper we are concerned with proof of the existence and uniqueness of solution of the
r In particular we are interested in providing a critical valueequilibrium equation when 0 < < .

of the rotational velocity such that for each 0 the equilibrium equation has a unique solution

for rotational velocities that are less than the critical value. For small 0 this requires the

solution of a nonlinear perturbed bifurcation problem.
Our formulations of the problem go along the same lines as those of [1] and [2] for the case

when 0. In fact, the only change is in one of the boundary conditions. Ve sume that the

gravity effects are negligible and that the rod is thin enough so that it can be treated as an

elastica. Figure 2 shows the crdinate system. A moment balance on an element of length ds"

gives (Figure 3)
m m +dm + p a2y’ds" ds" cos O, (1.1)

Figure 1" The axially rotating rod

Figure 2: The coordinate system
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y ds

m

dm

ds’

Figure 3: Forces and moments acting on an element ds’.

where m is the local moment, is the length of the rod, p is the density, f is the rotational

velocity, 9" is the distance from the rotation axis, s" is the arc length and 0 is the local angle of

inclination.

For an elastica the local moment is related to the local curvature by

dOrn= EI s,
where EI is the flexural rigidity of the rod. We introduce the nondimensional variables

s=, 9= u= 9ds, J= n"

Using (1.2) and (1.3) the equation of equilibrium (1.1) becomes

(1.2)

(1.3)

d20 j4
8--

C08 O

sin O,

which is a system of two second order nonlinear differential equations in the two variables u and
O. The boundary conditions are

Upon using the transformations

duo(o) ,,, - (o) o,
dO (1) u(1) O,

the equilibrium equations and the boundary conditions (1.4), (1.5) take the form

d2 , v os( + o,)

d2v sin( + a)

(0) dv &P- (0) - (1) v(1) 0

(1.6)

(:.7)
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Finally (1.7) can be written in the (integral) form

where

() (.s)

J 0 J 0
(1.9)

{i’, o<< ,
Gl(S,) (1.10)

<s< 1,

0<s<L
GI(X, )= (1.11)

-s, {<s<l

The rest of this paper is organized in three sections. In the second section some preliminaries are

given which will be used in the later sections. The third section is concerned with proofs of the

existence and uniqueness of the solutions of (1.7). In the fourth section a perturbation solution of

(1.7) is presented and compared with the numerical solution obtained in [3].
2. PRELIMINARIES.

Consider the linear eigenvalue problem

d2v
s2= Av

d2v
d-- A

(0) dv do- (0)- - (1) v(1)-0

(2.1)

It is well known [2] that the eigenvalues n of (2.1) are the squares of the roots of the equation

cos x cosh + O,

corresponding to the "normalized" eigenfunctions

(2.2)

(2.3)

It is also known [2] that (2.1) can be written in the integral form

where

A(), (2.4)

A()(s) 21111 Gl(S,)G2([,rl)(q)dtld,
0 0

(2.5)

and G1,G2 are the positive symmetric Green’s functions defined, respectively, by (1.10) and

(1.11), and that A as an operator on L2(0,1 satisfies

A , (2.6)

where "0 is the smallest eigenvalue of the linear problem (2.1).
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3. EXISTENCE AND UNIQUENESS OF SOLUTIONS.
In this section we show that the integral equation (1.8) has at least one solution for each

r The proof of the0<a<gr and each I and that for < 10 this solution is unique for all 0 < -< 3"
existence of solution is based upon a corollary of the Schauder fixed point theorem which we

state here for completeness.

LEMMA 3.1 Let B be a real Banach space, and let K:B---,B be compact. Suppose that there is

a priori bound m > 0 such that every solution of o- tko 0, 0 < < 1, satisfies o -< m. Then K

has a fixed point such that _< m.
r and each ,X consists of verifying theThe proof of existence of solution of (1.8) for each 0 < a <

conditions of Lemma 3.1. The compactness of the operator K defined by (1.9) is proved in the

following lemma.
a, and each ,X the operator K defined by (1.9) is compactLEMMA 3.2. For each 0<<7

operator on L2(0,1).
r and ,X be fixed. The boundedness of the operator A defined by (2.5),PROOF. Let 0<<

Isin(o(s)+[ < and Icos(o(s)+)l _< imply that K as an operator from /;2(0,1) into 6’([0,1]) is

bounded in the sense that it carries bounded subsets of L2(0,1 into bounded subsets in C([0,1]).
Since the identity operator i:C([O, 1])L2(O, is compact it follows that K is a compact operator

on L2(0,1).
The uniqueness of the solution of (1.8) for < 0 follows from (2.6) and the observation that

Frechet derivative of the operator K is given by

K’() A2 J 0 J 0
Gl(S’)G2(’q) Cos((l) / () / 2a)dtld.

We gather the results of this section ia the following theorem.

and eachTHEOREM 3.3. Equation (1.8) has at least one solution for each 0 < a

this solution is unique for ,X less than the smallest eigeavalue ,x
0 ofFurthermore, for each 0 < a _<

the linear problem (2.1).
4. PERTURBATION SOLUTION FOR SMALL > 0.

In this section we present asymptotic expansions of the solution of (1.7) for small a > 0 in two

cases. In the first ce we take ,X < ,X
0. In this case the solution is unique and, as we will show

below, it becomes invalid as ,x approaches ,X
0. In the second case we ta&e ,x > ,X

0 and assume that
,x- ,x

0 is small. In this case, we give an approximation of a critical (a) > ,X
0 such that for ,x > (a)

the uniqueness of the solution of (1.7) is lost. Finadly, we compe otir analytical approximation

of (a) to its numerical approximation obta3ned in [3].
CASEI" <0.
For small > 0 we linearize (1.7) about the "trivial" solution --0, _= 0. To this end we write

o(s) aOl(S + O(a2) (4.1)

v() va() + 0(2)
Substituting (4.1) into (1.7) and collecting terms that are linear in a yields

d2o
AVl,

d2v
d--d- ,X(91 + 1), (4.2)

-1(0)= ds ,- ds (1)=Vl(1)=0.
For < 0’ (4.2) has a uniq solution given Dy
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when A=Oand

when A 0, where A,B,C and D ae the constants determined by

B

2(o,- o,hv +

cosv/ sinh/ 2 coshV/ sinhv/ s,nc coshv/

I+A-B

I+A+B

(4.3)

(4.4)

(4.5)

From (4.5) we see that the solutions (4.4) become unbounded as A-,,
0 which render the

expansions (4.1) invalid. This latter case is treated differently below.

CASE 2: A>A0andA-A0issmall.
As mentioned above, as AA0, the expansions (4.1) are not valid. For A A0 the linear problem

(2.1) has the unique (up to multiplicative constant) solution (2.3) with An A0. For a=0,A= A0
is a bifurcation point where a new branch of solutions emerges. For a : 0 this bifurcation is

perturbed. Our goal here is to analyze this perturbed bifurcation situation.

The present problem now involves two small parameters a and A- A0. We introduce a small

"amplitude" parameter and seek solutions of (1.7) in the form

7" e7" + e27"2 + e37"3 + O(e4),

v v + e2v2 + e3v3 + O(e4),
(4.6)

such that (oi, vi), > 1, axe orthogonal to (7"1’ Vl)" We also expand and A- A0 in powers of e. It
turns out that, for bounded solutions to exist, these expansions must be of the following form

a=e3+0(e4),

A A0 + 2A + 3A2 + O(e4).
(4.7)

Substituting (4.6) and (4.7) into (1.7) and collecting like powers of e yields to the linear boundary
value problem (2.1) with A A0. Thus we can write v and 7’1 as

7"1 A0’ (4.8)

AvO,

where 7"0 and v0 axe those functions defined by (2.3) with An A0 and A is an undetermined

constant.
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The system for the second order terms is also the same as (2.1) with ,x ,x
0. In order to make

the solutions of this systems unique we require that they are orthogonal to their respective first

order quantities. This leads to

This leaves A and Xl undetermined.

The system for the third order quantities is

O, (4.9)

v2=0.

d2o3s2 oV3 + AlV1-1/2 AOOl2,

d2v3 + +  4.1o 

3(0) W (0) (1) v3(1) 0.

The solvability condition for (3,v3) requires the right hd side of (4.10) to be orthogonM to

(0’ v0)" After some simplification this leads to the equation

A3-7 A A-6=0,

200)
7 (4.11)

XO [ 0(0 0)2 d

6=
2 AoIl0(00 o0)2 ds,

The first equation of (4.7) implies that e = a1/3 and hence in this "singular" case the solution

(o,v) depends on a through powers of a1/3. Equation (4.11) reveals the following information

about the bifurcation picture. For A1 < ’ " ()2/3 equation (4.11)has a unique real solution for

A and for 1 > " it has three real solutions. This enables us to approximate the critical value of,, beyond which the uniqueness of the solution of (1.7) is lost, by

= A0 + . ()2/3 a2/3, (4.12)

for small a > 0.

Finally, we compare our analytical results obtained from equation (4.12) to the (exact)
numerical approximations given by Figure 9 of [3]. Evaluating the parameters $,- defined by

(4.11) and substituting into (4.12) we obtain the following approximation of the critical value of ,
beyond which multiple solutions of (1.7) exist

for small a > 0.

approximated by

3.516015 + 3.385993 a2]3, (4.13)

It follows from (1.6) that the critical values JMin defined in [3] can be

SMin " I =_ 1/2, (4.14)
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for small > 0. In Figure 4 below we compare the analytical approximations of .lMzn obtained

We notice that thefrom equation (4.14) to their numerical vahtes given in [3] for all 0 < < 3"
difference dMm ) -> 0, is very small for small values of and increases as increases.

E 2.0-

0.349 0.5240.000 0.175 0.698 0.873 1.047 1.222 1.396 1.571
ALPHA

Figure 4: Critical values JMin beyond which multiple solutions exist. Dashed curve is exact.
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