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ABSTRACT. We consider an expression involving the Bessel function, the Neumann

function and the MacDonald function and discover various combinations of these functions

which are Fourier kernels or conjugate Fourier kernels. Also a large number of integration

formulae are established involving these kernels.
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1. INTRODUCTION.
In a previous paper [1], we considered the manner in which Fourier Kernels may be

generated as solutions of ordinary differential equations. We generated some previously

known Fourier Kernels in this way and many others. One of the former ones was [2,9],
2 x))]k(x) [sin - J(x) + cos -- (Y(x) + K,(

involving the Bessel function J, the Neumann function Y,, and the MacDonald function

K

In this paper we follow a different line of thought. We inquire which expressions of

the type

k(x) [AJ(x) + BY,(x) + CK(x)]
(for constant A, B, C) are Fourier kernels or have conjugate kernels of the same form. In

this manner, we discover some new Fourier kernels and others which have a simple looking

conjugate.

Also, we establish a large number of integration formulae, involving the function k(x)
and its conjugate. Many of these formulae are believed to be unavailable in the literature.

Throughout, we point out various known results as special cases of our general results.

2. PRELIMINARIES.
We shall mention below a few known results and definitions from the theory of

Mellin transforms, which will be needed later. All of these results can be found in [3].
A function F(s), c + it,-(R) < < (R), a < c < b, is said to be the Mellin transform

of f(x), if

IF(s) f(x) xs-1 dx

If(x); s].
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And conversely, we call,
c/i.

I F(s) x -s dsf(x)

J/’t[F(s); x]
the inverse Mellin transform of F(s).
An important result in the theory of Mellin transform, is the Parseval theorem:

If F(s) and K(s) are the Mellin transforms of the functions f(x) and k(x)
respectively, then, under appropriate conditions.

c+ioo

II Ig- K(s)F(l-s)x- ds k(xt)f(t) at. (.)
c -i

A direct consequence of the Parsev theorem is that if

K(s)F(-s) a(s), (.)
where K(s), F(s) and G(s) denote the Mellin transforms of k(x), f(x) and g(x) respectively,

then, in a suitable strip of the s-plane, we have

k(xt)f(t) dt g(x). (2.3)

Furthermore (2.3) implies (2.2), and we cl g to be the k-transform of f. If further, the

inversion formula

(xt)(t) dt (x), (.4)

involng the kernel h(x), holds, then k and h are said to be conjugate of each other.

Also, their Mellin transforms satisfy the function equation

K(s)( )
in some strip of the s-plane,. If instead of (2.4), we have the inversion forma

[ k(xt)g(t) dt f(x) (.)

ong with (2.3), then k is said to be selfonjugate or a Fourier kernel. Also its Mdlin

trsform satisfies the equation

K(s)K(1 s) 1. (2.6)
Thus, if the equations (2.3) and (2.4) hold simtaneously, then. we shall cl k(x) and

h(x), conjugate kernels. If, on the other hd, equations (2.3) and (2.5) hold, then k(x) is

sd to be a sdfonjugate kernel.

Let k be a selfonjugate kernd. If for some stable f,

[ k(xt)f(t)dt f(t),

then f is sd to dgenfunction of the operator k, corresponng to the eigenvMue 1

respectivdy. It shoed noted that if the operator k is a Fourier-kernel, then it has

oy these two eigenvues.

3. THE KERNELS.
We consider the function

k(x) v [AJr(x) + BYv(X) + CKv(X)],
where A, B and C are real constants. One can assign appropriate values to these

constants so that k(x) is either self-conjugate or has a conjugate of the same type. Our

first task will be to determine those values of A, B and C. The technique we shall

employ to find those suitable values, consists of using results from Mellin transform theory.
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The crucial part of our procedure is to express the function K(s), the Mellin transform of

k(x), as a rational expression of Gamma functions.

Now, making use of the Mellin transform of the functions ./fJu(x), ,/fYu(x) and ;JKu(x),
[4], the Mellin transform of k(x) is then given by

K(s) ([k(x); s]

1 2s’i F(1/4 + 1/2 v + 1/2s)F(1/4-1/2 + s)[A sin r(- +

(B cost -g v + s) + C],

where I1 < Re < 1. In order to consolidate the bracketed terms into a single

term, an appropriate choice for the constants is that

2A cos 8r, B sin 8r, C F sin

where # and a are arbitrary. Then one can write after some simplification,

K(s)=r 2s- F( + v + s)F(-v + s)sin (-v-20 + 2a + s).

sin ( + v + 28 + 2a-s).

Now using the functionM equation

r(z) r(1 z) cosec

and the duplication formula for r(2z), we obtMn,

K(s) 2s-F( ..i 1 ( 1 1 ( 1 1-At+ s)F ++ht-s)P - -Bt

1 (3.1)
r( +.+t-

here

form of k(x), using the ave vues for A, B and C, is then

() -[U(s): ]
[cos () + si. Y() + si. U.()] (.)

To determine the function h(x), the conjugate of k(x), we consider the function equation

H(s)g(1 -s) 1

where H(s) and K(s) are the Mdn trsforms of h(x) and k(x) resctively. Whence,

a(s) :- 3 1 1 s)P(+ 1 1

1 l slF( 1 l s)( - v- - v-
Now in a stable strip of the s-ple, we have

h() -[H(s); ],
wch can be shown, by complex integration, to the sum of two hypergmetric series,

eventuly giving us the conjugate of the function k(x).
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In the next two sections, we shall explore situations giving rise to four special cases.

These cases are of particular interest since they lead to a simpler representation of the

conjugate function h(x). In some instances h(x) coincides with k(x), defining a

self-conjugate kernel. We shall discuss self-conjugate kernels first.

4. SELF-CONJUGATE KERNELS.

1/2 (1-)and a 1/2 (l+v). ThenLet 0 A B v and from (31)

and (3.3), we have

K (s) H (s) 22s-’
s)F(r( + u- - u- s)

where Ivl- < Re < 1, and

K,(s)K,(1-s) 1.

Therefore, from (3.2)
2k (x) [sin 1/2 vrJv(x + cos 1/2 r(Y(x) + Kv(x)) (4.2)

and it defines a self-conjugate kernel, i.e. k (x) is a Fourier kernel, [1]. An nteresting

special case of the above kernel occurs when u 1/2 when k (x) becomes [2],

[sin x- cos x + e-X].

Next we shall establish various integration formulae, involving the function k(x). These

formulae are derived as a result of suitable decomposition of the Mellin transform function

K(s). For instance let us define a function F, by

+ S)

1)r + [ v--[

c + it,-(R) < < (R) and 1/2-v < c < -u. Then from (4.1), wewhere s deduce that

K (s)F(1 s) F(s). (4.3)

Now since [4],

F(s) [1 2U+lx _u sin(1/2 x); s]’,

v- < Re < v + then due to the result (2.3), the functional equation (4.3)where

1implies that, on Re 5’
(R)

___1 2v+l I t-v sin(1/2 t’)k (xt) dt ___1 2+lx_V sin(1/2 x2), Ivl < 3 (4.4)

Hence 2v+l x _v sin(1/2 x2) is an eigenfunction of the operator k (x), corresponding to

eigenvalue 1. Letting u 1/2, gives the special casethe

I sin(1/2 t)(sin xt- cos xt + e-t)dt sin(1/2 x). (4.5)

Letting v 1 and 2 in (4.4), we obtain two more interesting special cases, which are

J
/

(R)

" sin( t’)t-’[ j (xt)dt x-5 sin(1/2 x’), [5, p. 19(16)], (4.6)
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and

I(R)

t-sin(1/2 2) (Y(xt)+ 2 K(xt))dt x’] sin(1/2 x2).

Next, if we define F by

where Re >- + [u[, then from (4.1), we have

K (s)F(1-S)= F(s) [v[- < Re < 1.

And since,

F(s) J[x Kv ( x); s]

then (4.8), due to (2.1), implies

I(R)

tKv (1/2 t2)kt(xt) dt xKv (1/2 x:), Iv[ < 3

giving another eigenfunction xKu (1/2 x) of the operator kt(x).
Again letting v 1 and 2, we obtain special cases of (4.9), which are respectively

(R)

__ __
x

| e J (xt)dt x e [5, p. 19(8)],
J

(4.8)

(4.9)

(4.10)

and

K (1/2 t:)(Y(xt) + 2 K2(xt))d x: K (1/2 x:0. (4.11)

where (s) (1 -s).
cases when

In general, in order that f(x) should be an eigenfunction of the operator k corresponding

to the eigenvalue 1, F(s), s a + i-, the Mellin transform of f should be of the form

The eigenfunctions mentioned above in (4.4) and (4.9) are special

and when

W(s) 1

respectively.

Now we define functions F and G, by

r(5
F(s) 2 5 g

7 1r(v -T

,+1/4 s)

and

1r(+T
+1/4

1v --T

s)

s)
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Then from (4.1), we have the functional equation

K (s)F(1 s) G(s).

Since,

F(s) dC[x J x:) s] v- < Re < ’2//

and

G(s) [xj x=); s] -- < Res < ,
hence due to the result (2.1), (4.12) implies the equation

0 tiJl v (1/2 t’)k (xt)dt xiJl $]

(4.12)

(4.13)

Furthermore, k is self-conjugate, therefore, the inversion formula gives

o tJ’ v (1/2 t’)k,(xt)dt xJ, v (1/2 x:). (4.14)

Ts establishes the pNr x J ( x) x J ( x) as k-trsforms of each other.

Some spain c of (4.13), when u O, 1 d 2, are respectivy
2 sin( (4.15sin( t) (Yo(xt) + g (xt))dt x)

and

I

t J (1/2 t) J(xt)dt xJ p.1(1/2 xa), [6, 215(3)], (4.16)

2t cos (1/2 t a) (Y,(xt)+ K (xt))dt-- cos (1/2 x:)-(1/2 xa)-’ sin (1/2 x:O. (4.17)

Next, if we put

1/2 (l+y) and a 1/2 (l+y)
in (3.1) and (3.3), then

Ks(s H,(s)= 2s-1
1 __1

] 1/4 1 3 1 1r( + v--4- s)r(%-a- v-a- s)

satisfying the equation

K,(s)K2(1 -S) 1, [v[-1/2< Res < I.

Also from (3.2), we have

2k (x) J/’i[K (s); x] V [sin 1/2 vz" JvCx) + cos 1/2 vx(YvCx KvCx))
and it defines a self-conjugate kernel. Note that if v , then we obtain

k(x) 1 (cos x- sin x + e-X),

an interesting special case [2].

(4.18)
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Various integration formulae, involving the function k (x) are given below again as a

result of different decompositions of the function Ks(s ). First, we define F by

r(K--4- .+ s)
f(s) 2

r( + ---4- s)

Then

K(s)F(1 -s) F(s).

Now,

F(s) all[2 x
-’

cos( x);s], - < Re < , + 2"

Then due to (2.1), the functional equation (4.19), on Re g implies that

/

cos( )k
/2

i.e. x cos(1/2 x2) is an eigenfunction of the operator k (x), defined by (4.18).

A special case can be derived from (4.20) by setting u 1/2,
cos(t/2)(cos xt -sin xt + e-Xt)dt cos(x/2).

(4.20)

It is interesting to compare this result with (4.5).
Another eigenfunction of the kernel ks(x), can be obtained by letting

then,

where

K(s)F(1 -s) F(s)

implies

F(s) [x Ku x2);s], Re > [ul

Letting u 0 and 1/2 (4.22) reduces to, respectively,

K 2) (Y(xt) 2
-7 Ko (xt))dt K (4.23)

and

10 KI (1/2 t2) (cos xt- sin xt- e’Xt)dt x K! (1/2 x2). (4.24)

As before, the eigenfunctions f of the operator k can be characterized, by expressing its
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Mellin transform as

where (s)= @(l-s).

and

Letting

@(s)

give us the eigenfunctions mentioned above in (4.20) and (4.22) respectively.

Finally, we define functions F and G, by
r( 1/4

F(s) 2 W v + s)

3 1 1r(--- v-- s)

and

(s)
_1

then

K(s)F(1 -s) G(s)

where

F(s) [x J x); s], v- < Re <v

and

G(s) vg[x J x2); s],-v- < Re s < 5"v

Hence from (4.25), we obtain, on Re 1/2,

I(R)

t J (1/2 t2)k(xt)dt x J (1/2 x)’ v < 1

-’-
and conversely,

[(R) j (1/2 t)k(xt)dt x j (I x2) v > -I.
V V-.

Putting v 0 and 1/2 in (4.26), we obtain respectively,

cos(1/2 t’) (() ())dt )

(4.25)

and

(cos xt- sin xt + xt)dt x J (x).
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obtain

CONJUGATE KERNELS.
we now put 0 =-1 v and a / 1/2 v in the equations (3.1)If and (3.3), we

5 _1

and

Ks(s 2ss-t

1 _1

1v-T s)

so that

H (s) 2s-t

H (s)K (l-s) 1.

Then, from (3.2),
2k (x) VS [cos 1/2 v" Jr(x) sin 1/2 vr (Yv(X) + - Kv(X))], (5.1)

-1/2 < Re < 1. It is now an easy matter to evaluate h (x) which is thewhere

conjugate of k (x) and is given by

hs(x d/’t[Hs(s)’x
_2[cos 1/2 VrJv(X -sin 1/2 VYv(X Kv(X))], (5.2)

for [v _1
z < Re < 1. Thus we have established a pair of conjugate kernels k (x) and

h (x). As a special case when u 1/2 we have pairs of conjugate kernels,

___1 (cos x + sin x e-X) (5.3)

By employing the technique of the previous sections, we arrive at the following integration

formulae involving the kernel ks(x). Integrals involving hs(x) can easily be obtained by

the inversion formulae (2.4). We believe that these are all new results.

J v (1/2 t’)ks(xt)dt ecj Jr(1/2 x:0’ u -< 2 (5.4)

0

q Jv (1/2 t:0 h (xt)dt qS J ,(1/2 x2),

If 2n, n 0, 1, 2,..., then [5, p. 56(1)], the equation (5.5) gives,

Jn(1/2 2) J2n(xt)dt Jn(1/2 x2). (5.(})

If v 1, then from (5.4) and (5.5), we have respectively,

2 1 sin(1/2 x2),cos(1/2 s) (Y,(xt) + K, (xt))dt
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and

2sin(1/2 2) (Yl(xt) Kl(xt))dt cos(1/2 x2)

I 2) (xt)dt x sin x2),- < v < 2Also, cos(
If u 0, (5.9) gives, [5, p. 38(40)],

cos( t2) j (xt)dt sin( x)

It is also easy to establish that

tK t’) (xt)dt xK x’), u] < 2..v
gettin u o, we have, [s, p. (o)],_

t

_
x

te J (xt)dt

(s.9)

(5.10)

(5.11)

(5.12)

Our last pair of conjugate kernels is obtained if we set a 0 in (3.1) and (3.3).
for Iv[-1/2< Res < 1,

$-

K (s) 2 1 s)F(1 1 ls)r( +u +0-g -g u-O+g
3and for 0 < Re < 1, Iv + 20[ < 2’

so that

H4(s)K4(1 s) 1.

Thus, in an appropriate strip of the s-plane, from (3.2),
k (x) vg x]-I[K4(s)

[cos 0r Jr(X) + sin 0r Yv(X)].

Then

(5.13)

Also, using complex integration, one can find that [4p. 353(43)],
h (x) ’I[H (s)’x]

G13 x2 bl, b2, b

1/4 1/2 11 1/4 1/2where a b + v + 0, b2 [-5 v, b + v, and G being the Meijer’s

G-function.

Note that alternatively, [4,p. 379],

h4(x) r(l+ (l+v+0) x 1F2(1;1+0, l+v/O;- x)
It is now easy to s that if , then we obtn

k (x) Yv(X)

(5.15)

(5.16)
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and [4, p.380]
h (x) Vr Hv(x (5.17)

a pair of well-known conjugate kernels, Hv being Struve’s function, [3, p. 215(2)].

Finally we shall list a few integration formulae involving the operator k (x).

Integrals involving h (x), can be written by the usual inversion formulae of the type (2.4).

a) 0 VIo t* Jv+(t)k4(xt)dt F(--0)
21+0 (1-x)-l-x- H(1-x), v+ 0+ 1 > 0 (5.18)

where-1 < 0 < 0 and H is the Heaviside function.

I -1/2, th [, p. ()1,

J_! (t) Yy (xt)dt x (1- H(I-

Also,

21w+0I (t)2 Jo(t)k (xt)dt
r(-- o)

x (1-x l+v+0)H(1-x), v+ 0 < 0, 0 >_-1.

(5.20)

Let 0 =-1, we get [5, p. 4S(7)],

I= tv J(t) J (xt)dt 2 x (1-12)- H(1-x)v r( v)
We also have,

r(o)

If 0 , then [5, p. 102(29)1,

tx/v (t -1) yv(xt)dt x J._ (x)

Finally, 0 k (xt)dt

and generally, [S, p.424(2)],
"(R) 1/2 +v+20

(as+t 2)m/l m!2
av+20Kv(aX)]

Now letting 0 0 and 1/2, (5.24) yields respectively, [5, p. 23(12)], [5, p.99(15)],

I(R) v +
Jv(xt)dt aVKv(aX)

a2-1 t2

(5.21)

(5.22)

(5.24)
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j .2

Yv(xt)dt aV+lKv(ax). (5.27)
a +t

We wish to note that, to our knowledge, all the results for which we have not given

references from the literature, appear to be new. Our method, therefore, has yielded a

large number of new integration formulae.

6. SOME APPLICATIONS
Since the kernels in this paper are also solutions of a Fourth Order ordinary

differential equation [1], it is expected that our results will find applications in situations

which involve such differential equations. One such situation was encountered in [1]. We

point out some more below.

If we consider the problem of finding solutions of

O4----u-I- ou 0 in 0 < x < (R), > 0
Ox4

or of

+- + =0 in 0<r<(R) t>0
r

which solutions are bounded at infinity, and which satisfy the conditions

0u 0u 0) at x=0 (or at r=0)(1) u j 0 (or u -=
or the conditions

(6.1)

(6.2)

(6.3)

(2) 02u 03u
0x Ox

o (or Vu V2u=0) at x=0(or at r=0)
0r

(6.4)

respectively, where V 0 1 0
Or r Or

then we encounter the kernels introduced in this paper. If these solutions are subject to

the initial conditions

u g,() (6.5a)

and -= g2() (6.5b)

at t=0 in 0 < < (R), where is either x or r depending upon whether we are dealing

with equation (6.1) or equation (6.2), then the solution is

u(,t) f0(R) k(A)[A() cos(,2t) + - sin(2t)]d (6.6)

where gt() f0 A(,)k(A)dA (6.7)

and g2() J0 2B()k()d,k (6.8)

where k is an appropriate kernel. If k is self-conjugate then the solution of equations

(6.7) and (6.8)is
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A(A)-- fO g* ()k(A)d

and substitution in equation (6.6) gives u. The following cases should be noted:

ou(1) If u= and the conditions are u j 0 at the origin, then equation (6.6)

gives the deflection of a vibrating semi-infinite elastic rod which is clamped at

one end (the origin) and is subject to the initial conditions (6.5). In this case

k kl(x (sin x cos x + e"x) which is self--conjugate.

(2) If u 1/2 and the conditions are 0u 03u
Ox 3

0 at the origin, then equation

(6.6) gives the deflection of a vibrating semi-infinite elastic rod which is free

at one end (the origin) and is subject to the initial conditions (6.5). In this

case k ks(x (cos x- sin x + e -x) which is self-conjugate.

Ou(3) If u=--0 and the conditions are u - 0 at r=0, then equation (6.6) gives

the deflection of a (symmetrically) vibrating infinite elastic plate which is

damped at the origin and is subject to the initial conditions (6.5).
In this case

k() 2
k Yo(r) +- K0(r (6.11)

so that equations (6.7) and (6.8) become

4" g1() f0
(R) A(A) k,(A)dA (6.12)

and g2() _f fX B(A)kt(A)d,. (6.13)
"0

Since k is self conjugate, these equations are easily inverted and then substitution gives u.

It is interesting to note that in case 3, in the case of a vibrating infinite plate clamped at

the origin, the vertical force exerted by the damp on the plate is given by

lira f0
2r

0 (Vu)rd8 8 f0 A2[A(A)cs(At) + sin(’2t)]dA"
r- 0

(6.14)
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