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ABSTRACT. An Einstein’s connection which takes the form (3.1) is called an ME-connection.
A generalized n-dimensional Riemannian manifold X, on which the differential geometric struc-
ture is imposed by a tensor field *gx through a unique ME-connection subject to the conditions
of Agreement (4.1) is called "g-ME-manifold and we denote it by "g-MEX.. The purpose of the
present paper is to introduce this new concept of *g-MEX. and investigate its properties. In this
paper, we first prove a necessary and sufficient condition for the unique existence of ME-connection
in X,, and derive a surveyable tensorial representation of the ME-connection. In the second, we
investigate the conformal change of "g-MEX,, and present a useful tensorial representation of the
conformal change of the ME-connection.
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1. INTRODUCTION.
In Appendix II to his last book Einstein([9], 1950) proposed a new unified field theory that

would include both gravitation and electromagnetism. Although the intent of this theory is physi-
cal, its exposition is mainly geometrical. It may be characterized as a set of geometrical postulates
for the space time X4. The geometrical consequences of these postulates are not developed very
far by Einstein. Characterizing Einstein’s unified field theory as a set of geometrical postulates
in X4, Hlavat: ([12], 1957) gave its mathematical foundation for the first time. Since then the
geometrical consequences of these postulates are developed very far by number of mathematicians.

Generalizing X4 to n-dimensional generalized Riemannian manifold X,, n-dimensional gen-
eralization of this theory,so called "Einstein’s n-dimensional unified field theory"(denoted by
n-g-VET in what follows), had been attempted by Wrede ([18], 1958) and Mishra ([16], 1959).
Corresponding to n-g-UFT, Chung ([1], 1963) particularly introduced a new unified field theory,
called "n-dimensional *g-unified field theory"(denoted by n-*g-UFT in what follows), which is
more useful than n-g-UFT in some aspects. They published several papers([1].- [4], 1963 1981)
concerning this theory, particularly proving that n-*g-UFT is equivalent to n-g-VET so far as
classes and indices of inertia are concerned.

However, neither of these two n-dimensional generalizations is capable of representing a
general n-dimensional Einstein’s connection in a surveyable tensorial form probably due to the
complexities in higher demensions.

Recently, in order to solve the above difficulty Chung and et al ([5], 1987) introduced a new
concept of n-dimensional SE-manifold in n-g-VET, imposing the semi-symmetric condition on
X. and found a unique representation of n-dimensional Einstein’s connection in a beautiful and
surveyable form. Since then, many results concerning this manifold have been obtained ([5]
[8], 19871989).

On the other hand, Friedmann([10], 1924) and Schouten([17], 1954) also introduced the
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idea of semi-symmetric connection, and Hayden ([11], 1932) the concept of metric connection.
Recently, Yano ([20], 1970),Yano & hnai ([19], 1975) and Imai ([13], 172; [4], 73) assigned
a semi-symmetric metric connection to an n-dimensional Riemannian manifold and found many
results concerning this manifold.

Recently, Ko ([15], 1987) and Yoo ([2]. lSS)introduced a new concept of ME-manifold in
n-g-UFT, assigning to X,, a ME- connection which is similar to Yano and Imai’s semi-symmetric
metric connection, and investigated its curvature tensors and conformal change in n-g-UFT. The
purpose to introduce this manifold is similar to Chung’s purpose to introduce SE-manifold.

The purpose of the present paper is to introduce a new concept of the n-dimensional *g-ME-
manifold (denoted by *g-MEX,, ), assigning an Einstein’s connection of the form (3.1) to Xn,
called a ME-connection in what follows, and investigate its properties. This paper consists of
five sections. The second section introduces some preliminary notations, definitions, and results.
The third section concerns with a necessary and sufficient condition for the existence of unique
ME-connection in n-*g-UFT.

The fourth section deals with a precise tensorial representation of the ME-connection in terms
of .gx. In the last section, we investigate the conformal change of *g-MEX,, with particular
emphasis on the conformal invariants of *g-MEXn. In this section, we display a surveyable
tensorial representation of the conformal change of the ME-connection

2. PRELIMINARIES.
This section is a brief collection of the basic concepts, notations, and results, which are needed

in our further considerations in the present paper. It is based on the results and symbolisms of
Hlavat]( [43] ,1957) and Chung([10], 1963; [13], 1981; [161, 1985).
A. n-DIMENSIONAL *g-UNIFIED FIELD THEORY.

Hlavat characterized Einstein’s 4-dimensional unified field theory (4-g-UFT) as a set of
geometrical postulates in a space-time X4 for the first time and gave its mathematical foundation.
Generalizing this theory we may consider Einstein’s n-dimensional unified field theory(n-g-UFT).
Similarly, our n-dimensional *g-unified field theory(n-*g-UFT), initiated by Chung(1963) and
originally suggested by Hlavat:(1957), is based on the following three principles.

Principle A. Let X,, be a n-dimensional generalized Riemannian manifold referred to a real
coordinate system x", which obeys coordinate transformation x" -- x’’ for which

Det( # 0 (2.1)

Let q, be a general real nonsymmetric tensor which may be decomposed into its symmetric part
hxt, and skew-symmetric part

g.t, h., + k., (2.2)

where
g Det(gx,) # O, I} Det(hx,) # 0 (2.3)

The algebraic structure on Xn is imposed by the basic real tensor *gX, uniquely defined by

g,, g , (2.4)

It may also be decomposed into its symmetric part *hxu and skew-symmetric part *kx

gX= .hX + ,kx (2.5)

(*) Throughout the present paper,Greek indices are used for the holonomic components of tensors in X,.
They take the values 1,2,... ,n, n>l, and follow the summation convention.
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Since Det(" hx’)# 0, we may define a unique tensor*hat, by

*hA‘" (2.6}*ha ‘"
In n-*g-UFT we use both *h A‘" and *h.xu as the tensors for raising and/or lowering indices of all
tensors defined in X, in the usual manner. We then have

(2.7)a

so that
*gx, *hx, + *kx, (2.7)b

Principle B. The differential geometrical structure on X, is imposed by the tensor *ga‘"
by means of a connection Fa‘’, defined by a system of equations, so called Einstein’s equations

D,"gX, _2S,.,,,,,,ga,,,(,) (2.8)

Here D denotes the symbol of the covariant derivative with respect to FaV, and SA,‘" is the
torsion tensor of Fa‘’,. The connection Fav, satisfying (2.8) is called an Einstein’s connection.

Principle C. In order to obtain *ga‘" involved in the solution for Fx‘’u centain conditions
are imposed. These conditions may be condensed to

SA def SAv 0, RI,X] 0[,Ya], Rt,x) 0 (2.9)

where Yx is an arbitrary vector and

def,.,R,a‘" zLa[,Zla ,l + F‘’[,FlaI’,I)

are curvature tensors of X,.
In the following Remark, we state the main differences between n-g-UFT and n-*g-UFT.

n-g-UFT
REMARK 2.1. In

n-*g-UFT
the algebraic structure is imposed on X, by the tensor

{gx, { the tensor hx and

gX and
hX

are used for raising and/or lowering the indices of
the tensor and h

n-g-UFT
tensors in X, On the other hand, in the differential geometrical structure is imposed

n-*g-UFT

(*) It has been shown by Hiavat:#(1957) that the system (2.8) is equivalent to

Dgx, 2Sagxa (2.8)’

which is the original Einstein’s equation.
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gxu {on X. by .gx,, through Fx", satisfying (2.8)(’)’8)’
gx,, in n-g-UFT

it will be expressed in terms of
.gX in n-*g-UFT

admits a solution l"x",,

B. SOME NOTATIONS AND RESULTS.
The following quantities are frequently used in our further consideration:

*O Det(*gxt,), *11 Det(*hx,), *1 Det(*kx,,) (2.12)a

/ 0, if n is even

1, ifnisodd
(2.12)c

()*kx’ 6x (])*k. *kx ’, (P)*kx (P)*kx (P-l)*koU p 1,2, (2.12)d

kIo ko, k,,l ,p 2,... (2.12)c

An eingenvector V of kxs, which satisfies

(M* hx,, + kx.)V 0, M is a scalar

is called a basic vector of X,, and the corresponding eigenvalue M of kx, a basic scalar of X,.
The following theorems have been proved already in a X, ([101, 1963; [13], 08).
THEOREM 2.1. The following relations hold in a X,"

/t0=l,K.=*k, ifniseven

h’ 0, if p is odd
(2.14)a

K. ("-’)*kx" 0
8=0

Here and in what follows, the index s is assumed to take the values 0,2,4,- in the specified range.
THEOREM 2.2. The basic scalars M satisfy the following equation:

(2.14)b

(2.14)c

- K, M"-" O (2.15)

THEOREM 2.3. If the system (2.8) admits a solution I’x,, it must be of the form

,, *{ ,,} + Sx,," + (2.16)

where { x", are the Christoffel symbols defined by *hx, and

(2.17)
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3. THE ME-CONNECTION IN n-*g-UFT
In the section, we introduce the concept of ME-connection in n-*g-UFT and devote mainly

to the proof of a necessary and suffcient condition for the existence of ME-connection in a general
Xn.

DEFINITION 3.1. An Einstein’s connection I’x’v of the form

(3.1)

for a non-null vector Xx is called a ME-connection in n-*g-UFT, and Xx the corresponding
ME-vector.

If Xn admits a ME-connection Fxu, it must also be of the form (2.16). Hence, comparing
(2.16) and (3.1) we have

Sx 2//[x"X] 2*kxX (3.2)

*U, 2//(xX) 2*hX" (3.3)

THEOREM 3.2. If X, admits a ME-connection F", the ME-vector Xx satisfies the
relation

26(’X) 2*hxX + 2(2)*kxX *hx,*k,vX 0 (3.4)a

or equivalently
2*h,(xXs, 2*ht,X,, + 2 (2)*kt,X + *hxt,*k,,’X,,, 0 (3.4)b

Proof. The relation (3.2) gives

S".xt, 6’Xx + 2*kx’X *hxX (3.5)

Substituting (3.2) and (3.5) into the righthand side of (2.17),we have

(3.6)

Our relation (3.4)a immediately follows by comparing (3.3) and (3.6). The equivalence of
(3.4)a and (3.4)b is obvious.

THEOREM 3.3. A necessary and sufficient condition for the system (2.8) to admit a
solution rx", of the form (3.1) is

(3.7)a

or equivalently
V,.,*kxg 2(*hw[xXl -*kxX,,., + *h,,.,Ix*klaXa) (3.7)b

Proof. Suppose that the system (2.8) admits a solution Fx’t, of the form (3.1). Substituting
(3.1) into the left-hand side of (2.8), we have

(3.8)a

On the other hand, substitution of (3.2) into the right-hand side of (2.8) g4ves

_2S. .gX _26w.Xx + 2.gXX + 4.k,,,XX 26,.kxaX 4 (2)*k,,,XXs‘ (3.S)b
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The condition (3.7)a results from (3.8)a and (3.8)b. Conversely, assume now that the condition
(3.7)a is satisfied. Define a connection F‘’, by (3.1), and substitute it into both sides of (2.8).
This substitution yields the relation (3.7)a, which is satisfied by our assumption. Hence, a con-
nection of the form (3.1) is an Einstein’s connection under the condition (3.7)a. In order to show
the equivalence of (3.7)a and (3.7)b, consider the following alternative form (3.7)a:

V,,,"k,, -2"gt,X,., + 2" h,.o,Xt, 2* h,.,t,"kX, -4 {2)" k,,( ,Xt, (3.9)

The equivalence immediately follows from (3.9) in virtue of (3.4)b.
REMARK 3.4. Using (3.4)b and (3.9), it can be easily shown that the following relation is

also equivalent to (3.7)a:

V,,,*k.t, 2(4*k,4xXt, *kxgX,., 2 (2)*k,,,[xX,]) (3.10)

In our further considerations we shall assume that the tensor

’ (3.11)A,, -n*g + *g

is of rank n, so that there exists a unique tensor Bx‘" satisfying the condition

Axt,Bx" At,xB"x (3.12)

THEOREM 3.5. A necessary and sufficient condition for the system (2.8) to admit exactly
one ME-connection F, of the form (3.1) is that the tensor field *g’‘" satisfies the following
condition:

V,*kt, 2(*h,[*g,]- *h,*kx,)Co,B (3.13)

If this condition is satisfied, then
X‘" =CAB"" (3.14)

where
Cx V,*kx (3.15)

Proof. If the system (2.8) admits a solution Fx‘’, of the form (3.1), the condition (3.7)b
must hold in virtue of Theorem (3.3). Raising the index p and putting w ft a in (3.7)b we
have

C, A,,X" (3.16)

in virtue of (3.11) and (3.15). Multiplication of Bx‘" to both sides of.(3.16) gives (3.14) in virtue
of (3.12). The condition (3.13) now follows by substituting (3.14) into (3.7)b. The proof of the
converse statement is obvious in virtue of Theorem (3.3).

Besides the ME-connection F, given by (3.1) and (3.14), assume that there exists another
ME-connection

F"t, {x‘’t,} + 2,‘’X#- 2*gxt,X,, Xx Xx (3.17)

Applying the same method to derive (3.14) to this connection, we have

X, C B X,

which is a contradiction to our assumption (3.17). This proves the uniqueness of the ME-
connection under the condition (3.13).
4. *g-ME-MANIFOLD AND A REPRESENTATION OF ITS CONNECTION.
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In this section, we introduce the concei)t of *g-ME-manifold and display a surveyable ten-
sorial representation of a unique ME-connection FxVu in terms of the tensor field "9xv using two
useful recurrence relations.

AGREEMENT4.1. In our further considerations in the present paper, we impose priori the
following conditions to the tensor field

(a) The quantity

Odd 1-n( 0) (4.1)
l+n

is not a basic scalar of Xn(see (2.13)).
(b) The condition (3.13) is satisfied by the tensor field ,gX
According to the condition (b), we note that there always exists a unique ME-connection

Fx, in our n-*.g-UFT. In virtue of (3.1) and (3.14), this connection may be given by

(4.2)

DEFINITION 4.2. An n-dimensional generalized Riemannian manifold X,, on which
the differential geometric structure is imposed by the tensor *gX satisfying the conditions of
Agreement (4.1) by means of the unique ME-connection given by (4.2), is called an n-dimensional
*g-ME-manifold and denoted by *g-MEX,.

In our further considerations in the present paper, we use the following useful abbreviations
for an arbitrary vector Vx, where p=2,3,4,...

(1)Vx
de= V P Vx de__[ (p_l),kxO V, (4.3)a

In virtue of (2.12)d, we then have

(P)V *kx (P-)V (4.3)b

(1)Vy V (p)V (p-1),ku V *k (p-1)VC

For s=2,4,... ,n-a, we also use the following quantities:

(4.3)c

H0 k0 1, Ho 0 H,-2 + K0 (4.4)

In virtue of (2.12)c and (2.14)a, direct calculations show that

H, K, 8 -’ (4.5)
$--0

In particular,

H,_ E Ko 8 (4.6)
--0

THEOREM 4.3. In *g-MEX, the following recurrence relation holds"

(P)XA O(P-1)X, 1 (P-’)Cx(p 2, 3, 4,... (4.7)
l+n

where 0 and Cx are respectively given by (4.1) and (3.15).
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Proof. Substituting (3.11) into (3.16), we have

)Xa OX, Ca (4.8)
1 +n

The relation (4.7) now follows by multiplying (’-2)*ku to both sides of (4.8) and making use of
the abbreviations (4.3).

THEOREM 4.4. In *g-MEX,, the following recurrence relation holds:

K, ("-’+)X 0 (4.9)
,--’0

Proof. This relation follows by multiplying X to both sides of (2.14)c and making use of
the abbreviations (4.3).

Application of the recurrence relations (4.7) and (4.9) yields the following surveyable repre-
sentation of the ME-vector Xx.

THEOREM 4.5. In *g-MEX,, the ME-vector Xa may be given by

X aH._,,C, + H,
,--0

(4.10)

where
d__ (1 + n)O"H (4.11)

(P)Q, de2 (P)CA + 0 (P-1)CA, p 2,3,-.. ,n (4.12)

Proof. Substitute ("+l)Xa from (4.7) into the first term of (4.9) to obtain

1 (")C --0(")X), + Z K’(a-’+I)x’ (4.13)a
l+n

,=2

Substituting (")Xx again from (4.7) into the first term on the right-hand side of (4.13)a and
making use of (4.4) and (4.12), we have

1 (")Q H2 ("-I)Xa + ZK, ("-’+)X
l+n

,=4

(4.13)b

Similarly, the second step may be carried out as in the above first step. The substitution
of ("-I)X. into (4.13)b in the first and that of ("-2)Xx into the resulting relation in the second
give

I ((")Q, + H2("-2)Q,,) H4 (’-3)X + ’h’,("-’+)X,, (4.14)
l+n

s=6

After ’--- steps of successive repeated substitution for (P)X from (4.7), we have

1 ((")Qx + H2 (n-2)Q, +... + H,__ (2+a)Q),) H, (l+a)Xx
l+n

(4.15)
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On the other hand, it follows from (2.12)c and (4.8) that

(+)Xa O"Xx Ca (4.16)
l+n

Our representation (4.10) immediately follows by substituting (4.16) into (4.15) and making use
of (4.11).

REMARK 4.6. According to the Agreement (4.1)a, 0 is not a basic scalar of X,.
Hence, in *g-MEX. the following relation always holds in virtue of (2.15) and (4.6):

H,,_ 0 (4.17)

We note that the relation (4.17) justifies the validity of the representation (4.10). Furthermore,
we also note that the condition (4.17) is a necessary and sufficient condition for X, to admit a
unique ME-vector Xa in n-*g-UFT. This is the reason why we imposed prior the condition of
Agreement (4.1)(a).

Now that we have obtained a representation of the ME-vector Xa in terms of *gau, it is
possible for us to obtain a surveyable representation of the ME-connection of *g-MEX, in terms
of *ga by simply substituting (4.10) into (3.1). Formally we state

THEOREM 4.7. The ME-connection of *g-MEX. may be given by

(4.18)

where the vectors CA and (’)Qa are respectively defined by (3.15) and (4.12), the quantities H,,_
and by (4.4) and (4.11) respectively, and

(4.19)

5. CONFORMAL CHANGE OF *g-MEX,.
In this section, we investigate change of several geometrical quantities, particular emphasis

on the change of the unique ME-vector and ME-connection, induced by a conformal change of
the unified field tensor

*g- MEX.
Let

*g- MEX,
be n-dimensional *g-ME-manifold, on which differential geometric

structure is imposed by a unified field tensor field
,0a

through the ME-connection

Fa, given by (4.18)

F,, given by (5.1)

r. =*{. + a. ._c + . ("-’)0 (5.1)

(See Agreement (5.2) for , Ga, ’,, Ca, and 0a
DEFINITION 5.1. Two manifolds *g-MEX, and *g MEX, are said to be conformal, if

their basic tensor fields are related by

*y"() -" *"()(*) (5.2)

(*) Note that the conformal change defined by (5.2) is equivalent to O(x) eng:x(z), which is the

definition of conformal change in n-g-UFT
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where Q fl(.r) is an arbitrary Mnction of position with at least two derivatives.
This conformal change enforces a change of ME-vector and ME-connection, and an explicit

tensorial representation of this change will be displayed in this section.
AGREEMENT 5.2. Throughout this section, we agree that, if T is a fl,nction of *gxt,, then

we denote by T the same function of *Ox,. In particular, if T is a tensor, so is T Furthermore,

the indices of T( will be raised and/or lowered by means of *h xv (.xv) and/or *hxt, (*x,)
The following two theorems are immediate consequences of Definition(5.1) and

Agreement(5.2 ).
THEOREM 5.3. The conformal change (5.2) induces the following changes:

.-,xu _fl ,hX ,- efte hx# hx, (5.3)a

(p),.xv e_n ,),kXV, (P)*’A, en (P)*kx, (p 1,2,... (5.3)b

THEOREM 5.4. The tensors ()*kx and G. and the quantities
and are conformal invariants with respect to (5.’2.). That is,

0’)*x 00*kx (p 0,1,2,... (5.4)a

G x Gx,
A’o=A’,,Ho=H, "9 *g

THEOREM 5.5. The conformal change (5.2) induces the following chges:

1,

(5.4)b

(5.4)c

(5.5)a

(5.5)b

where

n-2(P)x O’)Cx + (P+)fx, (p 1,2,... (5.5)c
2

Substituting (5.3)a into

the relation (5.5)a immediately follows in virtue of (5.6). Similarly, the change (5.5)b may be
shown by substituting (5.3)b and (5.5)a into

Making use of (3.15) and (5.3)a, the change (5.5)c for p 1 may be obtained from (5.5)b as in
the following way:

,_---- ,- n- 2 t2)x (5.7)Cx= h V, kx,,=Cx+
2
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Our assertion (5.5)c immediately follows from (5.7) in virtue of (4.3)a.
Finally, in order to exhibit simplified representations of the conformal changes Xx Xx of

the unique ME-vector and F.ut, Fxut, of the ME-connection, we use the following vector Px
in our further considerations"

THEOREM 5.9. The ME-vector Xx and the ME- connection Fx", are respectively trans-
formed by the conformal change (5.2) as follows:

X Xx + P (5.9)

IFx, Fx + (x)- *hx + GxP (5.10)

Prof. In virtue of (4.12) d (5.5)c, we first note that the chge of the vector
may be given by

n 2 ((n+,)ftx +/9(n)Ox) P 2,3,.-.()x ()O + 2 (5.11)

After a length and tedious calculation, it may be easily proved that the relation (5.9) and (5.10)
follows from (4.10) and (5.1) respectively making use of (5.4), (5.5),(5.8),and (5.11).

When n 2 we have very interesting results as in the following theorem.
THEOREM 5.10. In a *g-MEX2, the vectors (n)Cx and ()Xx are conformal invariants

with respect to the conformal change (5.2). That is,

()x (P)Cx, (n)’x ()Xx, (p 1,2,... (5.12)

connection is given by

x Fx"
1

t, t, + (x"12,)- *hx,
Therefore, its torsion tensor is also a conformal invariant. That is,

(5.13)

(5.14)

Proof. Since Px 0 when n 2, the relations (5.12) follows i.mmediately from (5.5)c and
(5.9). The relation (5.13) is a direct consequence of (5.10).

REMARK 5.11. Although the relations (5.12) hold, it should be noted that the vectors
()C" and 0’)X are not conformal invariants in *g-MEX2. In fact, the changes of these vectors
are given by

() e- (n)C, ()X e-n ()X, (p 1,2,... (5.15)

REMARK 5.12. In virtue of the second relations of (5.12) and (5.15), we also note that
the tensor *Ux, given by (3.3) is also conformal invariant in *g-MEX2. That is,

(5.16)

REMARK (5.13). An Einstein’s connection Fx, whose torsion tensor is of the form
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is called a SE-connection in n-*g-UFT. In one of our unlublished papers, we have shown that
this connection exists uniquely under a certain condition and that the conformal change of 2-
dimensional SE-connection is given by

-.gefl t2C") (5.17)

in 2-*g-UFT. Note the difference between (5.13) and (5.17).
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