THE SECOND CONJUGATE ALGEBRAS OF BANACH ALGEBRAS

PAK-KEN WONG

Department of Mathematics Seton Hall University South Orange, NJ 07079

(Received December 12, 1990)

ABSTRACT. In this paper, we study Arens regularity of a Banach algebra A. In particular, we give characterizations for A to be Arens regular.

KEY WORDS AND PHRASES. Banach algebra, Arens products, Arens regularity, weakly compact operators.

1991 AMS SUBJECT CLASSIFICATION CODES. Primary 46H10; Secondary 46H99.

1. INTRODUCTION.

Let A be a Banach algebra. It is an interesting and difficult problem to determine whether A is Arens regular. Many papers have been written on this subject. For example, see [2], [5], [9], [10], [11] and [12]. In particular let A be a B^* -algebra. It is well known that A is Arens regular. However, it is not easy to prove this result. There are many different proofs of this result. For example, see [4], [5], and [8].

In this paper, we give characterizations for A to be Arens regular. It follows from this result and a result of C.A. Akemann that a B^* -algebra is Arens regular. We also show that if A is a Banach algebra which is Arens regular, then any closed subalgebra of A is also Arens regular.

2. NOTATION AND PRELIMINARIES.

Definitions not explicitly given are taken from Rickart [7].

Let A be a Banach algebra and let A^* and A^{**} be the conjugate and second conjugate spaces of

A. We will denote by π the canonical embedding of A into A^{**} . The two Arens products on A^{**}

are defined in stages according to the following rules (see [3]). Let $x, y \in A$, $f \in A^*$ and $F, G \in A^{**}$.

Define for by (fox)(y) = f(xy). Then $fox \in A^*$.

Define Gof by (Gof)(x) = G(fox). Then $Gof \in A^*$.

Define FoG by (FoG)(f) = F(Gof). Then $FoG \in A^{**}$.

 A^{**} is a Banach algebra under the Arens product o, and we denote this algebra by (A^{**}, o) .

Define xo'f by (xo'f)(y) = f(yx). Then $xo'f \in A^*$.

Define fo'F by (fo'F)(x) = F(xo'f). Then $fo'F \in A^*$.

Define Fo'G by (Fo'G)(f) = G(fo'F). Then $Fo'G \in A^{**}$.

 A^{**} is a Banach algebra under the Arens product o' and we denote this algebra by (A^{**}, o') .

Both of the Arens products extend the given multiplication on A when A is canonically embedded in A^{**} . In general, o and o' are distinct on A^{**} . If they agree on A^{**} , then A is called Arens regular.

In this paper, all algebras and linear spaces under consideration are over the complex field C.

3. ARENS REGULARITY FOR BANACH ALGEBRAS.

Let A be a Banach algebra and $f \in A^*$. Define $L_f: A \to A^*$ by

$$L_f(x) = fox$$
 $(x \in A)$

Then L_f is clearly a continuous linear operator from A to A^* . For each $F \in A^{**}$, define $F.L_f$ by

$$F.L_{f}(x) = F(L_{f}(x)) = F(fox) = (Fof)(x).$$

Then $F.L_f \in A^*$. Define $L_f^* : A^{**} \rightarrow A^*$ by

$$L_f^*(F) = F.L_f = Fof \qquad (F \in A^{**}).$$

Then L_f^* is clearly a continuous linear operator from A^{**} to A^* . For each $F \in A^{**}$, define $F.L_f^*$ by

$$F.L_{f}^{*}(G) = F(L_{f}^{*}(G)) = F(Gof) \qquad (G \in A^{**}).$$

Then $F.L_f^* \in A^{***}$. Finally, we define $L_f^{**}: A^{**} \rightarrow A^{***}$ by

$$L_f^{**}(F) = F.L_f^*$$
 $(F \in A^{**}).$

Then clearly L_f^{**} is a continuous linear operator from A^{**} to A^{***} .

THEOREM 1. Let A be a Banach algebra. Then the following statements are equivalent:

(1) A is Arens regular.

(2) For each $f \in A^*, L_f^{**}(A^{**})$ is contained in $\pi(A^*)$, where $\pi(A^*)$ is a subspace of A^{***} .

(3) For each $f \in A^*, L_f$ is weakly compact.

(4) Let $F \in A^{**}$ and $\{x_{\alpha}\}$ a bounded net in A. If $\pi(x_{\alpha}) \to F$ weakly, then fo'F is a weakly limit point of $\{fox_{\alpha}\}$.

PROOF. (1) \Rightarrow (2). Assume (1). Let $F, G \in A^{**}$. Then $L_f^{**}(f) = F.L_f^*$ and by (1)

$$F.L_{f}^{*}(G) = F(L_{f}^{*}(G)) = F(Gof) = (FoG)(f) = (Fo'G)(f) = G(fo'F) = \pi(fo'F)(G)$$

Therefore $F.L_f^* = \pi(fo'F) \in \pi(A^*)$ and so $L_f^{**}(F) = F.L_f^* \in \pi(A^*)$. This proves (2).

(2) \Rightarrow (3). This follows immediately from [6; p. 482, Theorem 2].

(3) \Rightarrow (4). Assume that L_f is weakly compact. Let F and $G \in A^{**}$. Then by Goldstine's theorem [6; p. 424, Theorem 5] there exists a bounded net $\{x_{\alpha}\}$ in A such that $\pi(x_{\alpha}) \to F$ weakly. Similarly, there exists a bounded net $\{y_{\beta}\}$ such that $\pi(y_{\beta}) \to G$ weakly. Since L_f is weakly compact, we can assume that $L_f(x_{\alpha}) \to g$ weakly for some $g \in A^*$. Hence $fox_{\alpha} \to g$ weakly. Therefore

$$\begin{split} \lim_{\alpha} G(fox_{\alpha}) &= G(g) = \lim_{\beta} \pi(y_{\beta})(g) = \lim_{\beta} \lim_{\alpha} \pi(y_{\beta})(fox_{\alpha}) \\ &= \lim_{\beta} \lim_{\alpha} \lim_{\alpha} f(x_{\alpha}y_{\beta}) = \lim_{\beta} \lim_{\alpha} (y_{\beta}o'f)(x_{\alpha}) \\ &= \lim_{\beta} \lim_{\alpha} \lim_{\alpha} \pi(x_{\alpha})(y_{\beta}o'f) = \lim_{\beta} F(y_{\beta}o'f) \\ &= \lim_{\beta} (fo'F)(y_{\beta}) = \lim_{\beta} \pi(y_{\beta})(fo'F) = G(fo'F). \end{split}$$

Therefore fo'F is a weak limit point of $\{fox_{\alpha}\}$. This proves (4).

(4) \Rightarrow (1). Assume (4). Let $F, G \in A^{**}$. Then by Goldstine's theorem, there exists a bounded net $\{x_{\alpha}\}$ in A such that $\pi(x_{\alpha}) \rightarrow F$ weakly. Since fo'F is a weakly limit point of $\{fox_{\alpha}\}$, we can assume that

$$G(fo'F) = \lim_{\alpha} G(fox_{\alpha}) = \lim_{\alpha} (Gof)(x_{\alpha}) = \lim_{\alpha} \pi(x_{\alpha})(Gof) = F(Gof) = FoG(f).$$

Therefore (Fo'G)(f) = G(fo'F) = FoG(f) and so A is Arens regular. This completes the proof of the theorem.

COROLLARY 2. Let A be a Banach algebra such that each continuous linear map T of A into A^* is weakly compact, then A is Arens regular.

PROOF. Since each $L_f(f \in A^*)$ is weakly compact, A is Arens regular by Theorem 1.

Let A be a B^* -algebra and B a Banach space such that B^* is a W^* -algebra. Then by [1; p.293, Corollary II.9], any continuous linear map T of A into B is weakly compact. Therefore it follows from Corollary 1 that A is Arens regular. The property that "any continuous linear map T of A into B is weakly compact" is a very strong one. In order for A to be Arens regular, we need only to show that L_f is weakly compact for all f in A^{*}. Therefore, a simple proof for a B^{*}-algebra to be Arens regular may exist.

4. SUBALGEBRAS OF A BANACH ALGEBRA WHICH IS ARENS REGULAR.

Let A be a Banach algebra which is Arens regular. It is well known that a subalgebra of Amay not be Arens regular. In fact, let M be the group algebra of an infinite abelian locally compact group. Then M is an A^* -algebra. Let A be the completion of M in an auxiliary norm. By [5; p.857, Theorem 3.14] M is not Arens regular. Since A is a B^* -algebra, A is Arens regular.

Let A be a Banach algebra and M a closed subalgebra of A. For each $f \in A^*$, we define f_M by $f_M(x) = f(x)$ for all $x \in M$. Then $f_M \in M^*$.

THEOREM 3. Let M be a closed subalgebra of A. If A is Arens regular, then so is M.

PROOF. Let $f \in M^*$. Then there exists some $\tilde{f} \in A^*$ such that $\tilde{f}_M = f$. Let $F \in M^{**}$. Define \tilde{F} by

$$\tilde{F}(g) = F(g_M) \qquad (g \in A^*).$$

Then it is clear that $\tilde{F} \in A^{**}$. Since A is Arens regular, by Theorem 1, $L_{\tilde{f}}$ is weakly compact on A. Let $\{x_{\alpha}\}$ be a bounded net in M, then $L_{\tilde{f}}(x_{\alpha}) = \tilde{f}ox_{\alpha} \to g$ weakly for some $g \in A^*$. Since $(\tilde{f}ox_{\alpha})_M = fox_{\alpha} \in M^*$, it follows that

$$F(g_M) = \tilde{F}(g) = \lim_{\alpha} \tilde{F}(\tilde{f}ox_{\alpha}) = \lim_{\alpha} F((\tilde{f}ox_{\alpha})_M) = \lim_{\alpha} F(fox_{\alpha})$$

Therefore $L_f(x_\alpha) \rightarrow g_M$ weakly and so by Theorem 1, M is Arens regular. This completes the proof.

REFERENCES

- AKEMANN, C.A., The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 1. (1967), 286-302.
- 2. ALEXANDER, F.E., The bidual of A*-algebras of the first kind, J. London Math. Soc. 12 (1975), 1-6.
- ARENS, R.E., The adjoint of a bilinear operation, Proc. Amer. Soc. 2 (1951), 839-848. 3.
- 4. BONSALL, F.F. & DUNCAN, J., Complete Normed Algebras, Springer, Berlin, 1973.
- CIVIN, P & YOOD, B., The second conjugate space of a Banach algebra as an algebra, 5. Pacific J. Math. 11 (1961), 847-870.
- 6. DUNFORD, N. & SCHWARTZ, J., Linear operators. I: General theory, Pure and Appl. Math. 7, Interscience, New York, 1958.
- RICKART, C.E., General theory of Banach algebras, University Series in Higher Math, Van 7. Nostrand, Princeton, N.J., 1960.
- TOMITA, M., The second dual of a C*-algebra, Mem. Fac. Kyushu Univ. Ser. A. 21 (1967), 8. 185-193.

- 9. TOMIUK, B.J., Biduals of Banach algebras which are ideals in a Banach algebra, Acta Math. Hung. 52 (3-4) (1988), 255-263.
- 10. WONG, P.K., Modular annihilator A*-algebras, Pacific J. Math. 37 (1971), 825-834.
- WONG, P.K., On the Arens products and certain Banach algebras, <u>Trans. Amer. Math. Soc.</u> <u>180</u> (1973), 437-448.
- WONG, P.K., The second conjugates of certain Banach algebras, C<u>anadian J. Math. 27</u> (1975), 1029-1035.
- WONG, P.K., Arens product and the algebra of double multipliers, <u>Proc. Amer. Math. Soc.</u> <u>94</u> (1985), 441-444.
- WONG, P.K., Arens product and the algebra of double multipliers II, <u>Proc. Amer. Math.</u> <u>Soc. 100</u> (1987), 447-453.