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ABSTILACT. This paper is concerned with studying hereditary properties of primary decom-

positions of torsion R[X]-modules M which are torsion free as R-modules. Specifically, if am

R[X]-submodule of M is pure as an R-submodule, then the primary decomposition of M deter-

mines a primary decomposition of the submodule. This is a generalization of the classical fact

from linear algebra that a diagonalizable linear transformation on a vector space restricts to a

diagonalizable linear transformation of any invariant subspace. Additionally, primary decompo-
sitions are considered under direct sums and tensor product.
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If R is a principal ideal domain (PID) and M is a torsion R-module, then M is a direct sum

of its primary submodules (see Hungerford [3], page 222). The two most importaat cases of this

result (known as the primary decomposition theorem) are when R Z (abelian groups) or when

1:l FIX] where F is a field. In the latter case, to give an F[X]-module structure on an F-vector
space M is equivalent to giving an F-linear transformation T M M. Note that M will be a

torsion f[X]-modulc for all choices of T e EndF(M) if dimE(M) < oo. If dimF(M) oo then

M need not be a torsion F[X]-module. If the ring R is not a PID, then a natural generalization
of the primary decomposition theorem fails. (See Example 2.)

The purpose of the present note is to study when a primary decomposition of an R[X]-module
M determines a primary decomposition of an R[X]-submodule. Equivalently, if an R-module M
possesses a primary decomposition determined by an endomorphism T E Endz(M), and N is

T-invariant R-submodule of M, under what conditions does N posses a primary decomposition

as an R[X]-modulc? This question has been considered for diagonalizable cndomorphisms of M
by Weintraub [4]. We will begin by establishing notation.

Let R be an integral domain, M a torsion R[X]-module which is torsion free as an/l-module,
and let K denote the quotient field of R. By extending the scalars to K we obtain a torsion K[X]-
module MK g (R)r M. If p(X) . g[x] is an irreducible polynomial then let MK (p(X)) denote
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the set of elements of MK which are annihilated by a power of p(X). The primary decomposition
theorem then gives

Mg MK(p(X))

where the sum is over all distinct primes p(X) E K[X]. Let " M MK be the canonical map,
which is injective since M is assumed to be torsion free over R. Thus we may identify M with

its inaage in MK, i.e., we identify x E M with 1 (R) x MK. With these notations, we make the

following definition.

DEFINITION 1. Ve say that M has a primary decomposition over R[X] if

M (M f3 MK(p(X)))

where the sum is ovcr all distinct primes in K[X]. If T e Enda(M) is determincd by lnultipli-
cation by X R[X], thcu wc will say that T has a primary decomposition if M has a primary

decomposition over R[X]. The submodule i(p(X)) MOMK(p(X)) is cMled the p(X)-pdmary
submodule of U. A pmary submodule of M is a submodule of M(p(X)) for some prime p(X) of

g[xl.

The following is an example of a torsion Z[X]-module which does not have a primaxy de-
composition.

EXAMPLE 2. Let R Z[X], M Z2, and consider M as ma R-module via the Z-module
cndomorphism T(x, y) (y, x). Then M is a torsion Z[X]-module since T 1M. But the

maximal primary Z[X]-submodules of M are ((1, 1)) and ((1,-1)), which do not generate M.

DEFINITION 3. If R is an integral domain and M is a torsion free R-module, then a

sublnodulc N C_ M is pure if M/N is torsion free, i.e., if ay N and a 0, then y E N.

If N is a direct summand of M, then it is a pure submodule. If R is a PID and M is finitely
geuerated, then N _C M is pure if and only if it is a direct summaald of M, while if M is not

finitely generated, then N may be pure without being a direct sumlnand. (See [1], page 172.)
Thus the concept of pure submodule is somewhat more general than that of direct summaad.
In tcrlns of the extension of scalars, we have that N is a pure submodule of M if and only if
KN f3 M N C_ MK. The concept of pure submodule we arc using is more restrictive than
the definition used in the theory of infinite abelian groups. See Fuchs [2], page 76, for the more

general concept.

THEOREM 4. Let R be an integral domain and M an R[X]-module uhich is torsion free as

an R-module and has a primary decomposition over R[X]. If N is an I[Xl-,=b,,,od=t hih is

pure as an R-submodule, then N has a primary decomposition.

PROOF. If N {0} the result is obvious, so assume that N - {0}. If p(X) . K[X] is a

prime, let M(p(X)) M gl MK(p(X)). By hypothesis,

M @M(p(X)) (1)
where the direct sum is over all distinct primes of K[X]. Let v be a nonzero element of N. By
Equation (1) we may write

v v +... + v (2)
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whcrc v, e M(v,(X)) and pl(X), pr(X) arc distinct prilncs of K[X]. Thus thcrc is n,

(1 _< _< r) such that p,(X)’’v, 0. Let

h(X) fi p3(X)’b (3)

Thcn pl (X)"’ and h(X) arc relatively prime in K[X] so that

p(X)"*g(X) + h(X)ga(X) 1. (4)

By clearing dcnominators in all polynonials in Equation (4), we obtain an equation in R[X]"

i(X)’’-I(X) + h(X)’.(X) a e R. (s)

Multiplying by vl gives

But

Equations (6) and (7) give

, -(x), x)n (6)

-(x), (x)(, +... + w) (x)n.

"2 (X)h(X)v "2 (X)h(X)vl

(7)

(s)

Since N is an R[X]-submodule ofM we conclude that av E N and since N is a pure R-submodule

of M, it follows that vl E N.

A similar calculation shows that v N V1M(pj(X)) for 2 <_ j _< r. Since v was an arbitrary

elcment of N, it follows that
g (D(N M(p(X))),

i.e., N has an R[X]-primary decomposition.

DEFINITION 5. We say that T Endn(M) is block diagonalizable if M (gjejN where

Nj is an R-submodule of M such that T[, Ajlv, where A R.

COROLLARY 6. (Weintraub [4]) Suppose that R is an integral domain, M is a torsion free
R-module, and T Endn(M) is a block diagonalizable endomorphism. IfN is a T-invariant pure

submodule of M, flen T[v is block diagonalizable.

PROOF. If T is block diagonalizable, then the primary components of T are Ker(T-
(j E J). But by Theorem 4 T[ has a primary dccomposition, and in fact the primary components

are just N f Ker(T- ).

EXAMPLE 7. Theorem 4 is false without the assumption that the R[X]-submodulc N bc

pure as em R-submodule. As an example, let M Z have the Z[X]-module structure determined

by the endomorphism T(x, y)= (x,-y), and let N {(x, y) e M: x+yis evcn ). If (x, y)e N,
thcn x y (x + y) 2y is even so T(x, y) e N, i.e., N is T-invariant so that it is a Z[X]-
submodule of M. M has a primary decomposition as a Z[X]-module, but the submodulc N does

not. Of course, N is not a pure Z-submodule of M.
Since every direct summand is a pure submodule, the following result can be viewed

conplementary to Theorem 4.
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PI-tOPOSITION 8. Let R be an integral domain and let M be an R[X]-modulc which

tor’wn free as an R-module. Suppose that

M

where each N is an R[X]-submodule of M. Then M has a primary decomposition over R[X] f
and only if each Nj has a primary decomposition over R[X].

PROOF. First note that M is a torsion R[X]-module if and only if ch Ni is. If M h a

primary decomposition ovcr R[X], then so does each Nj by Tlmorcm 4. Conversely, supposc that

each N has a primary decomposition over R[XI. Thus

N (xN(p(X)) (9)

for all j J where the sum is over all distinct primes p(X) e K[X]. We claim that

M(p(X)) (giejNa(p(X)). (10)

To see this suppose that v e M(p(X)). Then we may write

v v, +... + v,.

where vj, e N1, for 1 < _< r. Since K[X] is a PID and v M(p(X)), we have that

p(X)" Ann(v) Icm(Ann(vi, ),... Ann(vi,)}.

Hence Ann(v/,) p(X)"’ for some hi. Thus vi, Ni, (p(X)) aad Equation (10) is satisfied.

Equations (9) and (10) then give

(gp(x}M(p(X)) @,(x) (9jeJ Nj(p(X))

1eN1
M.

Hcnce M has a primary dccompositon over R[X].
It is a standard result in linear algebra that two commuting diagonalizable lincar transfor-

mations have a basis of common eigenvectors. In the context of torsion R[X]-modules, this result

gcncralizcs to the following fact.

PROPOSITION 9. Let M be a torsion free R-module over an integral domain R and let T,
S Endz(M) be commuting endomorphisms, each of which has a primary decomposition. Then

tle*’. is a direct sum decomposition M BielM where Mi is a primary R[X]-submodule of M
for the R[X]-module structures determined by both S and T.

PROOF. By hypothesis, M $M(p(X)) where M(p(X)) is the p(X)-primary componcnt
of M in the R[X]-lnodule structure determined by T, and the direct sum is over all distinct
primes p(X) K[X]. Since i(p(X)) is a direct summand of M, it is pure as an R-submodulc.
If v M(p(X)) then p(X)’*v 0 for some n (we may assume p(X) R[X] without loss
of generality), i.e., p(T)"v 0. Now p(T)’(Sv) S(p(T))nv 0 since TS ST. Thus
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Sv e M(p(X)), so that M(p(X)) is also an R[X]-sub,nodulc of M with thc module struct,rc

dctcrmincd by S. By Thcorcm 4, it follows that SIM(t,(x)) has a primary dccomposition

M(p(X)) $M(p(X))(q(X)) (ii)

where the sum is over all distinct primes q(X) e K[X]. Since T and S commute, it follows tlat

M(p(X))(q(X)) is an R[X]-submodulc of M for both R[X]-module structurcs on M, and

M ,(x)(x)M(p(X))(q(X))

is the rcquircd dccomposition.

COROLLARY 10. If S, T E Endn(M) are block diagonalizable and ST TS, then S and

T arc jointly block diagonalizablc, i.e.,

M @ieIM, (12)

where TIM A,1M, and SIM I.t, lM, wih A,, I.ti R.

COROLLARY 11. /f S, T e End/(M) are block diagonalizable and ST TS, ihen P(S, T)
is block diagonalizable for all P(X, Y) e l:l[X, Y].

PROOF. Write M 9,eM as in Equation (12). Then SIM A,1M, and TIM, =/*,IM, so

that P(S, T)IM, P(A,, g,)IM,.
The following rcsult is similar in spirit to Corollary 11.

PROPOSITION 12. Let T End(M) have a primary decomposition over R[X]. Then

every element of the algebra R[T] has a primary decomposition over R[X].

PROOF. By hypothesis M M(p(X)) where the suln is over all distinct primes p(X)
K[X]. Since the property of having a primary decomposition is prcserved undcr direct sums

(Proposition 8), it is sufficient to assume that M M(p(X)) where p(X) e K[X] is irrcducible.

Let f(X) R[X] be arbitrary. We wish to show that f(T) has a primary decomposition.

Let F K[X]/(p(X)). Then F is a finite algebraic extension of K. Let r: K[X] F be

the projection. If a 7r(f(X)) then a is algebraic over K, so let m(X) K[X] be the minimal

polynomial of a over K. By clearing denominators we can sume. that m(X) R[X]. Thcn

m((f(X)) 0 e F. In K[X] this means that

ma(f(X)) h(X)p(X). (13)

By clearing denominators we may assume the polynomials are in R[X], i.e.,

cm,(f(X)) ch(X)p(X) (14)

where c R. The evaluation at T, evT is an R-algebra homomorphism. Thus, if p(T)’v 0 it

follows from Equation (13) that

m,,(f(T))’v=O.

Thus M M(p(X)) M(m,(X)) for the RIX]-module structure dctermined by f(T). That is,
if M is primary for T, then M is also primary for f(T), and the result is proved.

Wc conclude with thc following example which shows that primary dccomposition nccd not
bc preserved under tensor product.
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EXAMPLE 12. Let R Z and let M Z2. Give M the Z[X]-modulc structure determined

by the cndonorphism T(x, y) (-y, x) with matrix (with respect to the standard basis) A
0 -1 The mininal polynomial of T is X + 1 so that M is primary. Let N M (R)z M and
1

give N the Z[X]-modulc structure dctermincd by T (R) T. The matrix of T (R) T is

AOA=

0 0 0 110 0 -1 0
0 -1 0 0
1 0 0 0

which has characteristic polynomial (X 1)2(X + 1)2. The eigenspacc of 1 has a basis

{(1, 0,0,1), (0,1,-1,0)}

while the cigenspace of -1 has a basis

{(1, 0,0,-1), (0,1,1,0)}.

Thns the sum of the eigenspaces does not generate all of N so that N does not have a primary
decomposition following T (R) T.
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