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ABSTRACT. Solutions are obtained for the equations of the motion of the steady incom-

pressible viscous planar generalized Beltrami flows when the vorticity distribution is given by

V2b + f(z,y) for three chosen forms of f(z,).
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1. INTRODUCTION.

Only a small number of exact solutions of the Navier-Stokes equations has been found and

Chang-Yi Wang [1] has given an excellent review of these solutions. These known solutions ot

viscous incompressible Newtoaian fluids may be classified into three types:

(i) Flows for which the non-linear inertia terms in the linear momentum equations vanish

identically. Parallel flows and flows with uniform suction are examples of these flows;

(ii) flows with similarity properties such that the flow equations reduce to a set of ordinary

differential equations. Stagnation point flow is an example of such flows;

(iii) flows for which the vorticity function is so chosen that the governing equation in term

of the stream function reduces to a linear equation. Taylor [2], Kampe de Feriet [3], Kovasznay

[4], Wang [5] and Lin and Tobak [6] employed this approach, taking V2, K,, V, f().
V, + (K 4x),, V2, A + Cy andV K( Ry), respectively.

In this paper, we study generalized Beltrami flows when the vorticity function w -Vb
is given by V, + A2 + Bz + Cz + D, V2 , + Ay + Cz +D, Vb , + Cz

+Dy, where A,B,C,D are real constants.



156 O.P. CHANDNA AND E.O. OKU-UKPONG

2. BASIC EQUATIONS AND SOLUTIONS.

Steady plane incompressible viscous fluid flow, in the absence of external forces, is governed

by the system:
+ 0

1

P
1

(2.1)

where (,), f:(, 9) axe the velocity components,/5(,, 9) the pressure function, p the constant

density, p the constant viscosity and ,2 0’ ’r + b is the Laplacian operator. The vorticity

function for this flow is given by

(2.2)

Letting U,L to be the characteristic velocity and length respectively, we introduce the

non-dimensional variables

(2.3)=Z, Y=Z, "=y, =y, =W, v-v,
in system (2.1) and equation (2.2). We apply the integrability condition P-u Pu- to the

linear momentum equations to find that u, v, w must satisfy the system:

(2.4)

where R L is the Reynolds number.

Introducing the strem function (z, y) such that

,.=,, v=-,

in system (2.4), we find that (z,y) must satisfy

V@ + R0(, Vb) 0
0(,)

In this paper, we study flows for which the vorticity distributions take the forms

w -V2 -( + Aym + Bzy + Cz + Dy)

(b) w -Vb -( + Ay + Cz + Dy)

., -V2 -( + Cz + Dy)

where A, B, C, D are real constants.

Form (a):
Substituting (2.7) in the compatibility equation (2.6), we get

R(2Ay + Bz + D), R(By + C). + /, + Ay + Bzy + Cz + Dy + 2A 0

(2.8)

(2.9)

(2.10)
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Employing the canonical coordinates

Ay2 + Bzy + Cz + Dy, = (2.)

where (By + C) # O, (2.10) may be written as

-(+ c). + + + 2A 0.

This equation is solved to obtain

f()(By + D):" (Ay + Bzy + Cz + Dy + 2A) (2.13)

where f is an axbitrary function of . Introducing (2.13) into {2.7), we get

{R’ [C’(C’ + D’) + 2BCD( + B’(’] /"() + 2R[C(RAC + D)- B(] /’()

+ [1 RB- RC] ()} + 2RC{2R[C(AD + BC)+ AB] f’()

+ 2A [RB + 1] f() RB/(()}. + R {2R [C(2A + 3B) + ABCD

+4RC { [A + ]/"(0}.’ +R {[ + ]/"(0}.’ 0

Since , e independent vablesd {I,,,, is a Hnely independent t, it follows

that the ccients of the vous powers of zero. Tng the coecients of ,s,,
d 1 equM to zero, we get

(2.14)

f() cI + c (2.15)

2A(RB + 1)cl RBc RBc,( 0 (2.16)

where cl, c axe arbitrary constants. Since {1, } is a linearly independent set, it follows from

(2.16) that 2A(RB + 1)cl RBc2 O, RBcl 0 giving c c 0. Using c, c 0 in

(2.15), we obtain f(() 0.

From (10), the stream function is given by

@(z, y) -(Ay’ + Bzy + Cz + Dy + 2A) (2.17)

The exact integral of this flow is

u=-(2Ay+Bz+D), ,=By+C, and
1 [B(z2 + y,) + 2(BD 2AC)z + 2BCy]p= po - (2.18)

where p0 is an axbitrary constant.

Equation (2.17) represents an impingement of two constant-vorticity oblique flows with

stagnation point

(Z,Y)--<2AC-BD ), ,- (2.9)
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for non-zero values of A, B, C and E. The stagnation point shifts upward as B gets smaller

for fixed values of A, C and E. We remark that when A B -1, C D 0, the solution

(2.17) reduces to one of the flows in Wang’s [1] paper.

Form {b):

Employing (2.8) in (2.6), we obtain

R(2Ay + D)b, RCI, + + Ay2 + Cz + Dy + 2A 0 (2.20)

Choosing the canonical coordinates

Ay2 + Cz + Dy, I Y (2.21)

where C # 0, (16) takes the form

-RCl,, + P + + 2A O. (2.22)

We solve this equation to get

=g()expIcy) (Ay2 + Cz + Dy + 2A)

where g is an arbitrary function of . We substitute (2.23) into (2.8) to get

[R:C’g"(,) + 2RACg’(,) + (1 R:Cg()] + 2RCg’()(2Ar + D)

+ R2C2g"()(2Arl + D) 0

(2.23)

(2.24)

Since , 1 are independent variables and {1, (2A/+ D), (2A/+ D)2 } is a linearly independent

set, it follows that

g"() O, g’(6) 0, (1 R2C)g() 0 (2.25)

From (1 RCZ)g() 0, we get the three possibilities: g() =.0, R2C # 1; R2C2 1,

g(O # 0; g(O o, R’C .
The stream function (2.23) is given by

-(Ay+Cz+Dy+2A) ;g=O, R2C2#1

,/,(,) ge g0 ( + 6’ + + z);6’ , #

-(A+6’+D+A) ;=0, R6’=1

where g # 0 implies g K (non-zero constant).
When the stream function is given by

(2.26)

,(z,y)--(Ay / Cz + Dy + 2A); RC --1 or RC #1, (2.27)

the exact integral for the flow is

u -(2Ay + D), v C, and p po + 2ACz (2.28)
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where p0 is an arbitrary constant.

The solution (2.28) may be realized on a plate situated along y - with uniform suction

or blowing. C > 0 and C < 0, respectively, for blowing and suction at the plate.

The exact integral for the flow given by the stream function

(z,y) Kexp (---V) -(Av2 +Cz + Dy + 2A); R C2 1 (2.29)

is

u=-exp V (2Av + D), v C, and p po + 2ACz (2.30)

where p0 is an arbitrary constant.

If K RCD in (2.29) and (2.30), the velocity profile in (2.30) can be realized on a plate

located along V 0 with uniform suction. The velocity profile attains the form

(2.31)

only asymptotically, and so may be regarded as the asymptotic suction profile [7]. C > 0 and

C < 0 for blowing and suction at the plate, respectively.

Form (c):

Substitution of (2.8) into (2.6) yields

RD. RCCu + + Cz + Dy 0 (2.32)

The canonical coordinates

=Cz+Dy, 7=V; C:f-0 (2.33)

are employed in (2.32) to get

-RC + + o.

The solution of this equation is

b h()exp (cy) -(Dz+Ey)

where h is an arbitrary function of . We employ (2.34) in (2.9) to obtain

R2C2(C2 + D-)h"() + 2nCDh’() + (1 n2C2)h() 0

(2.34)

(2.35)

The general solution of (2.35) is

h(O

A1 exp(Al) + A2 exp(A2)

(B1

Ci Cos(m( + C) exp

;R2(C + D)- 1 > 0

R2(C2 + D)- 1 0

;R:(C: + D) 1 < 0

(2.36)
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where
-D + Cv/R2(C: + D) 1 V/1 R2(C + D’)A1.2 RC(C + D,)

m
R(C2 + 02 (2.37)

and A,A=,B,B=,C,C= e bitry constts.

We sh study the three possibiHties sepately.

(i) R(C + D)-1> 0

The stre function, om (2.34) d (2.36), is

(z,y) A exp [ACz + (2D+ )yl + A, exp [A,Cz + (A,D+ )y]-(Cz+Dy)
(=.3s)

The exact integrM of ts flow is

u= (D+)Aexp [ACz + (D+ )y]
+ (2D+)A, exp ,C+ (A2D+)yI-D,

v -D {lA exp [Cz + (D +) y] (2.39)

+ 2Aexp
and

P= po + 2 1-
R,(C, + O2 A1A2exPtR--+

where p0 is an arbitrary constant and A1 ,2 are given by (2.37).
Ts flow reprents impingement of obque fo stre th obfique rota-

tionM, vergent flow, th stagnation point

(z,y)
2,(C + D’)- 1

DR’(C’ + D’) l m { -4AA’[R’(C’ + D’) I] }a=(C + D)=

R(C + D) 2.40)
where A,A2 e non-zero mM constants d either A > 0, A < 0 or A < 0, A2 > 0. Fo

ed ues of R, C d D, the stagnation point sfts upwd when the absolute vMue of A
is lger th that of A.
H A d A are of the se sign, the above phenomenon ds not te plce, d we have

a flow thout a staation point.

(ii) Rx(C, + D=)-1=0
Using (2.36) in (2.34), the stre function is

(z,V) [Bx + B2(Cz + DV)]e[R(OV- D)]- (C + Dr) (2.41)

Ts flow h the exit integrM
u {DB2 + RC[Bx + B2(Cx + Ov)]}exp[R(CV- O,)]- E,

v {-DB2 + RD [Bx + Bx(C + Oy)]} exp [R(Cy- D)] + D, d (2.42)
1



EXACT SOLUTIONS OF THE STEADY NAVIER-STOKES EQUATIONS 161

where p0 is an arbitrary constant.

If B2 is a positive real constant, this flow represents an impingement of an oblique uniform

stream with an oblique rotational, divergent flow, with stagnation point

1 (CB1(z,t/) -C + D2 B2
D

In B2, DB C )R + In B, (2.43)

For fixed values of R and C, the stagnation point shifts upward if B1 and D are of opposite

signs and the absolute value of B1 is larger than

If B2 is a negative real constant, (2.41) represents an oblique uniform stream which abuts

on an oblique rotational, convergent flow.

(iii) R2(C2+D2)-1<0
From (2.27) and (2.36), the stream function is given by

{’z,y) C, Cos [m(Cz + Dy) + C2] exp Cv- Dz
_(Cz + Dy)

R(C + D2)
(2.44)

The exact integral for this flow is

{CCos [m(Cz + Dy) +R(C2 + D2)
Cy- Dz D,-mRD(C + D2)Sin [m(Cz + Dy) + C2]} exp R(C2 + 02

v
R(C2 + 02 {DCos [m(Cz + Dy) + C,] (2.45)

+mRC(C + D2)Sin[m(Cz + Dy) + C2]} exp [R(C2 + D2 + C,

2(Cv Dz)
R(C + D=)

1 1 ]C21Cos2[m(Oz+Dt/)+O2]expP0+ 1-
R=(C= + D2

and

where P0 is an arbitrary constant, and m is given by (2.37).
If Cx > 0, the stagnation points for this flow axe

( RC[(2n + I){ C:] [C1v/1- R2(C: + D2’i](=,y) ----R(b ..D-) + RDIn R(C2 + D2)

RD[(2n+I);-C2]
X/1 R2(C + D’)

RCln
R(C2 + D2 (2.46)

where n is an integer.

Fig. 1 shows the streamlines for (z,y) -(Av2 + Bzt/+ Cz + Dy + 2A) when A B

C D 1. Figures 2 and 3 represent the flows tk(z,y) -(Ay2 + Ca: + Dy + 2A) and

(z,t/) K exp (cY) (At/2 + Cz + Dt/+ 2A) for K R A C D 1. Figures 4

and 5 illustrate the case (c) (X72 + Cz + Dt/) when R2(C2 + D2) > 1. Figure 4 shows

reversed flow. C=D=I,R=2, Az =50, A2 =60andC=D=R=l, A1 =1, A2=-1,

respectively, for Figures 4 and 5. The flows when R2(C2 + D2) 1 are given in Figures 6 and

7whenC=D=l,R= ,B1 =50, B2=-60andC=D=l,R=,Bt =0, B2=l.
WhenR (C2+D2)<1. we have Figure8forC=D=l,R=1/2, Cx =5, C2=0.
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Figure 1
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