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ABSTRACT. Solutions are obtained for the equations of the motion of the steady incom-
pressible viscous planar generalized Beltrami flows when the vorticity distribution is given by

V24 = ¢ + f(z,y) for three chosen forms of f(z,y).
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1. INTRODUCTION.

Only a small number of exact solutions of the Navier-Stokes equations has been found and
Chang-Yi Wang (1] has given an excellent review of these solutions. These known solutions of
viscous incompressible Newtonian fluids may be classified into three types:

(i) Flows for which the non-linear inertia terms in the linear momentum equations vanish
identically. Parallel flows and flows with uniform suction are examples of these flows;

(ii) flows with similarity properties such that the flow equations reduce to a set of ordinary
differential equations. Stagnation point flow is an example of such flows;

(iii) flows for which the vorticity function is so chosen that the governing equation in terms
of the stream function reduces to a linear equation. Taylor (2], Kampe de Feriet [3], Kovasznay
[4), Wang [5] and Lin and Tobak [6] employed this approach, taking V¢ = K¢, V3¢ = f(¥).
V2% =y + (K? — 4x2), V3¢ = Ay + Cy and V3¢ = K(¥ — Ry), respectively.

In this paper, we study generalized Beltrami flows when the vorticity function w = —V?¢
is given by V¢ = ¢ + Ay?> + Bzy+ Cz + Dy, V¢ = ¢ + Ay* + Cz +D, V¢ = ¥ + Cz
+ Dy, where A, B,C, D are real constants.
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2. BASIC EQUATIONS AND SOLUTIONS.
Steady plane incompressible viscous fluid flow, in the absence of external forces, is governed

by the system:

Uz + ‘6' = 0
1 _
@iy + iy + —p: = pV4
z ] ppt H (2.1)
1
ud; + U0y + ;ﬁ,—, =uV3p

where i(Z, §), T{Z,y) are the velocity components, p(Z,§) the pressure function, p the constant
density, pu the constant viscosity and V2 = 8%” + 0%2’ is the Laplacian operator. The vorticity
function for this flow is given by
@ =17z — iy (2.2)
Letting U, L to be the characteristic velocity and length respectively, we introduce the
non-dimensional variables
Lo 7

vV = =7, =W

w (2.3)

] u v
v=p vy TR
in system (2.1) and equation (2.2). We apply the integrability condition p.y = py: to the
linear momentum equations to find that u,v,w must satisfy the system:
u:+v, =0
v, + vw, = %Vzw (2.4)
v - Uy =w

where R = % is the Reynolds number.

Introducing the stream function ¥(z,y) such that
u= d’ya v=—9; (25)

in system (2.4), we find that ¥(z,y) must satisfy

8%, V2y) _
) =" (2.6)

In this paper, we study flows for which the vorticity distributions take the forms

V% +R

() w=-V*)=—(¥+ Ay®+ Bzy+ Cz + Dy) (2.7)
(b)) w=-V*=—(¥+ Ay’ +Cz+ Dy) (2.8)
() w=-V*%=—(y+Cz+Dy) (2.9)

where A, B,C, D are real constants.
Form (a):

Substituting (2.7) in the compatibility equation (2.6), we get

R(2Ay + Bz + D)y, — R(By+C)¢, + ¥ + Ay* + Bzy+Cz + Dy +24=0  (2.10)
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Employing the canonical coordinates
§=Ay’+Bzy+Cz+ Dy, n=y (2.11)
where (By + C) # 0, (2.10) may be written as
—R(Bn+Clo+¥+£+24A=0. (2.12)
This equation is solved to obtain
¥ = f(€)(By + D)5 — (Ay® + Bzy + Cz + Dy + 24) (213)

where f is an arbitrary function of {. Introducing (2.13) into (2.7), we get

{R? [C*(C* + D*) + 2BCD¢ + B*¢?] f"(€) + 2R[C(RAC + D) — BE] f'(€)
+ [1- RB - R®’C?] f(¢)} + 2RC {2R[C(AD + BC) + AB¢] f"(€)
+ 24[RB +1] f'(€§) - RBf(£)} n + R {2R [C*(2A% + 3B%) + ABCD (2.14)
+ AB%¢] f"(6) + 2AB[RB + 1] f'(§) - RB*f(£)} n*
+4R’BC {[A* + B?] f"(6)} n* + R* B*{[A*> + B?) f"(&)}n* =0
Since ¢,7 are independent variables and {1,5,92,9%,9*} is a linearly independent set, it follows

that the coefficients of the various powers of 7 are zero. Taking the coefficients of n*,9*,9%,9

and 1 equal to zero, we get
f(f) =caf+c (2.15)

2A(RB +1)c; — RBcz — RBe1§ =0 (2.16)

where c;,c; are arbitrary constants. Since {1,£} is a linearly independent set, it follows from
(2.16) that 2A(RB + 1)c; — RBc; = 0, RBe; = 0 giving ¢; = c2 = 0. Using ¢ = ¢ =0in
(2.15), we obtain f(£§) = 0.

From (10), the stream function is given by

¥(z,y) = —(Ay® + Bzy + Cz + Dy + 24) (217)

The exact integral of this flow is
u=—(2Ay+Bz+ D), v=By+C, and

2.18
P=po— % [B*(z* + y*) + 2(BD — 2AC)z + 2BCy| (#19)

where pg is an arbitrary constant.
Equation (2.17) represents an impingement of two constant-vorticity oblique flows with
stagnation point

2AC-BD C ) (2:19)

@ = (522,
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for non-zero values of A, B,C and E. The stagnation point shifts upward as B gets smaller
for fixed values of A,C and E. We remark that when A = B = —1, C = D = 0, the solution
(2.17) reduces to one of the flows in Wang’s [1] paper.
Form (b):

Employing (2.8) in (2.6), we obtain

R(2Ay+ D)y, — RCy, + ¢+ Ay* + Cz + Dy+24=0 (2.20)
Choosing the canonical coordinates
§=Ay’+Cz+Dy, n=y (2.21)

where C # 0, (16) takes the form

—RC¥p+9+€§+2A=0. (2.22)
We solve this equation to get
1
¥ = g(€)exp (Eéy) —(Ay® + Cz + Dy + 24) (2.23)

where g is an arbitrary function of . We substitute (2.23) into (2.8) to get
[R*C*g"(€) + 2R*AC?'(€) + (1 - R*C?g(£)] + 2RCy'(£)(24n + D)

(2.24)
+ R*C*¢"(£)(2An+ D)’ =0

Since ¢, 7 are independent variables and {1,(24n + D),(24n + D)?} is a linearly independent
set, it follows that

9"(€)=0, g'(¢)=0, (1-R*C*)g(¢)=0 (2.25)
From (1 — R?C?)g(£) = 0, we get the three possibilities: g(¢) = 0, R?C? # 1; R*C? =1,

9(€) #0; g(¢) =0, R?C? = 1.
The stream function (2.23) is given by

— (Ay® + Cz + Dy + 24) ;9=0, R3C%*#1
¥ew)={ Ko (ov) - (47 +Co4 Dy+ 24K RIC =1, g#0  (220)
—~ (Ay* + Cz + Dy + 24) ;9=0, RC?*=1

where g # 0 implies g = K (non-zero constant).

When the stream function is given by
¥(z,y) = —(Ay* + Cz + Dy + 24); R*C?*=1 or RC*#1, (2.27)
the exact integral for the flow is

u=—(24y+ D), v=C, and p=py+2ACz (2.28)
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where py is an arbitrary constant.

The solution (2.28) may be realized on a plate situated along y = —32 with uniform suction
or blowing. C' > 0 and C < 0, respectively, for blowing and suction at the plate.

The exact integral for the flow given by the stream function

¥(z,y) = Kexp (RC ) —(Ay* +Cz + Dy + 24); R*C?’=1 (2.29)
is
u= RCexP<RC )—(2Ay+D), v=C_C, and p=po+2ACz (2.30)

where pg is an arbitrary constant.
If K = RCD in (2.29) and (2.30), the velocity profile in (2.30) can be realized on a plate

located along y = 0 with uniform suction. The velocity profile attains the form
u= Dexp (%y) -(24y+ D), v=C (2.31)

only asymptotically, and so may be regarded as the asymptotic suction profile [7]. C > 0 and
C < 0 for blowing and suction at the plate, respectively.
Form (c):

Substitution of (2.8) into (2.6) yields

RDY, - RCY,+¢+Cz+Dy=0 (2.32)
The canonical coordinates
§=Cz+Dy, n=y; C#0 (2.33)

are employed in (2.32) to get
—RCY, +9¥ +£=0.

The solution of this equation is

¥ = h(€)exp ( RGY ) - (Dz + Ey) (2.34)
where h is an arbitrary function of {. We employ (2.34) in (2.9) to obtain
R2C?*(C? + D*)h"(£) + 2RCDA'(¢) + (1 — R2C?*)h(¢) =0 (2.35)
The general solution of (2.35) is
Aj exp(A1€) + Az exp(A€) iR*(C*+D*)-1>0
h(e) = (B; + By€)exp (—%135) ;R}(C*+D*)—-1=0 (2.36)

C1Cos(mé + C3) exp [-mg] . R}(C? + D?) —1<0
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where

- \/ﬁ —R2(C? 2
My = Dif{(:(lz'z(i D,)D ) m=Y1 R(gz(f D’;)D ) (2.37)
and A,, Az, By, B2, C;,C; are arbitrary constants.
We shall study these three possibilities separately.
(i) R¥(C*+D*)-1>0
The stream function, from (2.34) and (2.36), is

1 1
Y(z,y) = Ar1exp [A,Cz + (/\ID + —) y] + Az exp [AzCz + (AzD + EC—) y] —(Cz + Dy)

RC
(2.38)
The exact integral of this flow is
(/\1D + RC) A, exp [AICz + (AlD + 72?) ]
(AzD + ‘}—25) Az exp [AzCz + (/\2D + RC) J D,
1
v=-D {AlAl exp [/\103 + (AlD + RC) ] (2.39)
+ A2Az exp [/\203 + (/\QD + "IE") y] - 1} s

and

_ _ 1 2(Dy — Exz)
P=pot2 [1 (0 +D=)] Aidzexp [R(c= n Dz)]

where po is an arbitrary constant and Ay, A, are given by (2.37).
This flow represents an impingement of an oblique uniform stream with an oblique rota-

tional, divergent flow, with stagnation point
=5 mrer= (o= (-2)
- VR DY~ { AAI(C DD “ 1]
R IR

where A,, A, are non-zero real constants and either A; > 0, A2 < 0 or 4; < 0, A2 > 0. For
fixed values of R,C and D, the stagnation point shifts upward when the absolute value of A,

is larger than that of A;.
If A; and A; are of the same sign, the above phenomenon does not take place, and we have
a flow without a stagnation point.
(ii) R*(C*+D?*)-1=0
Using (2.36) in (2.34), the stream function is
¥(z,y) = [B1 + B2(Cz + Dy)]exp [R(Cy — Dz)] — (Cz + Dy) (2.41)
This flow has the exact integral
u={DB; + RC[B; + By(Cz + Dy)]} exp[R(Cy — Dz)] - E
v= {—DBz + RD[B; + By(Cz + Dy)]} exp [R(Cy — Dz)] + D, and (2.42)
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where po is an arbitrary constant.
If B, is a positive real constant, this flow represents an impingement of an oblique uniform

stream with an oblique rotational, divergent flow, with stagnation point

CB, D . DB C Bz)

@) =-z1p (?{ “mPB R (243)

For fixed values of R and C, the stagnation point shifts upward if B; and D are of opposite
signs and the absolute value of B is larger than B,.

If B, is a negative real constant, (2.41) represents an oblique uniform stream which abuts
on an oblique rotational, convergent flow.

(iii) R?(C*+D*) -1<0

From (2.27) and (2.36), the stream function is given by

¥(2,y) = C1Cos [m(Cz + Dy) + Cy] exp [-ﬁ%’% _(Cz+Dy)  (244)
The exact integral for this flow is
- O {CCos[m(Cz + Dy) + Ci)
R(C* + D7)
_mRD(C* + D*)Sin [m(Cz + Dy) + C3]} exp [R—(CC%’-,-)] - D,
v= ﬁ(ﬂc—w_ﬁ {DCos [m(Cz + Dy) + C] (2.45)
+mRC(C? + D*)Sin [m(Cz + Dy) + Ca]} exp [ﬁ%:;zpfz_)] +C, and

2(Cy - Dz)

C%Cos2[m(Cz + Dy) + C:)exp [R(C’ + D?)

R PR B
T3 T BT+ DY

where po is an arbitrary constant, and m is given by (2.37).

If Cy > 0, the stagnation points for this flow are

RC[(2n +1)5 - C3] Ci1v/1 - R¥(C% + D?)
(z,9) = (\/—T(C’TW) +RDln[ ! R(CT+ D) ]
RD(2n+1)E-Co] L. [Cn/_l —R%(C? +D‘=']) (2.46)

V1- R¥C? + D?) R(C? + D?)

where n is an integer.

i“ig. 1 shows the streamlines for y(z,y) = —(Ay® + Bzy + Cz + Dy + 24) when A= B =
C = D = 1. Figures 2 and 3 represent the flows ¢(z,y) = —(Ay?> + Cz + Dy + 24) and
¥(z,y) = Kexp (gzy) — (Ay> +Cz + Dy + 2A) for K = R= A =C = D = 1. Figures 4
and 5 illustrate the case (c) (V2¢ =% + Cz + Dy) when R*(C? + D?) > 1. Figure 4 shows
reversed flow. C=D =1, R=2,A; =50,A, =60andC=D=R=1,4;, =1, A, = -1,
respectively, for Figures 4 and 5. The flows when R%(C? + D?) = 1 are given in Figures 6 and
7whenC=D=1,R=7’;,31=50,Bz=—-60a.ndC=D=l,R=7‘;,Bl=0,Bg=l.
When R? (C? + D?) < 1. we have Figure 8for C=D =1, R= %, C,=5,C;=0.



162

3.38

CHANDNA AND E.O.

3

Figure 1

OKU-UKPONG

M
L 1)

3.3

358

-7.00 ¥ Y —
-20.0 -12.3 -s.0 2.8 10.0
X
Figure 2
M
o
-0
-20
-30
-40
L]




EXACT SOLUTIONS OF THE STEADY NAVIER-STOKES EQUATIONS 163

v
" [ o;
° -1.28
-10 7.5
i 3
H .
;
3 .
-20 -13.78
.
“«
N
-3 ~—r r—— ¥ -20.00
-10 ° 0 20 » -10.0
T
v
190
2.8
/
-3.0 4
(
4
-12.8
4
-20.0 v
-18.0 -7.8 0.0 1.8 15.0 %

=10 ° 0




164 0.P. CHANDNA AND E.O. OKU-UKPONG

REFERENCES

[1] C.-Y. WANG Exact solutions of the steady-state Navier-Stokes equations, Annu. Rev.
Fluid Mech. 23. (1991) 159-177.

[2] G.I. TAYLOR On the decay of vortices in a viscous fluid, Phil. Mag., Series 6, 46 (1923)
671-674.

[3] J. KAMPE DE FERIET Sur quelques cas d’integration des equations du mouvement plan
d’un fluide visqueux incompressible, Proc. Int. Congr. Appl. Mech., 3rd. Stockholm 1.
(1930) 334-338.

[4] L.I.G. KOVASZNAY Laminar flow behind a two-dimensional grid, Proc. Cambridge Phil.
Soc. 44, (1948) 58-62.

[5) C.-Y. WANG On a class of exact solutions of the Navier-Stokes equations, J. of Appl.
Mech. 33 (1966) 696-698.

[6] S.P. LIN and M. TOBAK Reversed flow above a plate with suction, AIAAJ, 24, No. 2.
(1986) 334-335.

(7] H. SCHLICHTING Boundary-Layer Theory, McGraw-Hill, 1968.




