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ABSTRACT. Using measure theory, the orbit counting form of Pélya’s enumeration theorem

is extended to countably infinite discrete groups.
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1. INTRODUCTION.

Let G be countable discrete group acting as permutations on a countable set D. Let S be a
finite set with cardinality, | S| = N. Denote by SP the set of functions from D to S. For y € SP
define gy € S? by g¢y(d)=v(g'd). For a subgroup K of G let Ay be a set of representatives for
the orbits of K in S°. Let % be a Hilbert space with orthonormal basis {e,: v € S”} and inner
product <, >. Define a unitary representation of G on 3 by =(g)ey= e,,.

The number of orbits of G in SPis denoted by |Ag|. For finite G and D this can be
counted by the Pdlya enumeration theorem. Specifically, for each ge G, let c,(g) be the
number of cycles of length iin the representation of g as a product of disjoint cycles in D and
let M(g)=y,"1...y,*”), where n=|D|. The cycle index of G on D is the polynomial Pg=

l_é| 3" M(g). Denote by oPg the value Pg at y,=N, i=1 to n. Pélya’s enumeration theorem,
9e G
see Polya [1], says that |Ag|=oPg.
Define the operator Tg on ¥ by Tg= lTIIZ x(g). Then it can also be shown, see
ge G

Williamson [2], that |Ag|= trace(Tg on %). It is these two ways of measuring a set of

representatives for orbits that we extend to infinite G and D.

2. THE MAIN RESULTS.
If we view S as a finite group with the discrete topology, then S” is a compact group in the

product topology. Let u be normalized Haar measure on S”.

For ge G and 7 € S° define f(y)= < r(g)ey. & >. Then fy)={} ¥ &1=1

LEMMA 1. {is measurable.

PROOF. Let frr(dp={'¥ 7(9'd)=x(d) and h,(y)= ,ﬁlf.(v(dJ)-
1=

0 otherwise

Then h, is measurable for all n. Now g¢gy=y if and only if v is constant on the orbits of g. But
this happens if and only if v(g'd)=y(d) for all de D. Therefore f(y)=1 if and only if f,(v(d))=1
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for all i. This shows that f(y)= 'lglnooh,(1) and therefore measurable by Hewett and Stromberg
[3, 22.24b). o

We write D={d,,d,.d,...} and let D ,={d,....d,}. Let < g> be the subgroup generated by g
and < g> d the orbit of d under < g> . For each n and each k< n let ¢;*(g) be the number of
distinct cycles of g such that |<g>dnD,| = k. Form the monomial
M(g) = 7y, Wy TV g,

LEMMA 2. I <n(g)eyey> du(y) = Jim_ aM(g).
SD
PROOF. From the proof of Lemma 1 we saw that <=(g)ey, ey> = rlpi—".'ooh"(" ). So by the

dominated convergence theorem, j <x(g)ey.eq > du(y) = n"—'o"oo[ h,(v)du(y). But now h,(7) =1

if and only if v is constant on the intersection of the orbits of g with D, otherwise h,(y)=0. Let

B,= {y: y i3 constant on the intersection of the orbits of g with D,}. Then I ho(v)du(v) =
SD

p(B,). Since there are N choices for the value of y on each orbit meeting D, and no restrictions

on 7 outside D,, we get u(B,) = ﬁiNc 1), o) aM'(g). o

Let G, be the subgroup of G consisting of all those g€ G having only a finite number of
cycles in D of length greater than 1.

LEMMA 3. J <x(g)ey.ey>du(y) = 0 for all g¢ G,
SD
PROOF. Suppose g¢ G, Then there either exists k, such that c,,o"(g)—»oo as n—oo or there
exists an increasing sequence {k,} such that c,"“(g) >1. In the first case, for n>k,

n n
n-Y c*g) = Y (i-1)c*g) < ¢ *(9)- So with B, as in the proof of Lemma 2, we get

1=1 1=1

—c; (1) ,
0 < I <(g)ey.ey>du(y) = lim u(B) < lkim N b, = 0. In the second case we get
SD
n —
n—z:lci"(g) < k,—1 andso 0 < I <w(g)epey>duly) = 'l:lnoop(B,) < MOON—(E' D_o.
1=

SD
8]

For each klet Fi= {ge G: gd;=d; for all i>k}. Then {F.} is a nondecreasing sequence of
subgroups with:lj F=G,. Suppose G = {g,. 95 ... } and let G,.= {g,. ..., 9,,}. Assume Gis
=1

ordered in such a way that there exists a subsequence {m.} with G,N G,,,k= F,.

Let F be a finite subset of G. Define the n*cycle index of F to be the polynomial P;* =
L 3" M?(g). Define the operator Tron % by Ty = 1 > =(g). Write P," for Pg_* and
| F [F m

geF geF
T, for Tg .
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THEOREM 4. Ay is closed and

m, .
[I(AG ) = hm {Wa—l #Lnooap'"kn} = ITOO l—é:lkn—cl-j < kae7,e.,> du(v) .

PROOF. Fix kand let Dkzz{d,‘ +1- Qkg2n.. }. I a... ,a, are representatives for the orbits

of Fyin SP, then Ap, = Ao ,aJxSD*'. Therefore Ap, is closed and ;A(A’;-k) =3 Let ¥, bea

.
Nt
Hilbert space with orthonormal basis {ey: o € s° k). By Williamson [2], s = trace( Tr on %) =
aPFk’ where P, is the usual cycle index of F} on D,. Note that ”PF = N‘kP,,- » for all n>k By

Lemma 3 —'—G—";——G—I-;lewﬂpmk = ;{ﬂloodppvk". Therefore IGmk*nalfl:mOOoPmk = ’NI—kO'PFk. By

Lemma 2, bLm oP," = J < T, eqey> du(y). So we get w(Ap) = ————"a— hm aP

SD
m,

|G FI;G I J < T'"/ce7'e7> dp(-y).
mk o Sl

Since FC G, we can assume that Ag CAp, for all k. Therefore Ag C ﬂ AF We claim
that Ag = ﬂ Ap, To see this suppose that ye Ap, for all k. Then there ex1sts €Ay and
o

ge G, such tlmt y=gvyr. Since G,= U F, there cxists k, such that ge F,: Therefore v and v/
k=1

represent the same orbit of F} in SP. Since v andys € A F, We get y=v.. This proves the claim.
4
It follows that A, is closed and hence measurable. Therefore u(Ag ) = Ilcim ”(A’})' This
o o — 00

completes the proof of the theorem. n]

Suppose now that Gis in no particular order. We show how to compute p(A; ). Let A,
=GunG, and let Ty .= (TAm)".

THEOREM 5.  u(Ag) = [fim  lim_ [ < Ty aeyey>duly) .
SD

PROOF. Exists m, sothat Ie G,,,o. Fix m>m, and let H,, be the subgroup of G,

generated by A,. Define a probability measure v on H, by v(g) = TALI-

v(g) = 0 otherwise. Let »** be the n-fold convolution of v with itself and U the uniform

if ge A,, and

probability mcasure on H,. Then by Diaconis [4, pg23], [v*"~U||—0 where |.|| is the
total variation norm. If we extend the represcntation «, in the usual way, to the set of
measures on H,, we get #(v*") = ( TAm)"= TAm'" and ~(U) = T,,m. It follows, therefore, that

,lztlnoo < TAm,,,c,,, ey> =< T,,me.,, ey> forallye SP. By the dominated convergence theorem,

}leoo,[ < Ty nly €y > du(y) = I < Ty ey €y> dy(v). Then as in the proof of Theorem 4, we
sP sP
get p(Ay )= J < Ty ey, €y > du(y). The result follows since G, = oLj H,. o
m m =1
sP "



700 R.A. BEKES

3. EXAMPLE.
Suppose D = U D,, where the D, are disjoint and finite and that G sends D, into itself.
=1

Then if G, is G restncted to D,, G is isomorphic to the product H G,. In this case the
product measure u on S” need no longer come from uniform measuresnozlS

Let S = {3,-,3;} and let the measure v on S be defined by v(s;) = ¢, f |D,| =m,
define the measure p, on §Pn by p, = ﬁv. Let A, be representatives for the orbits of G, in

1=1
$P and Pg the cycle index. Then using the pattern inventory from Pélya.’s enumeration

theorem, see Polya and Read [1], we get pu,(A,) = Pg ( Z a; 2 a?, ,2 a; ) Let p = H b

and let A be representatives for the orbits of G in RP. Then, as in the proof of Theorem 4,

n
we get that p(A) = _lim u(Ap)- Note that when a; = 1, t=1..,k and |D,| =n we get
n=co 10 {8 %

Ba(B,) =0Pg , which is the situation in Theorem 4.

Now consider the plane tiled by one unit square tiles with sides parallel to the axis and
center the coordinates (m,n), m and n integers. We color the tiles black or white and compute
the measure the orbits of two groups of symmetries acting on the set of such tilings. For m a
a positive integer let D,, = {tiles with centers (xm,k) or (k,+m): k = -m,—~m+1,.-.,m-1,m}.

2n’+1
Let G, = H Z, act on D ; by interchanging tiles with central coordinates (+n%k) ,
k=1
on+1

k=-n?:.., n’ and let H,= [] 7, act on D ; by interchanging tiles with central coordinates

(£n%k) , k=—ny--, n. Nowlet G = || G,and H = [ H, With S={black, white}, we
n=1 n=

define probability measures u, on 8P by u,= H 7, Where v (black) = J zp{

D
and v, (white) =1-v (black). Let A(G,) and A( .) be representatives for the orbits of G, and
H, respectively on S$”%? and let A(G) and A(H) be representatives for the orbits of G and H
respectively on S°. Then  u,(A(H,)) = ezp(~1/n®) and so w(A(H)) = limit H n(A(HY) > 0.
But u,(A(G) = ez‘p{~ 2n’ +1 and so u(A(G)) = limit 1‘[ 1 (A(GY) = 0.
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