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ABSTRACT. In this paper coupled implicit initial-boundary value systems of second

order partial differential equations are considered. Given a finite domain and an

admissible error g an analytic approximate solution whose error is upper bounded

by g in the given domain is constructed in terms of the data.
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i. INTRODUCTION

Many physical systems can not be described by a single equation but, in fact

are modeled by a coupled system of equations. Coupled systems of second order partial

differential equations occur in various fields of applied sciences such as fluid me-

chanics, theory of elasticity, wave propagation, nonequilibrium thermodynamics, etc.

Examples of such type of different coupled systems of partial, differential equations

may be found in [2, 3 6 8 10,13 ,18] Methods to study such coupled systems

based on the transformation of the original system into a system of independent or

uncoupled partial differential equations may be found in [4 5 ,16 for instance.

However the well-adapted technique of such transformations, called the method of

elimination has some basic drawbacks as it has been shown in [5]. This motivates

the search of some alternative which avoid the inconveniences and straightforward

calculations involved in the method of elimination. In a recent paper [9] a method is

proposed to solve coupled systems of partial differential equations avoiding uncou-

pling techniques. The aim of this paper is to construct analytic approximate solu-

tions for a more general type of equations than the one considered in

This paper is organized as follows. In section 2 we provide a series solution

of coupled systems of the type

AUxx(X,t)-Ut(x,t)=b O<x<a,

U(O,t)=tbl, U(a,t)=tb2, t>O

t>O (1.1)

(1.2)
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U(x,O)=F(x), O=<x-<a (1.3)

Um)T 2
suchwhereU=(u ..... b,bl,b and F(x) are vectors in m A is a matrix in mxm

that

b, b and b2 belong t6 the range of A (1.4)

The real part of each eigenvalue z of A satisfies Re(z)O (1.5)

By means of a matrix separation of variables method, a convergent series solution of

the problem is given. Section 3 is concerned with the construction of a finite and

computable approximate solution of the problem (1.1)-(1.5), such that its approxima-

tion error be smaller than a prefixed admissible error e This is perfomed by trun-

cation of the infinite series and the approximation of certain matrix exponentials

byPad approximants of an appropriate degree.

Coupled systems of the type (I.I) with A singular appear in the study of the

Hodgkin-Maxleynervous conduction equation [14], [i. For the sake of clarity in the

presentation we recall some concepts and well known results about matrix norms. If C

is a matrix in Rmxm, we denote by [[C[[ its operator norm defined as the quare root of

CTthe maximum eigenvalue of cTc where is the transpose matrix of C, I12],p.14. The

m-norm of C, denoted by [[C[[m is defined by

and we recall that from

m
=max Z ]cij

i j=l

7],p.15, it follows that- [[C [[ (1.6)m C [[,,o--< C m

The set of all eigenvalues of C is denoted by C) and the identity matrix in mxm
is denoted by I.

2. A SERIES SOLUTION OF THE PROBLEM.
in RmTaking into account the hypothesis (1.4), let us take vectors c,c and c2

such that

b=Ac, bl=AC and b2=Ac2 (2.1)

An easy computation shows that

Z(x)=-x(x-a)c (2.2)

is a solution of the problem

AZ"(x)=D, Z(O):Z(a)=O

On the other hand let V(x,t) be defined by

(2.3)

V(x,t)=t(l-x/a)bl+txb2/a
and note that V satisfies the problem

AVxx(X,t)-Vt(x,t)=(bl-b2)x/a -b

V(O,t)=tbl, V(a,t)=tb2, t>O

V(x,O)=O O=<x-<a

O<x<a, t>O

(2.4)

(2.5)

(2.6)

(2.7)
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Now let us consider the function

T(x)=(I/6){(c2-cl)x3/a +3ClX2-(c2+2cl)ax}
that satisfies

T"(x)=cl+(C2-C1)x/a T(O)=T(a)=O

and from (2.I),

AT"(x)=bl+(b2-bl)x/a T(O)=T(a)=O

From the previous comments, if W(x,t) satisfies the problem

AWxx(X,t)-Wt(x,t)=O, O<x<a, t>O

W(O,t)--O, W(a,t)--O, t>O

W(x ,O)=F(x)-Z(x)+T(x), Oxa

thenU(x,t) defined by

U(x, t)=W(x, t)+V(x, t)-T(x)+Z(x)

(2.8)

(2.9)

(2.1o)

(2.)

(2.12)

(2.13)

is a solution of the problem (1.1)-(1.3).

If we look for solutions W(x,t) of the homogeneous boundary value problem (2.10)
(2.11), of the form

W(x,t)=S(t)X(x), S(t)Emxm, X(x)Em (2.14)

and from section 3 of [9] oneobtains a family of solutions W (x,t) of the problemn
(2.10)-(2.11), of the form

(2.15)W (x,t)=exp(-(nw/a)2At)sin(nxl/a)dn d em
n n

If we denote by G(x) the vector function

G(x)=F(x)-Z(x)+T(x) (2.16)

and we superpose the functions Wn(x,t) given by (2.15), then a formal solution of the

problem (2. I0)-(2.12) is given by

where

W(x,t)= Z Wn(X,t), (2.17)
hal

a

dn=(2/a)I G(x)sin(nwx/a)dx (2.18)
0

In order to prove that W(x,t) defined by (2.15),(2.17),(2.18), is a solution of the

problem (2.10),(2.12), we are going to show that under which conditions such series

W(x,t) defines a continuous vector function admits termwise partial derivatives,once

with respect to the variable t and twice with respect to the variable x. Note that

for the case where the real part of each eigenvalue z of the matrix A has a positive

real part, in 19] we proved that in fact W(x,t) is a solution of (2.10),(2.12).



666 L. JODAR

In this paper we assume that the matrix A is singular and satisfies (1.5) so

let us denote the spectrum O(A)--{ El r’r+l As} such that ij for ij and

O=Re(% )=Re(%2).....Re(%r )<Re( %r+l )-< Re(r+2 )-< <Re( s (2.19)

and let us denote by m.1 the index of the eigenvalue hi, I19],p.556. IfE(% k) denotes

the spectral projection associated to the eigenvalue k of the matrix A and if for a

fixed t>O we consider the complex function f (z)=exp(-tz(n/a)2) then from theorem
n

8 of [191,p.559, it follows that

s mk-1
exp(-tA(n/a)2) Z l

k=l j=o
(A-I)JE(xk)fkj (n)’ (2.20)

fkj(n)=fn(J) ()/j!=(n/a)2j(-l)jexp(-t%k(n/a)2)tj/j! (2.21)

Hence the series W(x,t) defined by (2.15),(2.17),(2.18), will be convergent and admit

termwise partial differentiation if each of the series

Zk j(x,t)= I (A-%kl)JE(%k)sin(nwxI/a)fkj(n)d
n.>l n (2.22)

verifies the same properties for I k s, O-<j-<mk-l.
Uetus denote by I(to,t I) the rectangle [O,a]X[to,tl] and let us introduce the

constants

C=max{ Ckj l_<k<.s, O-<j=<mk-1 Ckj >- (A-Xkl)JE(Xk)/J!II (2.23)

J=max 2(mk-i lkr} (2.24)

Let 0>0 such that Re(%i)->o>O, for r+l-<is, thenfrom (2.21), if (x,t)eI(to,tI) it

follows that

fkj (n) -< (n/a)2Jexp(-toRe(% (n/a)2Ckj (tl)J r+l-<k-s (2.25)

fkj(n)l- (n/a)2JCkj(tl)j l-<k-<r (2.26)

If we denote by Gn(x,t) the general term of the series Zk,j
for (x,t)eI(to,tl), it follows that

(x,t) defined by (2.22)

llGn(X,t)ll <-ckj(tlW2/a2)jn2j lldn II k-< (2.27)

llGn(X’t)ll <Ckj(tlla2)Jexp(-ot"o(nla)2)n2J Ildnll r+l"<k’<s (2.28)

In both cases we have

Gn(X, t)ll -< Ckj<tl2/a2)J lldn nJ 1 k-<s (2.29)

where J is defined by (2.24).
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Now let us assume that the function G(x) defined by (2.16) is J+4 times continuously

differentiable in IO,al such that

G(i)(o)=c(i)(a)=O, OiJ+4 (2.30)

then from I171,p.71, the odd 2a-periodic extension of G(x) in the real line admits

J+4 continuous derivatives and there exists a constant M defined by

M=sup g(J+a)(x)ll Oxa 42.31)

such that

d Mn-(J+4) nl (2 32)

On the other hand the general term of the series obtained by termwise partial diffe-

rentiation with respect to x and twice with respect to x, are upper bounded by a se-

quence of the type o(nm+2)lldnll, as n--> uniformly for (x,tI(to,tl). Thus from

the Weierstrass mayorant criterion and the derivation theorem for functional series

Ii, theorem 9.141, the series W(x,t) defined by (2.15),(2.17),(2.18), defines a con-

tinuous function which admits second order partial derivatives with respect to x and

first order partial derivatives with respect to the variable t, calculated by term-

wise partial differentiation in (2.17). From the previous comments the following

result has been established:

THEOREM I. Let us consider the initial-boundary value problem (1.1)-(1.5), let

Z(x),T(x) and V(x,t) be defined by (2.2),(2.8) and (2.4), respectively. If the eige-

values of A are ordered by (2.19) and J is defined by (2.24), assuming that G(x) de-

fined by (2.16) satisfies the condition (2.30), thena solution of the problem (I.I)-

(1.5), is given by (2.13), where W(x,t) is defined by (2.15),(2.17) and (2.18).

REMARK I. If A is a nonsingular matrix and satisfies Re(z)>O for each eigenvalue

of A, then the condition (1.4) is obviously satisfied. Furthermore in this case it

is unnecesary to impose the differentiability condition (2.30) because of the inequa-

lity (2.25). Thus the results of sections 2 and 3 of 191 area consequence of the

previous comments. Concerning to the differentiability of G() and the condition

(2.30), it is important to point out that if we do not impose the condition (2.30),

from [17],p.71 we only can assure that the Fourier sine coefficients d defined by

(2.18) satisfy an inequality of the type

lldnllMl/n +M2/n2 +’"+Mj+4/nJ+4
Note that if A is a non diagonalizable matrix then the problem (1.1)-(1.3) can not

be uncoupled and the uncoupling techniques are not useful to solve the problem.

3. APPROXIMATE SOLUTIONS AND ERROR BOUNDS

The solution U(x,t) provided by theorem has some numerical drawbacks, first

of all U(x,t) is an infinite series and secondly, its general term involves the

tationof matrix exponentials what is not an easy task, Ill I. In this section we try

to avoid these inconveniences by truncating the infinite series and after approxima-

ting in the finite series the matrix exponentials by Pad approxmants of an appro-

priate degree.



668 L. JODAR

Let q be a positive integer q>l and let N
qq

q k

Nqq(Z)= I (2q-k)! q! z

k=O (2q)!k!(q-k)!

(z) be the polynomial

and let us consider the Pad6 function R
qq

R
mxm and j is an integer such that

-I
(z)=(Nqq(-Z)) Nqq(Z). If C is a matrix in

and we define

Fqq(C)=IRqq(C/2J)]2J q>l (3.1)

32q (q!)2 (3.2)

(2q)! (2q+l)

From [7, p.3981 it follows that

IIexp(C)-Fqq(C)ILo<-vllclL xp(Z IIc IL (3.3)

Let t
o ,tl and e be positive numbers and let us consider the domain I(to,tl )" Since

ml+m2+’"+ms=<m’ from (2.20) and (2.29) it follows that

llexp(_tA(n/a)2)ll _< m(/a)JnJC(tl )m (3.4)

Now let n be the first positive integer satisfyingo

Z n
-4 .< (e/2){CMCt1)mC/a)J}-I

n>n
o

(3.5)

Taking into account that Ilsin(nxl/a)ll =< and from (2.32), if we denote by W(x,t,no)
then -th partial sum of the series (2.17), then it follows that

o

IIw(x,t)-W(x t n )li /2, (x,tkl(t ,tl)0 0
(3.6)

Let j be a positive integer j>l such that

2j-I => (n w/a)2t IIAILo

If for tE[to,tl] we define

Fqq(n, t)=Fqq(-(n/a)2tA)= Rqq(-(n/a)2tA/2j
2j

(3.7)

(3.8)

from (3.1)-(3.3) it follows that

Ilexp(-(n/a)2tA)-Fqq(n,t)II= <= t V(n/a)2 II Ii=o exp(2(n/a)2t IIA IIoo (3.9)

Hence from (2 32) if (x,t)El(t ,t it follows that
o
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n
o

F. Fqq(n, t)-exp(-tA(n/a)2)II sin(nxl/a)dn II
n=l

no
-< Myt IIAII= Y. n

-(J+2)

n=l

(3.10)

Now let us take q enough large so that y defined by (3.2) satisfies

{<
(Mt III A m1/2) -1 c

no
(J+2)

exp II A I!=2 r. n- (2(n/a)2tl
n=l

(3.11)

and let us denote by F(x t,n ,q) the vector function defined by
O

no
F(x,t,no,q)= Y. F (n t)sin(nxl/a)d

n=l qq n (3.12)

From(l.6),(3.10) and (3.11), we have

[[W(x,t,no)-F(x,t n ,q)ll 2
0

(x,t) E l(to,tl) (3.13)

Now from (3.6) and (3.13), it follows that

W(x,t)-F(x,t,no,q)[[ _< (3.14)

and from theorem and the previous comments the following result has been established

THEOREM 2. Let us consider the hypotheses and the notation of theorem I, let E

and t be positive numbers and let l(t tl)=[O a]x[t t If j is defined by (3 7)o o’ o’
n is defined by (3.5) and if q is chosen so that satisfies (3.11) and F(x t,n ,q)
0 0

is the finite series

n
o

F(x,t,no,q)= Z Fqq(n,t)sin(nxl/a)d
n=l n

where Fqq(n,t) is defined by (3.8), and U(x,t) is the exact solution of the problem

(1.1)-(1.5), provided by theorem I. Then the function

U(x,t ,no ,q)=F(x t no ,q)+V(x,t)-T(x)+Z(x)

where V(x,t),Z(x) and T(x) are defined by (2.4),(2.2) and (2.8) respectively, isan

approximate solution of the problem (1.1)-(1.5), such that

uniformly for (x,t)EI(to,tl)

In the following we give an example of the problem (1.1)-(1.5), where the matrix

A is singular and non diagonalizable, thus the uncoupling technique proposed in

[16] is not available.
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EXAMPLE. Let us consider the problem (1.1)-(1.3), where m=3, a-- ,to=O, tl--I/4
1/2 1/2 0

-1/2 3/2 0

0 0 0

b= b2= 3/2

0

7(x(x-)) +
2 .8

3 2
X X

6 2 3

(x(x- ) )7 3
X TX

+
48 8! 6 6

7(x(x ))

28 8!

It is easy to show that vectors b,b and b2 belong to the range of the matrix A and

that Ac=b, ACl=bI, Ac2=b2, where

0

c2=
.0

cl=

Thespectrum of the matrix A is O(A)={O, i} and the index of %1=0 is ml=l,
m2--2. The spectral projections associated to the matrix A are

O O O O 0

E(I)-00 O E(X.2)--I-E(X,1)--O 10

oO O 0 0 0

It is easy to show that the constant C given by (2.23) is C=I and that flAIl.=2. The

solution Z(x) of the corresponding problem (2.3) is given by

Z(x)--1/2(x- )x
0

The functions V(x,t) and T(x), defined by (2.4) and (2.8) respectively, take the

form

V(x,t)=t(l-x/) -1/2 + t___x 3/2

0 0

T(x)=(ll6)
3

x__ + 3x
2

Straightforward computations show that the function G(x) defined by (2.16) satisfies

(2.30) and since J=2, one gets

sup{ llG(6)(x) O-<x:}<6"375
2

S 5:M
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where

G(x)=
(x(x- ))7
8! 8

1/4

Given the admissible error E=O.OI, the constant appearing in the right-hand side of

(3.5) takes the value 0.06400 and since Z n-4= 4/90=I.082323234, the integer n
o

nl
satisfying (3,5) is the first positive integer n such that

0

1+ 2-4+...+(no)-4 > 4/90 0.06400=1.018323234

In this case is n =2 because 1+2-4=1.0625. Taking jffi3 one satisfies the correspon-
o

ding inequality (3.7). Now in order to take the appropriate value of q, the positive

constant y must satisfy

7 " "5 x 33 (e xp(4))
-2.0146064x10

aking q=3, in accordance with (3.2), it follows that 7=0.99206349xi0-5. Thus from

the previous results the approxite solution of the problem whose error is sller

than E uniformly in the domain I(O, 1/4)=[0, 1/4]x[O,[ is given by

U(x, t ,2,4 )ffiF(x, t ,2,4 )+V(x, t )-T(x )+Z(x ),

where

F(x,t,2,4)=F44(l,t)sinxd +F44(2,t) sin2x d2,

F44(1,t)f[(N44(tA/S))-lN44(_tA/8) ] 8

F44(2,t)=[(N44(tA/2)-I N44(_tA/2) ] 8

N44 tA/8 )=I+0.0625At+I .3950892xlO-5A2t2+2 .3251488xlO-5A3t3+1.453218x10-7A4t4,

N44(-tA/8)ffi-I-O.O625At+1.3950892xlO-5A2t2-2.3251488xlO-5A3t3+1.453218x10
-7A4t4,

422N44(tA/2)=I+O.25At+2.2321427xlO- A t +I .48809523xlO-3A3t3+3.72023808xlO-5A4t4

N(-t2I-O. 25At+2.2321427x10-4A2t2_1.28809523xlO-3A3t3+3.72023808xlO-5A4t4

The coefficients d I and d2 defined by (2.18) may be computed in an explicit analytic

way using formulas 2.634 of [20] ,p.184.
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