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ABSTRACT. In this paper we characterize hereditarily-normal spaces in terms of the measure-theoretic properties of

the lattice of closed sets. We then generalize from that lattice to other lattices. We apply the results to extremally-

disconnected spaces.
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1. INTRODUCTION

We can devise two measure-theoretic characterizations of hereditarily-normal spaces. First, a space is hereditarily-

normal if and only if every pre-measure is a measure. Second, a space is hereditarily-normal if and only if the set of

measures greater than a given measure form a chain. We can then generalize these results to other lattices (the lattices

of open sets, zero sets, cozero sets, etc.). When we apply the results to the lattice of open sets we can derive a few

conclusions about extremally-disconnected spaces.

We begin by giving a few definitions (we note that our lattice methods and terminology are consistent with standard

usage, e.g., Camacho [1], Eid [4], Szeto [8]):
DEFINITION 1. We can define a partial order on the set of two-valued nontrivial measures on a space X as

follows:/ -</t2 if and only if/z (F) _</2(F) for all closed sets F. We define _> in a similar manner. (We note that here

we are referring to finitely-additive two-valued measures on the algebra generated by the lattice of closed sets.)
DEFINITION 2. A two-valued pre-measure FI on a space X is a set function from the collection of closed sets to

{0, such that for any pair of closed sets F and F2:

FI(O) 0, (1.1)

if F1 _C F then FI(FI) _< FI(F2), (1.2)

if FI(F) and H(F2) then FI(F CI F2) 1, (1.3)

if F U F X then either FI(FI) or H(F2) 1. (1.4)

The last condition can be compared with the corresponding condition for measures:
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if H(F LI F2) then either l’l(Fl) or H(F2) 1.

DEFINITION 3. A space X has the pre-measure property if and only if every pre-measure on X is a measure.

DEFINITION 4. A space X is hereditarily normal if and only if every subset Y ofX is normal.

We can replace this with the equivalent but more useful definition:

DEFINITION 4A. A space is hereditarily normal if and only if for every subset Y ofX and every pair of closed

sets F and F the condition F N F t Y O implies that there exist closed sets F3 and F4 such that F N F N Y

F4 0 F N Y O and Y C_ F U F4.

DEFINITION 5. A regular measure/ is a measure on the algebra generated by the lattice of closed sets such that

/z(M) is the supremum of the measures of all closed sets inside M, A regular measure is also a maximal measure (i.e.,

there is no measure strictly greater than it). For a two-valued measure the sets of measure one form a closed ultrafiiter.

DEFINITION 6. A space X has the measure-tree property if and only if for all two-valued measures/,/l, and

/2 on the algebra generated by the lattice of closed sets the conditions It -</1 and/ _</2 imply that/2 -</ or/1

-</2" We note that the partial order _< is the same as that defined in Definition 1.

The term "measure-tree property" requires explaining. In a normal space the set of measures less than a given

measure (see Theorem 1) form a partially ordered set in which measures branch outward from the regular measure.

If the space does not have the measure-tree property those measures also branch inward. If the space has the measure-

tree property the measures form a tree in which the branches do not reunite. This is equivalent to saying that all

measures greater than a given measure form a chain.

We also note that this property closely resembles an axiom suggested by the noted mathematician Lewis Carrol

[2] (Sylvie and Bruno, Chapter 18, p. 425): Things greater than the same are greater than one another.

2. MAIN RESULTS

The following (see Eid [4] and Frolik [5]) is a measure-theoretic characterization of normal spaces:

THEOREM 2.1. A spaceX is normal if and only if for every measure # and every pair of regular measures1 and

/z2, if/z >- t and t2 >_ t then t2.

PROOF. Let us assume X is normal. Let us consider measure/ and regular measures/z and #2- Let/1 /t and

/2 ->/t. Let/ ;/2 and let us derive a contradiction. If/1 ;e/2 then there is a set M belonging to the algebra

generated by the topology such that/zl(M 1,/z2(M 0,/l(M’) 0, and/z(M’) 1. Since/ and/z are regular

measures there exist closed sets FI and F such that/z(F) =/z2(F2) 1,/1(F2) =/z2(Fl) 0, F _C M, F2 M’, and

Fl F2 O. We therefore have/(F) _< #2(F) 0 and t(F2) _</(F2) 0. Since X,is normal there exist open sets

G and G2 such that G _C F, G2 C F2, and G ffl G 0. Let their complements be F G’ and F4 G2’. Since

#1(G1) _>/I(F) and/2(G2) _>/z2(F2) we have #1(F3) #2(F4) 0. Therefore/(F) =/(F2) 0. Let F

F O F and F6 F2 O F4. Since/z(Fs) =/z(F LI F3) 0, #(Fs’ 1. Similarly/z(F6’ 1. Since F g F and F
t:: F6 we have F5’ _C F3’ and F6’ _C F4’. Since F3’ t F4’ O we have F’ Cl F6’ 0. This means that/(Fs’ t3 F6’
=/z(Fs’ + (F6’ 2, which is impossible. The necessary contradiction has been achieved.

For the other direction let Xbe not normal and let us construct a measure # and regular measures # and2 such

that/zl ; 2 but/z >_/ and/z _> #. Since X is not normal there are two disjoint closed sets F and F which cannot

be separated by open sets. The collection of sets {G is open [F _C G or F2 C__ G} therefore has the finite intersection

property. The open filter that it generates can be extended to an open ultrafilter which induces a measure such that

#(G) for G in the collection. Let F0 be an arbitrary closed set with measure one; #(Fo’ 0 which means Fo’ is

not in the collection. This means that Fo’ F and Fo’ g F2 or in other words F F0 ; @ and F t F0 ;

O. This means that the collection of sets {F is closed [u(F) 1} O {F has the finite intersection property. The filter

that it generates can be extended to a closed ultrafilter. The regular measure based on it will be called/t;/ _</t and

#(F) 1. Using similar reasoning we can see there is a regular measure/2 such that # _< #2 and #2(F2) 1. Since

F F2 O,/1 /2 which means the required measures have been constructed.
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THEOREM 2.2. If a space X has the pre-measure property then it has the measure-tree property.

PROOF. Let X have the pre-measure property and let #, #1, and #2 be measures on X such that:

and # #2. (2.1)

Let FI min(ul, #2)- It is easy to see that # _< FI.

The function FI is also a pre-measure. Conditions (1.1)-(13) in Definition 2 are obviously fulfilled. To prove

condition (1.4), we let F1 U F X. Because #(X) we also have #(F t3 F2) 1. The function is also a measure

and therefore #(F) or #(F2) 1. Since # _< FI, FI(FI) or FI(F2) 1. Therefore condition (1.4) is fulfilled.

The function FI is thus a pre-measure. Since X has the pre-measure property, 1-I is a measure. This is possible only if

either

2 </l or# _< #2" (2.2)

(If this weren’t the case then there would be closed sets F and F such that/I(FI) #2(F2) and/z(F2) #2(FI)
0. This means that #(F U F2) #2(F O F2) 1. Since H min(gp #2), we have H(F O F2) but H(F)

H(F2) 0. This is incompatible with H being a measure.)
We have been able to derive (2.2) from (2.1). Therefore X has the measure-tree property.,

THEOREM 2.3. If space X is hereditarily normal then it has the pre-measure property.

PROOF. Let H be a pre-measure on X. In order to show that it is a measure we let F and F2 be closed sets such

that H(F U F2) 1. Let Y X (F! fl F2). This means that F! CI F CI Y 9. Since X is hereditarily normal this

implies that there exist closed sets F and F4 such that F CI F f’l Y F4 f’l F2 f’lY gD and Y C F30 F4. Let F and

F6 be closed sets such that F F30 (F CI F2) and F F40 (F N F2). F U F6 X and since FI is a pre-measure

FI(Fs) or FI(F6) 1. Without loss of generality let I’I(Fs) 1. Let F F N (F10 F2).
Let us now prove F2 F7. We can do this point by point.

First, let point x //F2. Either x F or x F1’ If x F then x F f F which means x /F and thus x

F7. If, on the other hand, x F1’ then x F F1. Since F is disjoint from F F1, x F4’. Since x Y and F30
F4 Y, x F3. Therefore x F and thus x F7.

Second, letxF7.F7 (F fF2) LI (F F1).EitherxF CIF2orxF CIF1.1fxF F2thenx/
F2. On the other hand if x F f’l F then x F5. If x F then either x (F f F2) or x F N F or x F3. If

x F F then x F2. Now examine x F3. Ifx F then, since F is disjoint from F Y, x (F Y)’. Since

F C_ y, x Y. Therefore x F1’. On the other hand, since x //FT, x /F U F2. This means that x F2.

We have thus shown that F F and therefore F F C F U F2. Since FI(Fs) and FI(F U F2)
therefore H(F2) 1.

Similarly if FI(F6) then rI(Ft) 1. In other words, either FI(Ft) or FI(F2) 1.

We have shown that if 1-I(F U F2) then either rI(Fl) or FI(F2) 1. Therefore H is a measure. This

applies to all pre-measures which means that X has the pre-measure property.I

LEMMA 2.1. If/ is a measure on space X, Y is a subspace of X, and Z is a set in the algebra generated by the

topology such that Z _c y and #(Z) then the set function/ydefined as/y(F Y) g(F) for all closed sets F is

well-defined and/y is a measure on X.

PROOF. Let F be a closed set in Y. Let #y(F) be evaluated in two different ways:

#y(F) #(El) where Fl is closed and F Y F, (2.3)

lq/(F) #(F2) where F is closed and F C’l Y F. (2.4)
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Since Z Y and F N Y F F f’l Y we obtain F t Z F CI Z. Since u(Z) we also obtain u(F1 N Z)

u(FI) and u(F2 N Z) u(F2). This means that u(F1) u(F2) so that Uy is the same no matter how it is evaluated.

Most of the properties which determine if a set function is a measure are inherited byuy. The remaining property

is whether UY) 1. Since Y X Y, uy(Y) u(X) which implies that Uy is a measure..
THEOREM 2.4. If a space X has the measure-tree property then it is hereditarily normal.

PROOF. It is easiest to show this using the contrapositive.

Let X be not hereditarily normal. There must exist a subset Y ofX such that Y is not normal. We must have a

measure U on Y and a pair of regular measures Ul and U2 on Y such that U -< Ul and U -< ‘//2 but Ul U2. We must

therefore have sets M and M in the algebra generated by the inherited topology on Y such that:

U(MI) U2(M2) and U2(M1) uI(M2) 0. (2.5)

Since these are regular measure we must have closed sets F and F in Y such that:

uI(F1) u2(F2) and u2(F1) Ul(F2) O. (2.6)

Let U3, U4, and U5 be two-valued functions of sets in the algebra generated by the topology onX such that for all

M in the algebra:

u3(M) u(M n r), u4(M) u(M n Y), and us(M) u6(M n Y). (2.7)

These are obviously measures. They also satisfy the conditionsu3 -< ‘//4 andU3 -< ‘//5- IfXhad the measure-tree property

then they would satisfy either ‘//4 -< ‘//5 or ‘//5 -< ‘//4- Since F1, F C_ Y it follows that F F Y and F F fl Y

where F and F4 are closed. We therefore have the following

u4(F3) Ul(F3 Y) Ul(F1) 1, (2.s)

u5(F4) u2(F4 f’l Y) u2(F2) 1, (2.9)

u.(F.) ,(F. r) ,(F) 0, (2.10)

u5(F3) u2(F3 N Y) u2(F1) 0. (2.11)

The conclusion u4(F3) _< u5(F3) is not true for F and us(F4) _< u4(F4) is not true for F4. The space Xtherefore does

not have the measure-tree property.

We have thus proved the contrapositive and thus the original theorem that ifXhas the measure-tree property then

it is hereditarily normal.1

THEOREM 2.5. (Summing up.) The following concepts are equivalent: a) hereditary normality; b) the measure-

tree proper, and c) the pre-measure property.

The above reasoning can also be applied to other lattices than topologies. For example, lattices of zero sets are

hereditarily normal. (This is easy to see. Let Z[ and Zg be zero sets of functions f and g, respectively. The functions

remain continuous on the subspace. The function (If[ Igl)/(Ifl / Igl) is also continuous because (If[ + [gD
is nonzero if z/. and Zg are disjoint in the subspace. The cozero sets of the function’s positive and negative portions

produce the necessary cozero sets.) The theorems in this paper can be used to prove the well-known fact that pre-

measures on such lattices are measures. Similarly, Boolean algebras are obviously hereditarily normal; they also have



CHARACTERIZATIONS OF HEREDITARILY-NORMAL SPACES 629

the pre-measure property.

It is easy to see that the lattice of open sets is a normal lattice if and only if the space is extremally disconnected

(i.e., in an extremally-disconnected space any two disjoint open sets can be separated by closed sets). It is also easy to

see that if/1 and/z are measures on a space then/Zl(G </2(G) for all open sets G if and only if/Zl(F >/2(F) for

all closed sets F. If we put these facts together we can easily derive the following theorems:

THEOREM 2.6. A spaceXis extremally disconnected if and only if for every measure/z and every pair of minimal

measures (a measure is a minimal measure if and only if there is no nontrivial measure strictly less than it for every

closed set)/z and #2, if/zl </ and/z </ then/ =/z2.

THEOREM 2.7. A space X is hereditarily extremally disconnected if and only if for all two-valued measures/z,/z 1,

and/z on X the conditions/t >/t and/t > 2 imply that either lt2 >/l or/ >/2"
These theorems can be used to prove:

THEOREM 2.8. A normal extremally-disconnected space is hereditarily normal if and only if it is hereditarily

extremally disconnected.

PROOF. Let X be normal and hereditarily extremally disconnected and let us prove it is hereditarily normal. Let

/Ul,/t2, and/.t be three measures such that/z _</t and/.t _< 3" Let/Z be a regular measure greater than/t2. and let

lt5 be a regular measure greater that t3. Both it and/a are greater than/zl and therefore, since the space is normal,

/4 It5" This means that it _< t and I3 -< lt4" The space is hereditarily extremally disconnected and therefore 12 and

/z are comparable (i.e., either t _< It or It _< /t2). We have shown that any two measures greater than the same

measure are comparable. The space is therefore hereditarily normal.

We can use similar reasoning to show that if a space is extremally disconnected and hereditarily normal then it is

hereditarily extremally disconnected.1

If we examine the lattice of zero sets in a Tychonoff space, we can see that since it is hereditarily normal, if the

lattice of cozero sets is normal (i.e., if the space is an F-space see Gillman and Jerison [6], Chapter 14) then it is

hereditarily normal. We can also easily prove the well-known results that a z-ideal in an F-space belongs to a chain

from a minimal ideal to a maximal ideal.

The obvious conclusion the property of being an F-space is hereditary is false. Dow [3] constructed an F-space

with an open subspace which is not an F-space. This can be reconciled with the fact that the lattice of cozero sets in

an F-space is hereditarily normal. The members of the normal descendant lattice on the subspace consist of those

cozero sets inherited from the original space. However, not every cozero set in the subspace has been inherited from

the original space. The cozero sets of a subspace can include additional sets if there are more continuous functions on

the subspace than on the original space.

At this point we have two questions: 1) Are there any spaces which are normal and extremally disconnected but

which are not hereditarily extremally disconnected? 2) Are there any spaces which are hereditarily normal and

extremally disconnected but which are not discrete?

The answer to the first question is yes. The Stone-(ech compactification of the integers (fiN, Example 111 in

Steen and Seebach [7]) is the Stone space of a complete algebra. It is therefore normal and extremally disconnected.

The power set of the integers modulo the ideal of finite sets is incomplete so there its Stone space is not extremally

disconnected even thought it is a subspace of fiN. This means that fin is not hereditarily extremally disconnected even

though it is normal and extremally disconnected.

The answer to the second question is also yes. If we consider the single ultrafilter (Example 114 in Steen and

Seebach [7]) we can see that this space must be extremally disconnected because if there are two dsjoint open sets,

at least one of them does not belong to the particular ultrafilter and it must therefore be closed. The two sets can

therefore be separated by clopen sets. The space must also be hereditarily normal. It is countable and thus hereditarily

Lindel0f. A regular hereditarily-Lindelof space is hereditarily normal.
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